BinaryTreeCategory SΒΆ

tree.spad line 126 [edit on github]

BinaryTreeCategory(S) is the category of binary trees: a tree which is either empty or has a node consisting of a value and a left and right which are both binary trees.

#: % -> NonNegativeInteger

from Aggregate

=: (%, %) -> Boolean

from BasicType

~=: (%, %) -> Boolean

from BasicType

any?: (S -> Boolean, %) -> Boolean

from HomogeneousAggregate S

child?: (%, %) -> Boolean

from RecursiveAggregate S

children: % -> List %

from RecursiveAggregate S

coerce: % -> OutputForm

from CoercibleTo OutputForm

copy: % -> %

from Aggregate

count: (S -> Boolean, %) -> NonNegativeInteger

from HomogeneousAggregate S

count: (S, %) -> NonNegativeInteger

from HomogeneousAggregate S

cyclic?: % -> Boolean

from RecursiveAggregate S

distance: (%, %) -> Integer

from RecursiveAggregate S

elt: (%, left) -> %

from BinaryRecursiveAggregate S

elt: (%, right) -> %

from BinaryRecursiveAggregate S

elt: (%, value) -> S

from RecursiveAggregate S

empty?: % -> Boolean

from Aggregate

empty: () -> %

from Aggregate

eq?: (%, %) -> Boolean

from Aggregate

eval: (%, Equation S) -> % if S has Evalable S

from Evalable S

eval: (%, List Equation S) -> % if S has Evalable S

from Evalable S

eval: (%, List S, List S) -> % if S has Evalable S

from InnerEvalable(S, S)

eval: (%, S, S) -> % if S has Evalable S

from InnerEvalable(S, S)

every?: (S -> Boolean, %) -> Boolean

from HomogeneousAggregate S

hash: % -> SingleInteger

from SetCategory

hashUpdate!: (HashState, %) -> HashState

from SetCategory

latex: % -> String

from SetCategory

leaf?: % -> Boolean

from RecursiveAggregate S

leaves: % -> List S

from RecursiveAggregate S

left: % -> %

from BinaryRecursiveAggregate S

less?: (%, NonNegativeInteger) -> Boolean

from Aggregate

map!: (S -> S, %) -> %

from HomogeneousAggregate S

map: (S -> S, %) -> %

from HomogeneousAggregate S

max: % -> S if S has OrderedSet

from HomogeneousAggregate S

max: ((S, S) -> Boolean, %) -> S

from HomogeneousAggregate S

member?: (S, %) -> Boolean

from HomogeneousAggregate S

members: % -> List S

from HomogeneousAggregate S

min: % -> S if S has OrderedSet

from HomogeneousAggregate S

more?: (%, NonNegativeInteger) -> Boolean

from Aggregate

node?: (%, %) -> Boolean

from RecursiveAggregate S

node: (%, S, %) -> %

node(l, v, r) creates a binary tree with value v, left subtree l, and right subtree r.

nodes: % -> List %

from RecursiveAggregate S

parts: % -> List S

from HomogeneousAggregate S

right: % -> %

from BinaryRecursiveAggregate S

sample: %

from Aggregate

setchildren!: (%, List %) -> %

from RecursiveAggregate S

setelt!: (%, left, %) -> %

from BinaryRecursiveAggregate S

setelt!: (%, right, %) -> %

from BinaryRecursiveAggregate S

setelt!: (%, value, S) -> S

from RecursiveAggregate S

setleft!: (%, %) -> %

from BinaryRecursiveAggregate S

setright!: (%, %) -> %

from BinaryRecursiveAggregate S

setvalue!: (%, S) -> S

from RecursiveAggregate S

size?: (%, NonNegativeInteger) -> Boolean

from Aggregate

value: % -> S

from RecursiveAggregate S

Aggregate

BasicType

BinaryRecursiveAggregate S

CoercibleTo OutputForm

Evalable S if S has Evalable S

finiteAggregate

HomogeneousAggregate S

InnerEvalable(S, S) if S has Evalable S

RecursiveAggregate S

SetCategory

shallowlyMutable