PolynomialCategoryQuotientFunctions(E, V, R, P, F)¶
rf.spad line 1 [edit on github]
V: OrderedSet
R: Ring
P: PolynomialCategory(R, E, V)
F: Field with
coerce: P -> %
denom: % -> P
numer: % -> P
This package transforms multivariate polynomials or fractions into univariate polynomials or fractions, and back.
- isExpt: F -> Union(Record(var: V, exponent: Integer), failed)
isExpt(p)
returns[x, n]
ifp = x^n
andn ~= 0
, “failed” otherwise.
- isPlus: F -> Union(List F, failed)
isPlus(p)
returns [m1
, …,mn
] ifp = m1 + ... + mn
andn > 1
, “failed” otherwise.
- isPower: F -> Union(Record(val: F, exponent: Integer), failed)
isPower(p)
returns[x, n]
ifp = x^n
andn ~= 0
, “failed” otherwise.
- isTimes: F -> Union(List F, failed)
isTimes(p)
returns[a1, ..., an]
ifp = a1 ... an
andn > 1
, “failed” otherwise.
- mainVariable: F -> Union(V, failed)
mainVariable(f)
returns the highest variable appearing in the numerator or the denominator off
, “failed” iff
has no variables.
- multivariate: (Fraction SparseUnivariatePolynomial F, V) -> F
multivariate(f, v)
applies both the numerator and denominator off
tov
.
- univariate: (F, V) -> Fraction SparseUnivariatePolynomial F
univariate(f, v)
returnsf
viewed as a univariate rational function inv
.
- univariate: (F, V, SparseUnivariatePolynomial F) -> SparseUnivariatePolynomial F
univariate(f, x, p)
returnsf
viewed as a univariate polynomial inx
, using the side-conditionp(x) = 0
.
- variables: F -> List V
variables(f)
returns the list of variables appearing in the numerator or the denominator off
.