CombinatorialFunction(R, F)¶
combfunc.spad line 29 [edit on github]
R: Join(Comparable, IntegralDomain)
F: FunctionSpace R
Provides combinatorial functions over an integral domain.
- ^: (F, F) -> F
a ^ b
returns the formal exponential a^b.
- belong?: BasicOperator -> Boolean
belong?(op)
returnstrue
ifop
is a combinatorial operator.
- binomial: (F, F) -> F
binomial(n, r)
returns the number of subsets ofr
objects taken amongn
objects, i.e.n!/
(r!
* (n
-r
)!).
- factorial: F -> F
factorial(n)
returns the factorial ofn
, i.e.n!
.
- factorials: (F, Symbol) -> F
factorials(f, x)
rewrites the permutations and binomials inf
involvingx
in terms of factorials.
- factorials: F -> F
factorials(f)
rewrites the permutations and binomials inf
in terms of factorials.
- iibinom: List F -> F
iibinom(l)
should be local but conditional.
- iidprod: List F -> F
iidprod(l)
should be local but conditional.
- iidsum: List F -> F
iidsum(l)
should be local but conditional.
- iifact: F -> F
iifact(x)
should be local but conditional.
- iiperm: List F -> F
iiperm(l)
should be local but conditional.
- iipow: List F -> F
iipow(l)
should be local but conditional.
- ipow: List F -> F
ipow(l)
should be local but conditional.
- operator: BasicOperator -> BasicOperator
operator(op)
returns a copy ofop
with the domain-dependent properties appropriate forF
; error ifop
is not a combinatorial operator.
- permutation: (F, F) -> F
permutation(n, r)
returns the number of permutations ofn
objects takenr
at a time, i.e.n!/
(n
-r
)!.
- product: (F, SegmentBinding F) -> F
product(f(n), n = a..b)
returnsf
(a) * … *f
(b
) as a formal product.
- product: (F, Symbol) -> F
product(f(n), n)
returns the formal productP
(n
) which verifiesP
(n+1
)/P
(n
) =f
(n
).
- summation: (F, SegmentBinding F) -> F
summation(f(n), n = a..b)
returnsf
(a) + … +f
(b
) as a formal sum.
- summation: (F, Symbol) -> F
summation(f(n), n)
returns the formal sumS
(n
) which verifiesS
(n+1
) -S
(n
) =f
(n
).