# ElementaryFunction(R, F)ΒΆ

Provides elementary functions over an integral domain.

acos: F -> F

`acos(x)` applies the inverse cosine operator to `x`

acosh: F -> F

`acosh(x)` applies the inverse hyperbolic cosine operator to `x`

acot: F -> F

`acot(x)` applies the inverse cotangent operator to `x`

acoth: F -> F

`acoth(x)` applies the inverse hyperbolic cotangent operator to `x`

acsc: F -> F

`acsc(x)` applies the inverse cosecant operator to `x`

acsch: F -> F

`acsch(x)` applies the inverse hyperbolic cosecant operator to `x`

asec: F -> F

`asec(x)` applies the inverse secant operator to `x`

asech: F -> F

`asech(x)` applies the inverse hyperbolic secant operator to `x`

asin: F -> F

`asin(x)` applies the inverse sine operator to `x`

asinh: F -> F

`asinh(x)` applies the inverse hyperbolic sine operator to `x`

atan: F -> F

`atan(x)` applies the inverse tangent operator to `x`

atanh: F -> F

`atanh(x)` applies the inverse hyperbolic tangent operator to `x`

belong?: BasicOperator -> Boolean

`belong?(p)` returns `true` if operator `p` is elementary

cos: F -> F

`cos(x)` applies the cosine operator to `x`

cosh: F -> F

`cosh(x)` applies the hyperbolic cosine operator to `x`

cot: F -> F

`cot(x)` applies the cotangent operator to `x`

coth: F -> F

`coth(x)` applies the hyperbolic cotangent operator to `x`

csc: F -> F

`csc(x)` applies the cosecant operator to `x`

csch: F -> F

`csch(x)` applies the hyperbolic cosecant operator to `x`

exp: F -> F

`exp(x)` applies the exponential operator to `x`

iiacos: F -> F

`iiacos(x)` should be local but conditional

iiacosh: F -> F

`iiacosh(x)` should be local but conditional

iiacot: F -> F

`iiacot(x)` should be local but conditional

iiacoth: F -> F

`iiacoth(x)` should be local but conditional

iiacsc: F -> F

`iiacsc(x)` should be local but conditional

iiacsch: F -> F

`iiacsch(x)` should be local but conditional

iiasec: F -> F

`iiasec(x)` should be local but conditional

iiasech: F -> F

`iiasech(x)` should be local but conditional

iiasin: F -> F

`iiasin(x)` should be local but conditional

iiasinh: F -> F

`iiasinh(x)` should be local but conditional

iiatan: F -> F

`iiatan(x)` should be local but conditional

iiatanh: F -> F

`iiatanh(x)` should be local but conditional

iicos: F -> F

`iicos(x)` should be local but conditional

iicosh: F -> F

`iicosh(x)` should be local but conditional

iicot: F -> F

`iicot(x)` should be local but conditional

iicoth: F -> F

`iicoth(x)` should be local but conditional

iicsc: F -> F

`iicsc(x)` should be local but conditional

iicsch: F -> F

`iicsch(x)` should be local but conditional

iiexp: F -> F

`iiexp(x)` should be local but conditional

iilog: F -> F

`iilog(x)` should be local but conditional

iisec: F -> F

`iisec(x)` should be local but conditional

iisech: F -> F

`iisech(x)` should be local but conditional

iisin: F -> F

`iisin(x)` should be local but conditional

iisinh: F -> F

`iisinh(x)` should be local but conditional

iisqrt2: () -> F

`iisqrt2()` should be local but conditional

iisqrt3: () -> F

`iisqrt3()` should be local but conditional

iitan: F -> F

`iitan(x)` should be local but conditional

iitanh: F -> F

`iitanh(x)` should be local but conditional

localReal?: F -> Boolean

`localReal?(x)` should be local but conditional

log: F -> F

`log(x)` applies the logarithm operator to `x`

operator: BasicOperator -> BasicOperator

`operator(p)` returns an elementary operator with the same symbol as `p`

pi: () -> F

`pi()` returns the `pi` operator

sec: F -> F

`sec(x)` applies the secant operator to `x`

sech: F -> F

`sech(x)` applies the hyperbolic secant operator to `x`

sin: F -> F

`sin(x)` applies the sine operator to `x`

sinh: F -> F

`sinh(x)` applies the hyperbolic sine operator to `x`

specialTrigs: (F, List Record(func: F, pole: Boolean)) -> Union(F, failed)

`specialTrigs(x, l)` should be local but conditional

tan: F -> F

`tan(x)` applies the tangent operator to `x`

tanh: F -> F

`tanh(x)` applies the hyperbolic tangent operator to `x`