GenusZeroIntegration(R, F, L)¶
intaf.spad line 1 [edit on github]
R: Join(GcdDomain, RetractableTo Integer, Comparable, CharacteristicZero, LinearlyExplicitOver Integer)
F: Join(FunctionSpace R, AlgebraicallyClosedField, TranscendentalFunctionCategory)
L: SetCategory
This internal package rationalises integrands on curves of the form: y\^2 = a x\^2 + b x + c
y\^2 = (a x + b) / (c x + d)
f(x, y) = 0
where f
has degree 1 in x
The rationalization is done for integration, limited integration, extended integration and the risch differential equation.
- lift: (SparseUnivariatePolynomial F, Kernel F) -> SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F
lift(u, k)
undocumented
- multivariate: (SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F, Kernel F, F) -> F
multivariate(u, k, f)
undocumented
- palgint0: (F, Kernel F, Kernel F, F, SparseUnivariatePolynomial F) -> IntegrationResult F
palgint0(f, x, y, d, p)
returns the integral off(x, y)dx
wherey
is an algebraic function ofx
satisfyingd(x)\^2 y(x)\^2 = P(x)
.
- palgint0: (F, Kernel F, Kernel F, Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> IntegrationResult F
palgint0(f, x, y, z, t, c)
returns the integral off(x, y)dx
wherey
is an algebraic function ofx
satisfyingx = eval(t, z, ry)
andc = d/dz t
;r
is rational function ofx
,c
andt
are rational functions ofz
. Argumentz
is a dummy variable not appearing inf(x, y)
.
- palgLODE0: (L, F, Kernel F, Kernel F, F, SparseUnivariatePolynomial F) -> Record(particular: Union(F, failed), basis: List F) if L has LinearOrdinaryDifferentialOperatorCategory F
palgLODE0(op, g, x, y, d, p)
returns the solution ofop f = g
. Argumenty
is an algebraic function ofx
satisfyingd(x)\^2y(x)\^2 = P(x)
.
- palgLODE0: (L, F, Kernel F, Kernel F, Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> Record(particular: Union(F, failed), basis: List F) if L has LinearOrdinaryDifferentialOperatorCategory F
palgLODE0(op, g, x, y, z, t, c)
returns the solution ofop f = g
. Argumenty
is an algebraic function ofx
satisfyingx = eval(t, z, ry)
andc = d/dz t
;r
is rational function ofx
,c
andt
are rational functions ofz
.
- palgRDE0: (F, F, Kernel F, Kernel F, (F, F, Symbol) -> Union(F, failed), F, SparseUnivariatePolynomial F) -> Union(F, failed)
palgRDE0(f, g, x, y, foo, d, p)
returns a functionz(x, y)
such thatdz/dx + n * df/dx z(x, y) = g(x, y)
if such az
exists, and “failed” otherwise. Argumenty
is an algebraic function ofx
satisfyingd(x)\^2y(x)\^2 = P(x)
. Argumentfoo
, called byfoo(a, b, x)
, is a function that solvesdu/dx + n * da/dx u(x) = u(x)
for an unknownu(x)
not involvingy
.
- palgRDE0: (F, F, Kernel F, Kernel F, (F, F, Symbol) -> Union(F, failed), Kernel F, F, Fraction SparseUnivariatePolynomial F, F) -> Union(F, failed)
palgRDE0(f, g, x, y, foo, t, c)
returns a functionz(x, y)
such thatdz/dx + n * df/dx z(x, y) = g(x, y)
if such az
exists, and “failed” otherwise. Argumenty
is an algebraic function ofx
satisfyingx = eval(t, z, ry)
andc = d/dz t
;r
is rational function ofx
,c
andt
are rational functions ofz
. Argumentfoo
, called byfoo(a, b, x)
, is a function that solvesdu/dx + n * da/dx u(x) = u(x)
for an unknownu(x)
not involvingy
.
- rationalize_ir: (IntegrationResult F, Kernel F) -> IntegrationResult F
rationalize_ir(irf, k1)
eliminates square rootk1
from the integration result.
- univariate: (F, Kernel F, Kernel F, SparseUnivariatePolynomial F) -> SparseUnivariatePolynomial Fraction SparseUnivariatePolynomial F
univariate(f, k, k, p)
undocumented