GenericNonAssociativeAlgebra(R, n, ls, gamma)¶

AlgebraGenericElementPackage allows you to create generic elements of an algebra, i.e. the scalars are extended to include symbolic coefficients

0: %

from AbelianMonoid

*: (%, %) -> %

from Magma

*: (%, Fraction Polynomial R) -> %
*: (Fraction Polynomial R, %) -> %
*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

*: (SquareMatrix(n, Fraction Polynomial R), %) -> %
+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

=: (%, %) -> Boolean

from BasicType

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

alternative?: () -> Boolean
antiAssociative?: () -> Boolean
antiCommutative?: () -> Boolean
antiCommutator: (%, %) -> %
apply: (Matrix Fraction Polynomial R, %) -> %
associative?: () -> Boolean
associator: (%, %, %) -> %
associatorDependence: () -> List Vector Fraction Polynomial R
basis: () -> Vector %
coerce: % -> OutputForm
coerce: Vector Fraction Polynomial R -> %

coerce(v) assumes that it is called with a vector of length equal to the dimension of the algebra, then a linear combination with the basis element is formed

commutative?: () -> Boolean
commutator: (%, %) -> %
conditionsForIdempotents: () -> List Polynomial Fraction Polynomial R
conditionsForIdempotents: () -> List Polynomial R if R has IntegralDomain

conditionsForIdempotents() determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed R-module basis

conditionsForIdempotents: Vector % -> List Polynomial Fraction Polynomial R
conditionsForIdempotents: Vector % -> List Polynomial R if R has IntegralDomain

conditionsForIdempotents([v1, ..., vn]) determines a complete list of polynomial equations for the coefficients of idempotents with respect to the R-module basis v1, …, vn

convert: % -> InputForm if Fraction Polynomial R has Finite
convert: % -> Vector Fraction Polynomial R
convert: Vector Fraction Polynomial R -> %
coordinates: % -> Vector Fraction Polynomial R
coordinates: (%, Vector %) -> Vector Fraction Polynomial R
coordinates: (Vector %, Vector %) -> Matrix Fraction Polynomial R
coordinates: Vector % -> Matrix Fraction Polynomial R
elt: (%, Integer) -> Fraction Polynomial R
enumerate: () -> List % if Fraction Polynomial R has Finite

from Finite

flexible?: () -> Boolean
generic: () -> %

generic() returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficients \%x1, \%x2, ..

generic: (Symbol, Vector %) -> %

generic(s, v) returns a generic element, i.e. the linear combination of v with the symbolic coefficients s1, s2, ..

generic: (Vector Symbol, Vector %) -> %

generic(vs, ve) returns a generic element, i.e. the linear combination of ve with the symbolic coefficients vs error, if the vector of symbols is shorter than the vector of elements

generic: Symbol -> %

generic(s) returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficients s1, s2, ..

generic: Vector % -> %

generic(ve) returns a generic element, i.e. the linear combination of ve basis with the symbolic coefficients \%x1, \%x2, ..

generic: Vector Symbol -> %

generic(vs) returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficients vs; error, if the vector of symbols is too short

genericLeftDiscriminant: () -> Fraction Polynomial R if R has IntegralDomain

genericLeftDiscriminant() is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable

genericLeftMinimalPolynomial: % -> SparseUnivariatePolynomial Fraction Polynomial R if R has IntegralDomain

genericLeftMinimalPolynomial(a) substitutes the coefficients of {em a} for the generic coefficients in leftRankPolynomial()

genericLeftNorm: % -> Fraction Polynomial R if R has IntegralDomain

genericLeftNorm(a) substitutes the coefficients of a for the generic coefficients into the coefficient of the constant term in leftRankPolynomial and changes the sign if the degree of this polynomial is odd. This is a form of degree k

genericLeftTrace: % -> Fraction Polynomial R if R has IntegralDomain

genericLeftTrace(a) substitutes the coefficients of a for the generic coefficients into the coefficient of the second highest term in leftRankPolynomial and changes the sign. This is a linear form

genericLeftTraceForm: (%, %) -> Fraction Polynomial R if R has IntegralDomain

genericLeftTraceForm (a, b) is defined to be genericLeftTrace (a*b), this defines a symmetric bilinear form on the algebra

genericRightDiscriminant: () -> Fraction Polynomial R if R has IntegralDomain

genericRightDiscriminant() is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable

genericRightMinimalPolynomial: % -> SparseUnivariatePolynomial Fraction Polynomial R if R has IntegralDomain

genericRightMinimalPolynomial(a) substitutes the coefficients of a for the generic coefficients in rightRankPolynomial

genericRightNorm: % -> Fraction Polynomial R if R has IntegralDomain

genericRightNorm(a) substitutes the coefficients of a for the generic coefficients into the coefficient of the constant term in rightRankPolynomial and changes the sign if the degree of this polynomial is odd

genericRightTrace: % -> Fraction Polynomial R if R has IntegralDomain

genericRightTrace(a) substitutes the coefficients of a for the generic coefficients into the coefficient of the second highest term in rightRankPolynomial and changes the sign

genericRightTraceForm: (%, %) -> Fraction Polynomial R if R has IntegralDomain

genericRightTraceForm (a, b) is defined to be genericRightTrace (a*b), this defines a symmetric bilinear form on the algebra

hash: % -> SingleInteger

from SetCategory

hashUpdate!: (HashState, %) -> HashState

from SetCategory

index: PositiveInteger -> % if Fraction Polynomial R has Finite

from Finite

jacobiIdentity?: () -> Boolean
jordanAlgebra?: () -> Boolean
latex: % -> String

from SetCategory

leftAlternative?: () -> Boolean
leftCharacteristicPolynomial: % -> SparseUnivariatePolynomial Fraction Polynomial R
leftDiscriminant: () -> Fraction Polynomial R
leftDiscriminant: Vector % -> Fraction Polynomial R
leftMinimalPolynomial: % -> SparseUnivariatePolynomial Fraction Polynomial R
leftNorm: % -> Fraction Polynomial R
leftPower: (%, PositiveInteger) -> %

from Magma

leftRankPolynomial: () -> SparseUnivariatePolynomial Fraction Polynomial R if R has IntegralDomain

leftRankPolynomial() returns the left minimimal polynomial of the generic element

leftRankPolynomial: () -> SparseUnivariatePolynomial Polynomial Fraction Polynomial R
leftRecip: % -> Union(%, failed)
leftRegularRepresentation: % -> Matrix Fraction Polynomial R
leftRegularRepresentation: (%, Vector %) -> Matrix Fraction Polynomial R
leftTrace: % -> Fraction Polynomial R
leftTraceMatrix: () -> Matrix Fraction Polynomial R
leftTraceMatrix: Vector % -> Matrix Fraction Polynomial R
leftUnit: () -> Union(%, failed)
leftUnits: () -> Union(Record(particular: %, basis: List %), failed)

leftUnits() returns the affine space of all left units of the algebra, or "failed" if there is none

lieAlgebra?: () -> Boolean
lookup: % -> PositiveInteger if Fraction Polynomial R has Finite

from Finite

noncommutativeJordanAlgebra?: () -> Boolean
opposite?: (%, %) -> Boolean

from AbelianMonoid

plenaryPower: (%, PositiveInteger) -> %
powerAssociative?: () -> Boolean
random: () -> % if Fraction Polynomial R has Finite

from Finite

rank: () -> PositiveInteger
recip: % -> Union(%, failed)
represents: (Vector Fraction Polynomial R, Vector %) -> %
represents: Vector Fraction Polynomial R -> %
rightAlternative?: () -> Boolean
rightCharacteristicPolynomial: % -> SparseUnivariatePolynomial Fraction Polynomial R
rightDiscriminant: () -> Fraction Polynomial R
rightDiscriminant: Vector % -> Fraction Polynomial R
rightMinimalPolynomial: % -> SparseUnivariatePolynomial Fraction Polynomial R
rightNorm: % -> Fraction Polynomial R
rightPower: (%, PositiveInteger) -> %

from Magma

rightRankPolynomial: () -> SparseUnivariatePolynomial Fraction Polynomial R if R has IntegralDomain

rightRankPolynomial() returns the right minimimal polynomial of the generic element

rightRankPolynomial: () -> SparseUnivariatePolynomial Polynomial Fraction Polynomial R
rightRecip: % -> Union(%, failed)
rightRegularRepresentation: % -> Matrix Fraction Polynomial R
rightRegularRepresentation: (%, Vector %) -> Matrix Fraction Polynomial R
rightTrace: % -> Fraction Polynomial R
rightTraceMatrix: () -> Matrix Fraction Polynomial R
rightTraceMatrix: Vector % -> Matrix Fraction Polynomial R
rightUnit: () -> Union(%, failed)
rightUnits: () -> Union(Record(particular: %, basis: List %), failed)

rightUnits() returns the affine space of all right units of the algebra, or "failed" if there is none

sample: %

from AbelianMonoid

size: () -> NonNegativeInteger if Fraction Polynomial R has Finite

from Finite

smaller?: (%, %) -> Boolean if Fraction Polynomial R has Finite

from Comparable

someBasis: () -> Vector %
structuralConstants: () -> Vector Matrix Fraction Polynomial R
structuralConstants: Vector % -> Vector Matrix Fraction Polynomial R
subtractIfCan: (%, %) -> Union(%, failed)
unit: () -> Union(%, failed)
zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

CancellationAbelianMonoid

Magma

NonAssociativeRng

NonAssociativeSemiRng

SetCategory

unitsKnown