FunctionalSpecialFunction(R, F)ΒΆ
combfunc.spad line 443 [edit on github]
R: Join(Comparable, IntegralDomain)
F: FunctionSpace R
Provides some special functions over an integral domain.
- abs: F -> F
abs(f)returns the absolute value operator applied tof.
- airyAi: F -> F
airyAi(x)returns the AiryAifunction applied tox.
- airyAiPrime: F -> F
airyAiPrime(x)returns the derivative of AiryAifunction applied tox.
- airyBi: F -> F
airyBi(x)returns the AiryBifunction applied tox.
- airyBiPrime: F -> F
airyBiPrime(x)returns the derivative of AiryBifunction applied tox.
- angerJ: (F, F) -> F
angerJ(v, z)is the AngerJfunction.
- belong?: BasicOperator -> Boolean
belong?(op)returnstrueifopis a special function operator.
- besselI: (F, F) -> F
besselI(x, y)returns the BesselIfunction applied toxandy.
- besselJ: (F, F) -> F
besselJ(x, y)returns the BesselJfunction applied toxandy.
- besselK: (F, F) -> F
besselK(x, y)returns the BesselKfunction applied toxandy.
- besselY: (F, F) -> F
besselY(x, y)returns the BesselYfunction applied toxandy.
- Beta: (F, F) -> F
Beta(x, y)returns the beta function applied toxandy.
- Beta: (F, F, F) -> F
Beta(x, a, b)is incomplete Beta function applied tox, a andb.
- ceiling: F -> F
ceiling(x)returns the smallest integer above or equalx.
- charlierC: (F, F, F) -> F
charlierC(n, a, z)is the Charlier polynomial.
- conjugate: F -> F
conjugate(f)returns the conjugate value operator applied tof.
- digamma: F -> F
digamma(x)returns the digamma function applied tox.
- diracDelta: F -> F
diracDelta(x)is unit mass at zeros ofx.
- ellipticE: (F, F) -> F
ellipticE(z, m)is the incomplete elliptic integral of the second kind:ellipticE(z, m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..z).
- ellipticE: F -> F
ellipticE(m)is the complete elliptic integral of the second kind:ellipticE(m) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..1).
- ellipticF: (F, F) -> F
ellipticF(z, m)is the incomplete elliptic integral of the first kind :ellipticF(z, m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..z).
- ellipticK: F -> F
ellipticK(m)is the complete elliptic integral of the first kind:ellipticK(m) = integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..1).
- ellipticPi: (F, F, F) -> F
ellipticPi(z, n, m)is the incomplete elliptic integral of the third kind:ellipticPi(z, n, m) = integrate(1/((1-n*t^2)*sqrt((1-t^2)*(1-m*t^2))), t = 0..z).
- floor: F -> F
floor(x)returns the largest integer below or equalx.
- fractionPart: F -> F
fractionPart(x)returns the fractional part ofx.
- Gamma: (F, F) -> F
Gamma(a, x)returns the incomplete Gamma function applied to a andx.
- Gamma: F -> F
Gamma(f)returns the formal Gamma function applied tof.
- hahn_p: (F, F, F, F, F) -> F
hahn_p(n, a, b, bar_a, bar_b, z)is the continuous Hahn polynomial.
- hahnQ: (F, F, F, F, F) -> F
hahnQ(n, a, b, N, z)is the Hahn polynomial.
- hahnR: (F, F, F, F, F) -> F
hahnR(n, c, d, N, z)is the dual Hahn polynomial.
- hahnS: (F, F, F, F, F) -> F
hahnS(n, a, b, c, z)is the continuous dual Hahn polynomial.
- hankelH1: (F, F) -> F
hankelH1(v, z)is first Hankel function (Bessel function of the third kind).
- hankelH2: (F, F) -> F
hankelH2(v, z)is the second Hankel function (Bessel function of the third kind).
- hermiteH: (F, F) -> F
hermiteH(n, z)is the Hermite polynomial.
- hypergeometricF: (List F, List F, F) -> F
hypergeometricF(la, lb, z)is the generalized hypergeometric function.
- iAiryAi: F -> F
iAiryAi(x)should be local but conditional.
- iAiryAiPrime: F -> F
iAiryAiPrime(x)should be local but conditional.
- iAiryBi: F -> F
iAiryBi(x)should be local but conditional.
- iAiryBiPrime: F -> F
iAiryBiPrime(x)should be local but conditional.
- iiabs: F -> F
iiabs(x)should be local but conditional.
- iiAiryAi: F -> F
iiAiryAi(x)should be local but conditional.
- iiAiryAiPrime: F -> F
iiAiryAiPrime(x)should be local but conditional.
- iiAiryBi: F -> F
iiAiryBi(x)should be local but conditional.
- iiAiryBiPrime: F -> F
iiAiryBiPrime(x)should be local but conditional.
- iiBesselI: List F -> F
iiBesselI(x)should be local but conditional.
- iiBesselJ: List F -> F
iiBesselJ(x)should be local but conditional.
- iiBesselK: List F -> F
iiBesselK(x)should be local but conditional.
- iiBesselY: List F -> F
iiBesselY(x)should be local but conditional.
- iiBeta: List F -> F
iiBeta(x)should be local but conditional.
- iiconjugate: F -> F
iiconjugate(x)should be local but conditional.
- iidigamma: F -> F
iidigamma(x)should be local but conditional.
- iiGamma: F -> F
iiGamma(x)should be local but conditional.
- iiHypergeometricF: List F -> F
iiHypergeometricF(l)should be local but conditional.
- iipolygamma: List F -> F
iipolygamma(x)should be local but conditional.
- iiPolylog: (F, F) -> F
iiPolylog(x, s)should be local but conditional.
- iLambertW: F -> F
iLambertW(x)should be local but conditional.
- jacobiCn: (F, F) -> F
jacobiCn(z, m)is the Jacobi ellipticcnfunction, defined byjacobiCn(z, m)^2 + jacobiSn(z, m)^2 = 1andjacobiCn(0, m) = 1.
- jacobiDn: (F, F) -> F
jacobiDn(z, m)is the Jacobi ellipticdnfunction, defined byjacobiDn(z, m)^2 + m*jacobiSn(z, m)^2 = 1andjacobiDn(0, m) = 1.
- jacobiP: (F, F, F, F) -> F
jacobiP(n, a, b, z)is the Jacobi polynomial.
- jacobiSn: (F, F) -> F
jacobiSn(z, m)is the Jacobi ellipticsnfunction, defined by the formulajacobiSn(ellipticF(z, m), m) = z.
- jacobiTheta: (F, F) -> F
jacobiTheta(z, m)is the Jacobi Theta function in Jacobi notation.
- jacobiZeta: (F, F) -> F
jacobiZeta(z, m)is the Jacobi elliptic zeta function, defined byD(jacobiZeta(z, m), z) = jacobiDn(z, m)^2 - ellipticE(m)/ellipticK(m)andjacobiZeta(0, m) = 0.
- kelvinBei: (F, F) -> F
kelvinBei(v, z)is the Kelvin bei function defined by equality.kelvinBei(v, z) = imag(besselJ(v, exp(3*\%pi*\%i/4)*z)). forzandvreal.
- kelvinBer: (F, F) -> F
kelvinBer(v, z)is the Kelvin ber function defined by equalitykelvinBer(v, z) = real(besselJ(v, exp(3*\%pi*\%i/4)*z))forzandvreal.
- kelvinKei: (F, F) -> F
kelvinKei(v, z)is the Kelvin kei function defined by equalitykelvinKei(v, z) = imag(exp(-v*\%pi*\%i/2)*besselK(v, exp(\%pi*\%i/4)*z))forzandvreal.
- kelvinKer: (F, F) -> F
kelvinKer(v, z)is the Kelvin kei function defined by equalitykelvinKer(v, z) = real(exp(-v*\%pi*\%i/2)*besselK(v, exp(\%pi*\%i/4)*z))forzandvreal.
- krawtchoukK: (F, F, F, F) -> F
krawtchoukK(n, p, N, z)is the Krawtchouk polynomial.
- kummerM: (F, F, F) -> F
kummerM(a, b, z)is the KummerMfunction.
- kummerU: (F, F, F) -> F
kummerU(a, b, z)is the KummerUfunction.
- laguerreL: (F, F, F) -> F
laguerreL(n, a, z)is the Laguerre polynomial.
- lambertW: F -> F
lambertW(x)is the LambertWfunction atx.
- legendreP: (F, F, F) -> F
legendreP(nu, mu, z)is the LegendrePfunction.
- legendreQ: (F, F, F) -> F
legendreQ(nu, mu, z)is the LegendreQfunction.
- lerchPhi: (F, F, F) -> F
lerchPhi(z, s, a)is the Lerch Phi function.
- lommelS1: (F, F, F) -> F
lommelS1(mu, nu, z)is the Lommelsfunction.
- lommelS2: (F, F, F) -> F
lommelS2(mu, nu, z)is the LommelSfunction.
- meijerG: (List F, List F, List F, List F, F) -> F
meijerG(la, lb, lc, ld, z)is the meijerG function.
- meixnerM: (F, F, F, F) -> F
meixnerM(n, b, c, z)is the Meixner polynomial.
- meixnerP: (F, F, F, F) -> F
meixnerP(n, phi, lambda, z)is the Meixner-Pollaczek polynomial.
- operator: BasicOperator -> BasicOperator
operator(op)returns a copy ofopwith the domain-dependent properties appropriate forF; error ifopis not a special function operator.
- polygamma: (F, F) -> F
polygamma(x, y)returns the polygamma function applied toxandy.
- polylog: (F, F) -> F
polylog(s, x)is the polylogarithm of ordersatx.
- racahR: (F, F, F, F, F, F) -> F
racahR(n, a, b, c, d, z)is the Racah polynomial.
- riemannZeta: F -> F
riemannZeta(z)is the Riemann Zeta function.
- sign: F -> F
sign(x)returns the sign ofx.
- struveH: (F, F) -> F
struveH(v, z)is the StruveHfunction.
- struveL: (F, F) -> F
struveL(v, z)is the StruveLfunction defined by the formulastruveL(v, z) = -\%i^exp(-v*\%pi*\%i/2)*struveH(v, \%i*z).
- unitStep: F -> F
unitStep(x)is 0 forxless than 0, 1 forxbigger or equal 0.
- weberE: (F, F) -> F
weberE(v, z)is the WeberEfunction.
- weierstrassP: (F, F, F) -> F
weierstrassP(g2, g3, x)is the WeierstrassPfunction.
- weierstrassPInverse: (F, F, F) -> F
weierstrassPInverse(g2, g3, z)is the inverse of WeierstrassPfunction, defined by the formulaweierstrassP(g2, g3, weierstrassPInverse(g2, g3, z)) = z.
- weierstrassPPrime: (F, F, F) -> F
weierstrassPPrime(g2, g3, x)is the derivative of WeierstrassPfunction.
- weierstrassSigma: (F, F, F) -> F
weierstrassSigma(g2, g3, x)is the Weierstrass Sigma function.
- weierstrassZeta: (F, F, F) -> F
weierstrassZeta(g2, g3, x)is the Weierstrass Zeta function.
- whittakerM: (F, F, F) -> F
whittakerM(k, m, z)is the WhittakerMfunction.
- whittakerW: (F, F, F) -> F
whittakerW(k, m, z)is the WhittakerWfunction.
- wilsonW: (F, F, F, F, F, F) -> F
wilsonW(n, a, b, c, d, z)is the Wilson polynomial.