FullPartialFractionExpansion(F, UP)ΒΆ

fparfrac.spad line 1

Full partial fraction expansion of rational functions Author: Manuel Bronstein Date Created: 9 December 1992 References: M.Bronstein & B.Salvy, Full Partial Fraction Decomposition of Rational Functions, in Proceedings of ISSAC'93, Kiev, ACM Press.

+: (UP, %) -> %
p + x returns the sum of p and x
=: (%, %) -> Boolean
from BasicType
~=: (%, %) -> Boolean
from BasicType
coerce: % -> OutputForm
from CoercibleTo OutputForm
construct: List Record(exponent: NonNegativeInteger, center: UP, num: UP) -> %
construct(l) is the inverse of fracPart.
convert: % -> Fraction UP
from ConvertibleTo Fraction UP
D: % -> %
D(f) returns the derivative of f.
D: (%, NonNegativeInteger) -> %
D(f, n) returns the n-th derivative of f.
differentiate: % -> %
differentiate(f) returns the derivative of f.
differentiate: (%, NonNegativeInteger) -> %
differentiate(f, n) returns the n-th derivative of f.
fracPart: % -> List Record(exponent: NonNegativeInteger, center: UP, num: UP)
fracPart(f) returns the list of summands of the fractional part of f.
fullPartialFraction: Fraction UP -> %
fullPartialFraction(f) returns [p, [[j, Dj, Hj]...]] such that f = p(x) + \sum_{[j, Dj, Hj] in l} \sum_{Dj(a)=0} Hj(a)/(x - a)\^j.
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
latex: % -> String
from SetCategory
polyPart: % -> UP
polyPart(f) returns the polynomial part of f.

BasicType

CoercibleTo OutputForm

ConvertibleTo Fraction UP

SetCategory