FourierSeries(R, E)ΒΆ
- R: Join(CommutativeRing, Algebra Fraction Integer)
- E: Join(OrderedSet, AbelianGroup)
Author: James Davenport Date Created: 17 April 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:
- 0: %
- from AbelianMonoid
- 1: %
- from MagmaWithUnit
- *: (%, %) -> %
- from Magma
- *: (%, R) -> %
- from RightModule R
- *: (Integer, %) -> %
- from AbelianGroup
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup
- *: (R, %) -> %
- from LeftModule R
- +: (%, %) -> %
- from AbelianSemiGroup
- -: % -> %
- from AbelianGroup
- -: (%, %) -> %
- from AbelianGroup
- =: (%, %) -> Boolean
- from BasicType
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
- from Magma
- ~=: (%, %) -> Boolean
- from BasicType
- annihilate?: (%, %) -> Boolean
- from Rng
- antiCommutator: (%, %) -> %
- from NonAssociativeSemiRng
- associator: (%, %, %) -> %
- from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing
- coerce: % -> OutputForm
- from CoercibleTo OutputForm
- coerce: FourierComponent E -> %
coerce(c)
converts sin/cos terms into Fourier Series- coerce: Integer -> %
- from NonAssociativeRing
- coerce: R -> %
coerce(r)
converts coefficients into Fourier Series- commutator: (%, %) -> %
- from NonAssociativeRng
- hash: % -> SingleInteger
- from SetCategory
- hashUpdate!: (HashState, %) -> HashState
- from SetCategory
- latex: % -> String
- from SetCategory
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
- from Magma
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit
- makeCos: (E, R) -> %
makeCos(e, r)
makes a sin expression with given argument and coefficient
- makeSin: (E, R) -> %
makeSin(e, r)
makes a sin expression with given argument and coefficient- one?: % -> Boolean
- from MagmaWithUnit
- opposite?: (%, %) -> Boolean
- from AbelianMonoid
- recip: % -> Union(%, failed)
- from MagmaWithUnit
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
- from Magma
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit
- sample: %
- from AbelianMonoid
- subtractIfCan: (%, %) -> Union(%, failed)
- from CancellationAbelianMonoid
- zero?: % -> Boolean
- from AbelianMonoid
Algebra R
BiModule(%, %)
BiModule(R, R)
Canonical if E has Canonical and R has Canonical
Module R