PolynomialNumberTheoryFunctionsΒΆ
numtheor.spad line 451 [edit on github]
This package provides various polynomial number theoretic functions over the integers.
- bernoulli: Integer -> SparseUnivariatePolynomial Fraction Integer
bernoulli(n)
returns then
th Bernoulli polynomialB[n](x)
. Note: Bernoulli polynomials denotedB(n, x)
computed by solving the differential equationdifferentiate(B(n, x), x) = n B(n-1, x)
whereB(0, x) = 1
and initial condition comes fromB(n) = B(n, 0)
.
- chebyshevT: Integer -> SparseUnivariatePolynomial Integer
chebyshevT(n)
returns then
th Chebyshev polynomialT[n](x)
. Note: Chebyshev polynomials of the first kind, denotedT[n](x)
, computed from the two term recurrence. The generating function(1-t*x)/(1-2*t*x+t^2) = sum(T[n](x)*t^n, n=0..infinity)
.
- chebyshevU: Integer -> SparseUnivariatePolynomial Integer
chebyshevU(n)
returns then
th Chebyshev polynomialU[n](x)
. Note: Chebyshev polynomials of the second kind, denotedU[n](x)
, computed from the two term recurrence. The generating function1/(1-2*t*x+t^2) = sum(T[n](x)*t^n, n=0..infinity)
.
- cyclotomic: Integer -> SparseUnivariatePolynomial Integer
cyclotomic(n)
returns then
th cyclotomic polynomialphi[n](x)
. Note:phi[n](x)
is the factor ofx^n - 1
whose roots are the primitiven
th roots of unity.
- euler: Integer -> SparseUnivariatePolynomial Fraction Integer
euler(n)
returns then
th Euler polynomialE[n](x)
. Note: Euler polynomials denotedE(n, x)
are computed by solving the differential equationdifferentiate(E(n, x), x) = n E(n-1, x)
whereE(0, x) = 1
and initial condition comes fromE(n) = 2^n E(n, 1/2)
.
- fixedDivisor: SparseUnivariatePolynomial Integer -> Integer
fixedDivisor(a)
fora(x)
inZ[x]
is the largest integerf
such thatf
dividesa(x=k)
for all integersk
. Note: fixed divisor ofa
isreduce(gcd, [a(x=k) for k in 0..degree(a)])
.
- hermite: Integer -> SparseUnivariatePolynomial Integer
hermite(n)
returns then
th Hermite polynomialH[n](x)
. Note: Hermite polynomials, denotedH[n](x)
, are computed from the two term recurrence. The generating function is:exp(2*t*x-t^2) = sum(H[n](x)*t^n/n!, n=0..infinity)
.
- laguerre: Integer -> SparseUnivariatePolynomial Integer
laguerre(n)
returns then
th Laguerre polynomialL[n](x)
. Note: Laguerre polynomials, denotedL[n](x)
, are computed from the two term recurrence. The generating function is:exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t^n/n!, n=0..infinity)
.
- legendre: Integer -> SparseUnivariatePolynomial Fraction Integer
legendre(n)
returns then
th Legendre polynomialP[n](x)
. Note: Legendre polynomials, denotedP[n](x)
, are computed from the two term recurrence. The generating function is:1/sqrt(1-2*t*x+t^2) = sum(P[n](x)*t^n, n=0..infinity)
.