# MultivariateSquareFree(E, OV, R, P)¶

multsqfr.spad line 1 [edit on github]

OV: OrderedSet

P: PolynomialCategory(R, E, OV)

Author : `P`

.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses modular reduction and the package `MultivariateLifting`

for the “multivariate” lifting.

- check: (List Record(factor: SparseUnivariatePolynomial R, exponent: NonNegativeInteger), List Record(factor: SparseUnivariatePolynomial R, exponent: NonNegativeInteger)) -> Boolean
`check should`

be local

- coefChoose: (Integer, P, List Record(factor: P, exponent: NonNegativeInteger)) -> P
`coefChoose should`

be local

- compdegd: List Record(factor: SparseUnivariatePolynomial R, exponent: NonNegativeInteger) -> Integer
`compdegd should`

be local

- consnewpol: (SparseUnivariatePolynomial P, SparseUnivariatePolynomial R, Integer) -> Record(pol: SparseUnivariatePolynomial P, polval: SparseUnivariatePolynomial R)
`consnewpol should`

be local

- intChoose: (SparseUnivariatePolynomial P, List OV, List List R) -> Record(upol: SparseUnivariatePolynomial R, Lval: List R, Lfact: List Record(factor: SparseUnivariatePolynomial R, exponent: NonNegativeInteger), ctpol: R)
`intChoose should`

be local

- lift: (SparseUnivariatePolynomial P, SparseUnivariatePolynomial R, SparseUnivariatePolynomial R, P, List OV, List NonNegativeInteger, List R, R) -> Union(List SparseUnivariatePolynomial P, failed)
`lift should`

be local

- myDegree: (SparseUnivariatePolynomial P, List OV, NonNegativeInteger) -> List NonNegativeInteger
`myDegree should`

be local

- normDeriv2: (SparseUnivariatePolynomial R, Integer) -> SparseUnivariatePolynomial R
`normDeriv2 should`

be local

- nsqfree: (SparseUnivariatePolynomial P, List OV, List List R) -> Record(unitPart: P, suPart: List Record(factor: SparseUnivariatePolynomial P, exponent: NonNegativeInteger))
`nsqfree should`

be local

- squareFree: P -> Factored P
`squareFree(p)`

computes the square free decomposition of a multivariate polynomial`p`

.

- squareFree: SparseUnivariatePolynomial P -> Factored SparseUnivariatePolynomial P
`squareFree(p)`

computes the square free decomposition of a multivariate polynomial`p`

presented as a univariate polynomial with multivariate coefficients.

- univcase: (P, OV) -> Factored P
`univcase should`

be local