LinearDependence(S, R)¶
lindep.spad line 1 [edit on github]
R: LinearlyExplicitOver S
Test for linear dependence.
- linearDependence: Vector R -> Union(Vector S, failed)
linearDependence([v1, ..., vn])
returns[c1, ..., cn]
ifc1*v1 + ... + cn*vn = 0
and not all theci
's
are 0, “failed” if thevi
's
are linearly independent overS
.
- linearlyDependent?: Vector R -> Boolean
linearlyDependent?([v1, ..., vn])
returnstrue
if thevi
's
are linearly dependent overS
,false
otherwise.
- particularSolution: (Matrix R, Vector R) -> Union(Vector Fraction S, failed) if S hasn’t Field
particularSolution([v1, ..., vn], u)
returns[c1, ..., cn]
such thatc1*v1 + ... + cn*vn = u
, “failed” if no suchci
's
exist in the quotient field ofS
.
- particularSolution: (Matrix R, Vector R) -> Union(Vector S, failed) if S has Field
particularSolution([v1, ..., vn], u)
returns[c1, ..., cn]
such thatc1*v1 + ... + cn*vn = u
, “failed” if no suchci
's
exist inS
.
- particularSolution: (Vector R, R) -> Union(Vector Fraction S, failed) if S hasn’t Field
particularSolution([v1, ..., vn], u)
returns[c1, ..., cn]
such thatc1*v1 + ... + cn*vn = u
, “failed” if no suchci
's
exist in the quotient field ofS
.
- particularSolution: (Vector R, R) -> Union(Vector S, failed) if S has Field
particularSolution([v1, ..., vn], u)
returns[c1, ..., cn]
such thatc1*v1 + ... + cn*vn = u
, “failed” if no suchci
's
exist inS
.
- solveLinear: (Matrix R, Vector R) -> Record(particular: Union(Vector Fraction S, failed), basis: List Vector Fraction S) if S hasn’t Field
solveLinear([v1, ..., vn], u)
returns solution of the systemc1*v1 + ... + cn*vn = u
and and a basis of the associated homogeneous systemc1*v1 + ... + cn*vn = 0
- solveLinear: (Matrix R, Vector R) -> Record(particular: Union(Vector S, failed), basis: List Vector S) if S has Field
solveLinear([v1, ..., vn], u)
returns solution of the systemc1*v1 + ... + cn*vn = u
and and a basis of the associated homogeneous systemc1*v1 + ... + cn*vn = 0