IntervalCategory RΒΆ
interval.spad line 1 [edit on github]
- Author: Mike Dewar + Date Created: November 1996 + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: This category implements of interval arithmetic and + transcendental functions over intervals. 
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- <=: (%, %) -> Boolean
- from PartialOrder 
- <: (%, %) -> Boolean
- from PartialOrder 
- >=: (%, %) -> Boolean
- from PartialOrder 
- >: (%, %) -> Boolean
- from PartialOrder 
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
- from RadicalCategory 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- atan: % -> %
- atanh: % -> %
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Integer -> %
- from CoercibleFrom Integer 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- contains?: (%, R) -> Boolean
- contains?(i, f)returns- trueif- fis contained within the interval- i,- falseotherwise.
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- csc: % -> %
- csch: % -> %
- exp: % -> %
- exquo: (%, %) -> Union(%, failed)
- from EntireRing 
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- from GcdDomain 
- inf: % -> R
- inf(u)returns the infinum of- u.
- interval: (R, R) -> %
- interval(inf, sup)creates a new interval, either- [inf, sup]if- inf <= supor- [sup, inf]otherwise.
- interval: R -> %
- interval(f)creates a new interval around- f.
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
- from LeftOreRing 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- log: % -> %
- max: (%, %) -> %
- from OrderedSet 
- min: (%, %) -> %
- from OrderedSet 
- negative?: % -> Boolean
- negative?(u)returns- trueif every element of- uis negative,- falseotherwise.
- nthRoot: (%, Integer) -> %
- from RadicalCategory 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- from NonAssociativeAlgebra % 
- positive?: % -> Boolean
- positive?(u)returns- trueif every element of- uis positive,- falseotherwise.
- qinterval: (R, R) -> %
- qinterval(inf, sup)creates a new interval- [inf, sup], without checking the ordering on the elements.
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- retract: % -> Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(Integer, failed)
- from RetractableTo Integer 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- sec: % -> %
- sech: % -> %
- sin: % -> %
- sinh: % -> %
- smaller?: (%, %) -> Boolean
- from Comparable 
- sqrt: % -> %
- from RadicalCategory 
- subtractIfCan: (%, %) -> Union(%, failed)
- sup: % -> R
- sup(u)returns the supremum of- u.
- tan: % -> %
- tanh: % -> %
- unit?: % -> Boolean
- from EntireRing 
- unitCanonical: % -> %
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
- from EntireRing 
- width: % -> R
- width(u)returns- sup(u) - inf(u).
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
Module %