GeneralModulePolynomial(vl, R, IS, E, ff, P)ΒΆ

modmonom.spad line 31

This package undocumented

0: %
from AbelianMonoid
*: (%, P) -> %
from RightModule P
*: (%, R) -> %
from RightModule R
*: (Integer, %) -> %
from AbelianGroup
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (P, %) -> %
p*x undocumented
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
*: (R, %) -> %
from LeftModule R
+: (%, %) -> %
from AbelianSemiGroup
-: % -> %
from AbelianGroup
-: (%, %) -> %
from AbelianGroup
=: (%, %) -> Boolean
from BasicType
~=: (%, %) -> Boolean
from BasicType
build: (R, IS, E) -> %
build(r, i, e) undocumented
coerce: % -> OutputForm
from CoercibleTo OutputForm
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
latex: % -> String
from SetCategory
leadingCoefficient: % -> R
leadingCoefficient(x) undocumented
leadingExponent: % -> E
leadingExponent(x) undocumented
leadingIndex: % -> IS
leadingIndex(x) undocumented
leadingMonomial: % -> ModuleMonomial(IS, E, ff)
leadingMonomial(x) undocumented
monomial: (R, ModuleMonomial(IS, E, ff)) -> %
monomial(r, x) undocumented
multMonom: (R, E, %) -> %
multMonom(r, e, x) undocumented
opposite?: (%, %) -> Boolean
from AbelianMonoid
reductum: % -> %
reductum(x) undocumented
sample: %
from AbelianMonoid
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
unitVector: IS -> %
unitVector(x) undocumented
zero?: % -> Boolean
from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

BasicType

BiModule(P, P)

BiModule(R, R)

CancellationAbelianMonoid

CoercibleTo OutputForm

LeftModule P

LeftModule R

Module P

Module R

RightModule P

RightModule R

SetCategory