SetOfMIntegersInOneToN(m, n)ΒΆ

lodof.spad line 1

SetOfMIntegersInOneToN implements the subsets of M integers in the interval [1..n]

=: (%, %) -> Boolean
from BasicType
~=: (%, %) -> Boolean
from BasicType
coerce: % -> OutputForm
from CoercibleTo OutputForm
convert: % -> InputForm
from ConvertibleTo InputForm
delta: (%, PositiveInteger, PositiveInteger) -> NonNegativeInteger
delta(S, k, p) returns the number of elements of S which are strictly between p and the k^{th} element of S.
elements: % -> List PositiveInteger
elements(S) returns the list of the elements of S in increasing order.
enumerate: () -> List %
from Finite
enumerate: () -> Vector %
enumerate() returns a vector of all the sets of M integers in 1..n.
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
incrementKthElement: (%, PositiveInteger) -> Union(%, failed)
incrementKthElement(S, k) increments the k^{th} element of S, and returns “failed” if the result is not a set of M integers in 1..n any more.
index: PositiveInteger -> %
from Finite
latex: % -> String
from SetCategory
lookup: % -> PositiveInteger
from Finite
member?: (PositiveInteger, %) -> Boolean
member?(p, s) returns true is p is in s, false otherwise.
random: () -> %
from Finite
replaceKthElement: (%, PositiveInteger, PositiveInteger) -> Union(%, failed)
replaceKthElement(S, k, p) replaces the k^{th} element of S by p, and returns “failed” if the result is not a set of M integers in 1..n any more.
setOfMinN: List PositiveInteger -> %
setOfMinN([a_1, ..., a_m]) returns the set {a_1, ..., a_m}. Error if {a_1, ..., a_m} is not a set of M integers in 1..n.
size: () -> NonNegativeInteger
from Finite
smaller?: (%, %) -> Boolean
from Comparable

BasicType

CoercibleTo OutputForm

Comparable

ConvertibleTo InputForm

Finite

SetCategory