DoubleFloatEllipticIntegralsΒΆ
special2.spad line 1197 [edit on github]
DoubleFloatEllipticIntegrals
implements machine A package for computing machine precision real and complex elliptic integrals, using algorithms given by Carlson. Note: Complex versions may misbehave for very large/small arguments and close to branch cuts.
- ellipticE: (Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
ellipticE(z, m)
is the incomplete elliptic integral of the second kind.
- ellipticE: (DoubleFloat, DoubleFloat) -> DoubleFloat
ellipticE(z, m)
is the incomplete elliptic integral of the second kind.
- ellipticE: Complex DoubleFloat -> Complex DoubleFloat
ellipticE(m)
is the complete elliptic integral of the second kind
- ellipticE: DoubleFloat -> DoubleFloat
ellipticE(m)
is the complete elliptic integral of the second kind
- ellipticF: (Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
ellipticF(z, m)
is the incomplete elliptic integral of the first kind.
- ellipticF: (DoubleFloat, DoubleFloat) -> DoubleFloat
ellipticF(z, m)
is the incomplete elliptic integral of the first kind.
- ellipticK: Complex DoubleFloat -> Complex DoubleFloat
ellipticK(z, m)
is the incomplete elliptic integral of the first kind.
- ellipticK: DoubleFloat -> DoubleFloat
ellipticK(z, m)
is the complete elliptic integral of the first kind.
- ellipticPi: (Complex DoubleFloat, Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
ellipticPi(z, n, m)
is the incomplete elliptic integral of the third kind.
- ellipticPi: (DoubleFloat, DoubleFloat, DoubleFloat) -> DoubleFloat
ellipticPi(z, n, m)
is the incomplete elliptic integral of the third kind.
- ellipticRC: (Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
ellipticRC(x, y)
computes integral from 0 to infinity of(1/2)*(t+x)^(-1/2)*(t+y)^(-1)dt
.
- ellipticRC: (DoubleFloat, DoubleFloat) -> DoubleFloat
ellipticRC(x, y)
computes integral from 0 to infinity of(1/2)*(t+x)^(-1/2)*(t+y)^(-1)dt
.
- ellipticRD: (Complex DoubleFloat, Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
ellipticRD(x, y, z)
computes integral from 0 to infinity of(3/2)*(t+x)^(-1/2)*(t+y)^(-1/2)*(t+Z)^(-3/2)dt
.
- ellipticRD: (DoubleFloat, DoubleFloat, DoubleFloat) -> DoubleFloat
ellipticRD(x, y, z)
computes integral from 0 to infinity of(3/2)*(t+x)^(-1/2)*(t+y)^(-1/2)*(t+Z)^(-3/2)dt
.
- ellipticRF: (Complex DoubleFloat, Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
ellipticRF(x, y, z)
computes integral from 0 to infinity of(1/2)*(t+x)^(-1/2)*(t+y)^(-1/2)*(t+Z)^(-1/2)dt
.
- ellipticRF: (DoubleFloat, DoubleFloat, DoubleFloat) -> DoubleFloat
ellipticRF(x, y, z)
computes integral from 0 to infinity of(1/2)*(t+x)^(-1/2)*(t+y)^(-1/2)*(t+Z)^(-1/2)dt
.
- ellipticRJ: (Complex DoubleFloat, Complex DoubleFloat, Complex DoubleFloat, Complex DoubleFloat) -> Complex DoubleFloat
ellipticRF(
x
,y
,z
,p
) computes integral from 0 to infinity of(3/2)*(t+x)^(-1/2)*(t+y)^(-1/2)*(t+Z)^(-1/2)*(t+p)^(-1)dt
.
- ellipticRJ: (DoubleFloat, DoubleFloat, DoubleFloat, DoubleFloat) -> DoubleFloat
ellipticRJ(x, y, z, p)
computes integral from 0 to infinity of(3/2)*(t+x)^(-1/2)*(t+y)^(-1/2)*(t+Z)^(-1/2)*(t+p)^(-1)dt
.