QuadraticForm(n, K)ΒΆ

clifford.spad line 18 [edit on github]

This domain provides modest support for quadratic forms.

0: %

from AbelianMonoid

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

=: (%, %) -> Boolean

from BasicType

~=: (%, %) -> Boolean

from BasicType

coerce: % -> OutputForm

from CoercibleTo OutputForm

convert: % -> InputForm if SquareMatrix(n, K) has ConvertibleTo InputForm

from ConvertibleTo InputForm

elt: (%, DirectProduct(n, K)) -> K

elt(qf, v) evaluates the quadratic form qf on the vector v, producing a scalar.

hash: % -> SingleInteger

from SetCategory

hashUpdate!: (HashState, %) -> HashState

from SetCategory

latex: % -> String

from SetCategory

matrix: % -> SquareMatrix(n, K)

matrix(qf) creates a square matrix from the quadratic form qf.

opposite?: (%, %) -> Boolean

from AbelianMonoid

quadraticForm: SquareMatrix(n, K) -> %

quadraticForm(m) creates a quadratic form from a symmetric, square matrix m.

sample: %

from AbelianMonoid

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

CancellationAbelianMonoid

CoercibleTo OutputForm

ConvertibleTo InputForm if SquareMatrix(n, K) has ConvertibleTo InputForm

SetCategory