PrimitiveElement FΒΆ
primelt.spad line 1 [edit on github]
F: Join(Field, CharacteristicZero)
PrimitiveElement provides functions to compute primitive elements in algebraic extensions.
- primitiveElement: (List Polynomial F, List Symbol) -> Record(coef: List Integer, poly: List SparseUnivariatePolynomial F, prim: SparseUnivariatePolynomial F)
primitiveElement([p1, ..., pn], [a1, ..., an])
returns[[c1, ..., cn], [q1, ..., qn], q]
such that thenk(a1, ..., an) = k(a)
, wherea = a1 c1 + ... + an cn
,ai = qi(a)
, andq(a) = 0
. Thepi
's
are the defining polynomials for theai
's
. This operation uses the technique of spadglossSee{groebner bases}{Groebner basis}.
- primitiveElement: (List Polynomial F, List Symbol, Symbol) -> Record(coef: List Integer, poly: List SparseUnivariatePolynomial F, prim: SparseUnivariatePolynomial F)
primitiveElement([p1, ..., pn], [a1, ..., an], a)
returns[[c1, ..., cn], [q1, ..., qn], q]
such that thenk(a1, ..., an) = k(a)
, wherea = a1 c1 + ... + an cn
,ai = qi(a)
, andq(a) = 0
. Thepi
's
are the defining polynomials for theai
's
. This operation uses the technique of spadglossSee{groebner bases}{Groebner basis}.
- primitiveElement: (Polynomial F, Symbol, Polynomial F, Symbol) -> Record(coef1: Integer, coef2: Integer, prim: SparseUnivariatePolynomial F)
primitiveElement(p1, a1, p2, a2)
returns[c1, c2, q]
such thatk(a1, a2) = k(a)
wherea = c1 a1 + c2 a2, and q(a) = 0
. Thepi
's
are the defining polynomials for theai
's
. Thep2
may involvea1
, butp1
must not involvea2
. This operation uses resultant.