CoordinateSystems RΒΆ
coordsys.spad line 1 [edit on github]
R: Join(Field, TranscendentalFunctionCategory, RadicalCategory)
CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.
- bipolar: R -> Point R -> Point R
bipolar(a)
transforms from bipolar coordinates to Cartesian coordinates:bipolar(a)
is a function which will map the point(u, v)
tox = a*sinh(v)/(cosh(v)-cos(u))
,y = a*sin(u)/(cosh(v)-cos(u))
.
- bipolarCylindrical: R -> Point R -> Point R
bipolarCylindrical(a)
transforms from bipolar cylindrical coordinates to Cartesian coordinates:bipolarCylindrical(a)
is a function which++
will map the point(u, v, z)
tox = a*sinh(v)/(cosh(v)-cos(u))
,y = a*sin(u)/(cosh(v)-cos(u))
,z
.
- conical: (R, R) -> Point R -> Point R
conical(a, b)
transforms from conical coordinates to Cartesian coordinates:conical(a, b)
is a function which will map the point(lambda, mu, nu)
tox = lambda*mu*nu/(a*b)
,y = lambda/a*sqrt((mu^2-a^2)*(nu^2-a^2)/(a^2-b^2))
,z = lambda/b*sqrt((mu^2-b^2)*(nu^2-b^2)/(b^2-a^2))
.
- cylindrical: Point R -> Point R
cylindrical(pt)
transformspt
from polar coordinates to Cartesian coordinates: the function produced will map the point(r, theta, z)
tox = r * cos(theta)
,y = r * sin(theta)
,z
.
- elliptic: R -> Point R -> Point R
elliptic(a)
transforms from elliptic coordinates to Cartesian coordinates:elliptic(a)
is a function which will map the point(u, v)
tox = a*cosh(u)*cos(v)
,y = a*sinh(u)*sin(v)
.
- ellipticCylindrical: R -> Point R -> Point R
ellipticCylindrical(a)
transforms from elliptic cylindrical coordinates to Cartesian coordinates:ellipticCylindrical(a)
is a function which will map the point(u, v, z)
tox = a*cosh(u)*cos(v)
,y = a*sinh(u)*sin(v)
,z
.
- oblateSpheroidal: R -> Point R -> Point R
oblateSpheroidal(a)
transforms from oblate spheroidal coordinates to Cartesian coordinates:oblateSpheroidal(a)
is a function which will map the point(xi, eta, phi)
tox = a*sinh(xi)*sin(eta)*cos(phi)
,y = a*sinh(xi)*sin(eta)*sin(phi)
,z = a*cosh(xi)*cos(eta)
.
- parabolic: Point R -> Point R
parabolic(pt)
transformspt
from parabolic coordinates to Cartesian coordinates: the function produced will map the point(u, v)
tox = 1/2*(u^2 - v^2)
,y = u*v
.
- parabolicCylindrical: Point R -> Point R
parabolicCylindrical(pt)
transformspt
from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point(u, v, z)
tox = 1/2*(u^2 - v^2)
,y = u*v
,z
.
- paraboloidal: Point R -> Point R
paraboloidal(pt)
transformspt
from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point(u, v, phi)
tox = u*v*cos(phi)
,y = u*v*sin(phi)
,z = 1/2 * (u^2 - v^2)
.
- polar: Point R -> Point R
polar(pt)
transformspt
from polar coordinates to Cartesian coordinates: the function produced will map the point(r, theta)
tox = r * cos(theta)
,y = r * sin(theta)
.
- prolateSpheroidal: R -> Point R -> Point R
prolateSpheroidal(a)
transforms from prolate spheroidal coordinates to Cartesian coordinates:prolateSpheroidal(a)
is a function which will map the point(xi, eta, phi)
tox = a*sinh(xi)*sin(eta)*cos(phi)
,y = a*sinh(xi)*sin(eta)*sin(phi)
,z = a*cosh(xi)*cos(eta)
.