IntegerLinearDependence R¶
lindep.spad line 133 [edit on github]
Test for linear dependence over the integers.
- linearDependenceOverZ: Vector R -> Union(Vector Integer, failed)
linearlyDependenceOverZ([v1, ..., vn])
returns[c1, ..., cn]
ifc1*v1 + ... + cn*vn = 0
and not all theci
's
are 0, “failed” if thevi
's
are linearly independent over the integers.
- linearlyDependentOverZ?: Vector R -> Boolean
linearlyDependentOverZ?([v1, ..., vn])
returnstrue
if thevi
's
are linearly dependent over the integers,false
otherwise.
- particularSolutionOverQ: (Matrix R, Vector R) -> Union(Vector Fraction Integer, failed)
solveLinearlyOverQ([v1, ..., vn], u)
returns[c1, ..., cn]
such thatc1*v1 + ... + cn*vn = u
, “failed” if no such rational numbersci
's
exist.
- particularSolutionOverQ: (Vector R, R) -> Union(Vector Fraction Integer, failed)
particularSolutionOverQ([v1, ..., vn], u)
returns[c1, ..., cn]
such thatc1*v1 + ... + cn*vn = u
, “failed” if no such rational numbersci
's
exist.
- solveLinearlyOverQ: (Matrix R, Vector R) -> Record(particular: Union(Vector Fraction Integer, failed), basis: List Vector Fraction Integer)
solveLinearlyOverQ([v1, ..., vn], u)
returns solution of the systemc1*v1 + ... + cn*vn = u
and and a basis of the associated homogeneous systemc1*v1 + ... + cn*vn = 0
- solveLinearlyOverQ: (Vector R, R) -> Record(particular: Union(Vector Fraction Integer, failed), basis: List Vector Fraction Integer)
solveLinearlyOverQ([v1, ..., vn], u)
returns solution of the systemc1*v1 + ... + cn*vn = u
and and a basis of the associated homogeneous systemc1*v1 + ... + cn*vn = 0