PolynomialFactorizationByRecursion(R, E, VarSet, S)¶
pfbr.spad line 1 [edit on github]
VarSet: OrderedSet
S: PolynomialCategory(R, E, VarSet)
PolynomialFactorizationByRecursion(R
, E
, VarSet
, S
) is used for factorization of sparse univariate polynomials over a domain S
of multivariate polynomials over R
.
- bivariateSLPEBR: (List SparseUnivariatePolynomial S, SparseUnivariatePolynomial S, VarSet) -> Union(List SparseUnivariatePolynomial S, failed)
bivariateSLPEBR(lp, p, v)
implements the bivariate case of solveLinearPolynomialEquationByRecursion; its implementation depends onR
- factorByRecursion: SparseUnivariatePolynomial S -> Factored SparseUnivariatePolynomial S
factorByRecursion(p)
factors polynomialp
. This function performs the recursion step for factorPolynomial, as defined in PolynomialFactorizationExplicit category (see factorPolynomial)
- factorSquareFreeByRecursion: SparseUnivariatePolynomial S -> Factored SparseUnivariatePolynomial S
factorSquareFreeByRecursion(p)
returns the square free factorization ofp
. This functions performs the recursion step for factorSquareFreePolynomial, as defined in PolynomialFactorizationExplicit category (see factorSquareFreePolynomial).
- randomR: Integer -> R
randomR produces
a random element ofR
- solveLinearPolynomialEquationByRecursion: (List SparseUnivariatePolynomial S, SparseUnivariatePolynomial S) -> Union(List SparseUnivariatePolynomial S, failed)
solveLinearPolynomialEquationByRecursion([p1, ..., pn], p)
returns the list of polynomials[q1, ..., qn]
such thatsum qi/pi = p / prod pi
, a recursion step for solveLinearPolynomialEquation as defined in PolynomialFactorizationExplicit category (see solveLinearPolynomialEquation). If no such list ofqi
exists, then “failed” is returned.