GenerateUnivariatePowerSeries2 FEΒΆ
genups.spad line 117 [edit on github]
FE: Join(Ring, RetractableTo Symbol)
GenerateUnivariatePowerSeries provides functions that create power series from explicit formulas for their nth coefficient.
- laurent: (FE, Symbol, Equation FE, UniversalSegment Integer) -> Any if FE has Evalable FE and FE has RetractableTo Integer
laurent(a(n), n, x=a, n0..)returnssum(n = n0.., a(n) * (x - a)^n);laurent(a(n), n, x=a, n0..n1)returnssum(n = n0..n1, a(n) * (x - a)^n).
- laurent: (Integer -> FE, Equation FE, UniversalSegment Integer) -> Any
laurent(n +-> a(n), x = a, n0..)returnssum(n = n0.., a(n) * (x - a)^n);laurent(n +-> a(n), x = a, n0..n1)returnssum(n = n0..n1, a(n) * (x - a)^n).
- puiseux: (FE, Symbol, Equation FE, UniversalSegment Fraction Integer, Fraction Integer) -> Any if FE has Evalable FE and FE has RetractableTo Fraction Integer
puiseux(a(n), n, x = a, r0.., r)returnssum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n);puiseux(a(n), n, x = a, r0..r1, r)returnssum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n).
- puiseux: (Fraction Integer -> FE, Equation FE, UniversalSegment Fraction Integer, Fraction Integer) -> Any
puiseux(n +-> a(n), x = a, r0.., r)returnssum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n);puiseux(n +-> a(n), x = a, r0..r1, r)returnssum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n).
- series: (FE, Symbol, Equation FE) -> Any if FE has Evalable FE and FE has RetractableTo Fraction Integer
series(a(n), n, x = a)returnssum(n = 0.., a(n)*(x-a)^n).
- series: (FE, Symbol, Equation FE, UniversalSegment Fraction Integer, Fraction Integer) -> Any if FE has Evalable FE and FE has RetractableTo Fraction Integer
series(a(n), n, x = a, r0.., r)returnssum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n);series(a(n), n, x = a, r0..r1, r)returnssum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n).
- series: (FE, Symbol, Equation FE, UniversalSegment Integer) -> Any if FE has Evalable FE and FE has RetractableTo Fraction Integer
series(a(n), n, x=a, n0..)returnssum(n = n0.., a(n) * (x - a)^n);series(a(n), n, x=a, n0..n1)returnssum(n = n0..n1, a(n) * (x - a)^n).
- series: (Fraction Integer -> FE, Equation FE, UniversalSegment Fraction Integer, Fraction Integer) -> Any
series(n +-> a(n), x = a, r0.., r)returnssum(n = r0, r0 + r, r0 + 2*r..., a(n) * (x - a)^n);series(n +-> a(n), x = a, r0..r1, r)returnssum(n = r0 + k*r while n <= r1, a(n) * (x - a)^n).
- series: (Integer -> FE, Equation FE) -> Any
series(n +-> a(n), x = a)returnssum(n = 0.., a(n)*(x-a)^n).
- series: (Integer -> FE, Equation FE, UniversalSegment Integer) -> Any
series(n +-> a(n), x = a, n0..)returnssum(n = n0.., a(n) * (x - a)^n);series(n +-> a(n), x = a, n0..n1)returnssum(n = n0..n1, a(n) * (x - a)^n).
- taylor: (FE, Symbol, Equation FE) -> Any if FE has Evalable FE and FE has RetractableTo Integer
taylor(a(n), n, x = a)returnssum(n = 0.., a(n)*(x-a)^n).
- taylor: (FE, Symbol, Equation FE, UniversalSegment NonNegativeInteger) -> Any if FE has Evalable FE and FE has RetractableTo Integer
taylor(a(n), n, x = a, n0..)returnssum(n = n0.., a(n)*(x-a)^n);taylor(a(n), n, x = a, n0..n1)returnssum(n = n0.., a(n)*(x-a)^n).
- taylor: (Integer -> FE, Equation FE) -> Any
taylor(n +-> a(n), x = a)returnssum(n = 0.., a(n)*(x-a)^n).
- taylor: (Integer -> FE, Equation FE, UniversalSegment NonNegativeInteger) -> Any
taylor(n +-> a(n), x = a, n0..)returnssum(n=n0.., a(n)*(x-a)^n);taylor(n +-> a(n), x = a, n0..n1)returnssum(n = n0.., a(n)*(x-a)^n).