IndexedExponents VarsetΒΆ

multpoly.spad line 800

converts entire exponents to OutputForm

0: %
from AbelianMonoid
*: (Integer, %) -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
+: (%, %) -> %
from AbelianSemiGroup
-: % -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
-: (%, %) -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
<: (%, %) -> Boolean
from PartialOrder
<=: (%, %) -> Boolean
from PartialOrder
=: (%, %) -> Boolean
from BasicType
>: (%, %) -> Boolean
from PartialOrder
>=: (%, %) -> Boolean
from PartialOrder
~=: (%, %) -> Boolean
from BasicType
coerce: % -> OutputForm
from CoercibleTo OutputForm
construct: List Record(k: Varset, c: NonNegativeInteger) -> %
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
constructOrdered: List Record(k: Varset, c: NonNegativeInteger) -> %
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
latex: % -> String
from SetCategory
leadingCoefficient: % -> NonNegativeInteger
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
leadingMonomial: % -> %
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
leadingSupport: % -> Varset
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
leadingTerm: % -> Record(k: Varset, c: NonNegativeInteger)
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
listOfTerms: % -> List Record(k: Varset, c: NonNegativeInteger)
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
map: (NonNegativeInteger -> NonNegativeInteger, %) -> %
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
max: (%, %) -> %
from OrderedSet
min: (%, %) -> %
from OrderedSet
monomial: (NonNegativeInteger, Varset) -> %
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
monomial?: % -> Boolean
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
opposite?: (%, %) -> Boolean
from AbelianMonoid
reductum: % -> %
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
sample: %
from AbelianMonoid
smaller?: (%, %) -> Boolean
from Comparable
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
sup: (%, %) -> %
from OrderedAbelianMonoidSup
zero?: % -> Boolean
from AbelianMonoid

AbelianGroup if NonNegativeInteger has AbelianGroup

AbelianMonoid

AbelianProductCategory NonNegativeInteger

AbelianSemiGroup

BasicType

CancellationAbelianMonoid

CoercibleTo OutputForm

Comparable

IndexedDirectProductCategory(NonNegativeInteger, Varset)

OrderedAbelianMonoid

OrderedAbelianMonoidSup

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedSet

PartialOrder

SetCategory