# UnivariateSkewPolynomialCategory RΒΆ

- R: Ring

This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by `x a = \sigma(a) x + \delta a`

. This category is an evolution of the types MonogenicLinearOperator, OppositeMonogenicLinearOperator, and NonCommutativeOperatorDivision developped by Jean Della Dora and Stephen `M`

. Watt.

- 0: %
- from AbelianMonoid
- 1: %
- from MagmaWithUnit
- *: (%, %) -> %
- from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
- from RightModule Fraction Integer
- *: (%, R) -> %
- from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
- from LeftModule Fraction Integer
- *: (Integer, %) -> %
- from AbelianGroup
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup
- *: (R, %) -> %
- from LeftModule R
- +: (%, %) -> %
- from AbelianSemiGroup
- -: % -> %
- from AbelianGroup
- -: (%, %) -> %
- from AbelianGroup
- /: (%, R) -> % if R has Field
- from AbelianMonoidRing(R, NonNegativeInteger)
- =: (%, %) -> Boolean
- from BasicType
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
- from Magma
- ~=: (%, %) -> Boolean
- from BasicType
- annihilate?: (%, %) -> Boolean
- from Rng
- antiCommutator: (%, %) -> %
- from NonAssociativeSemiRng

- apply: (%, R, R) -> R
`apply(p, c, m)`

returns`p(m)`

where the action is given by`x m = c sigma(m) + delta(m)`

.- associates?: (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator: (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient: (%, NonNegativeInteger) -> R
- from AbelianMonoidRing(R, NonNegativeInteger)
- coefficient: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficients: % -> List R
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- coerce: % -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from Algebra %
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Algebra Fraction Integer
- from Algebra Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing
- coerce: R -> %
- from Algebra R
- commutator: (%, %) -> %
- from NonAssociativeRng
- content: % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- degree: % -> NonNegativeInteger
- from AbelianMonoidRing(R, NonNegativeInteger)
- degree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- degree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
- from EntireRing

- exquo: (%, R) -> Union(%, failed) if R has EntireRing
`exquo(l, a)`

returns the exact quotient of`l`

by a, returning`"failed"`

if this is not possible.- fmecg: (%, NonNegativeInteger, R, %) -> %
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- ground: % -> R
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- ground?: % -> Boolean
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState, %) -> HashState
- from SetCategory
- latex: % -> String
- from SetCategory
- leadingCoefficient: % -> R
- from AbelianMonoidRing(R, NonNegativeInteger)
- leadingMonomial: % -> %
- from AbelianMonoidRing(R, NonNegativeInteger)

- leftDivide: (%, %) -> Record(quotient: %, remainder: %) if R has Field
`leftDivide(a, b)`

returns the pair`[q, r]`

such that`a = b*q + r`

and the degree of`r`

is less than the degree of`b`

. This process is called`left division\ ``''`

.

- leftExactQuotient: (%, %) -> Union(%, failed) if R has Field
`leftExactQuotient(a, b)`

computes the value`q`

, if it exists, such that`a = b*q`

.

- leftExtendedGcd: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has Field
`leftExtendedGcd(a, b)`

returns`[c, d, g]`

such that`g = a * c + b * d = leftGcd(a, b)`

.

- leftGcd: (%, %) -> % if R has Field
`leftGcd(a, b)`

computes the value`g`

of highest degree such that`a = g*aa`

`b = g*bb`

for some values`aa`

and`bb`

. The value`g`

is computed using left-division.

- leftLcm: (%, %) -> % if R has Field
`leftLcm(a, b)`

computes the value`m`

of lowest degree such that`m = aa*a = bb*b`

for some values`aa`

and`bb`

. The value`m`

is computed using right-division.- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
- from Magma

- leftQuotient: (%, %) -> % if R has Field
`leftQuotient(a, b)`

computes the pair`[q, r]`

such that`a = b*q + r`

and the degree of`r`

is less than the degree of`b`

. The value`q`

is returned.- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit

- leftRemainder: (%, %) -> % if R has Field
`leftRemainder(a, b)`

computes the pair`[q, r]`

such that`a = b*q + r`

and the degree of`r`

is less than the degree of`b`

. The value`r`

is returned.- mainVariable: % -> Union(SingletonAsOrderedSet, failed)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- map: (R -> R, %) -> %
- from AbelianMonoidRing(R, NonNegativeInteger)
- mapExponents: (NonNegativeInteger -> NonNegativeInteger, %) -> %
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- minimumDegree: % -> NonNegativeInteger
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)

- monicLeftDivide: (%, %) -> Record(quotient: %, remainder: %) if R has IntegralDomain
`monicLeftDivide(a, b)`

returns the pair`[q, r]`

such that`a = b*q + r`

and the degree of`r`

is less than the degree of`b`

.`b`

must be monic. This process is called`left division\ ``''`

.

- monicRightDivide: (%, %) -> Record(quotient: %, remainder: %) if R has IntegralDomain
`monicRightDivide(a, b)`

returns the pair`[q, r]`

such that`a = q*b + r`

and the degree of`r`

is less than the degree of`b`

.`b`

must be monic. This process is called`right division\ ``''`

.- monomial: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial: (R, NonNegativeInteger) -> %
- from AbelianMonoidRing(R, NonNegativeInteger)
- monomial?: % -> Boolean
- from AbelianMonoidRing(R, NonNegativeInteger)
- monomials: % -> List %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- numberOfMonomials: % -> NonNegativeInteger
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- one?: % -> Boolean
- from MagmaWithUnit
- opposite?: (%, %) -> Boolean
- from AbelianMonoid
- pomopo!: (%, R, NonNegativeInteger, %) -> %
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- primitiveMonomials: % -> List %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart: % -> % if R has GcdDomain
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- recip: % -> Union(%, failed)
- from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- from LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
- from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- from LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
- from LinearlyExplicitOver R
- reductum: % -> %
- from AbelianMonoidRing(R, NonNegativeInteger)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
- from RetractableTo Integer
- retract: % -> R
- from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
- from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
- from RetractableTo R

- right_ext_ext_GCD: (%, %) -> Record(generator: %, coef1: %, coef2: %, coefu: %, coefv: %) if R has Field
`right_ext_ext_GCD(a, b)`

returns`g, c, d, u, v`

such that`g = c * a + d * b = rightGcd(a, b)`

,`u * a = - v * b = leftLcm(a, b)`

and matrix`matrix([[c, d], [u, v]`

is invertible.

- rightDivide: (%, %) -> Record(quotient: %, remainder: %) if R has Field
`rightDivide(a, b)`

returns the pair`[q, r]`

such that`a = q*b + r`

and the degree of`r`

is less than the degree of`b`

. This process is called`right division\ ``''`

.

- rightExactQuotient: (%, %) -> Union(%, failed) if R has Field
`rightExactQuotient(a, b)`

computes the value`q`

, if it exists such that`a = q*b`

.

- rightExtendedGcd: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has Field
`rightExtendedGcd(a, b)`

returns`[c, d, g]`

such that`g = c * a + d * b = rightGcd(a, b)`

.

- rightGcd: (%, %) -> % if R has Field
`rightGcd(a, b)`

computes the value`g`

of highest degree such that`a = aa*g`

`b = bb*g`

for some values`aa`

and`bb`

. The value`g`

is computed using right-division.

- rightLcm: (%, %) -> % if R has Field
`rightLcm(a, b)`

computes the value`m`

of lowest degree such that`m = a*aa = b*bb`

for some values`aa`

and`bb`

. The value`m`

is computed using left-division.- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
- from Magma

- rightQuotient: (%, %) -> % if R has Field
`rightQuotient(a, b)`

computes the pair`[q, r]`

such that`a = q*b + r`

and the degree of`r`

is less than the degree of`b`

. The value`q`

is returned.- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit

- rightRemainder: (%, %) -> % if R has Field
`rightRemainder(a, b)`

computes the pair`[q, r]`

such that`a = q*b + r`

and the degree of`r`

is less than the degree of`b`

. The value`r`

is returned.- sample: %
- from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan: (%, %) -> Union(%, failed)
- from CancellationAbelianMonoid
- totalDegree: % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegree: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegreeSorted: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unit?: % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical: % -> % if R has EntireRing
- from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
- from EntireRing
- variables: % -> List SingletonAsOrderedSet
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- zero?: % -> Boolean
- from AbelianMonoid

AbelianMonoidRing(R, NonNegativeInteger)

Algebra % if R has IntegralDomain and % has VariablesCommuteWithCoefficients

Algebra Fraction Integer if R has Algebra Fraction Integer

Algebra R if R has CommutativeRing

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer

BiModule(R, R)

canonicalUnitNormal if R has canonicalUnitNormal

CharacteristicNonZero if R has CharacteristicNonZero

CharacteristicZero if R has CharacteristicZero

CommutativeRing if R has CommutativeRing and % has VariablesCommuteWithCoefficients or R has IntegralDomain and % has VariablesCommuteWithCoefficients

CommutativeStar if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients

Comparable if R has Comparable

EntireRing if R has EntireRing

FiniteAbelianMonoidRing(R, NonNegativeInteger)

IntegralDomain if R has IntegralDomain and % has VariablesCommuteWithCoefficients

LeftModule Fraction Integer if R has Algebra Fraction Integer

LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer

MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)

Module % if R has IntegralDomain and % has VariablesCommuteWithCoefficients

Module Fraction Integer if R has Algebra Fraction Integer

Module R if R has CommutativeRing

noZeroDivisors if R has EntireRing

RetractableTo Fraction Integer if R has RetractableTo Fraction Integer

RetractableTo Integer if R has RetractableTo Integer

RightModule Fraction Integer if R has Algebra Fraction Integer