BiCPO SΒΆ

logic.spad line 1766

Complete partial Order, partial order that is guaranteed to have both a join and a meet of any two elements. For more documentation see: http://www.euclideanspace.com/prog/scratchpad/mycode/discrete/logic/index.htm

+: (%, %) -> %
from FiniteGraph S
=: (%, %) -> Boolean
from BasicType
~=: (%, %) -> Boolean
from BasicType
addArrow!: (%, NonNegativeInteger, NonNegativeInteger) -> %
from Poset S
addArrow!: (%, Record(name: String, arrType: NonNegativeInteger, fromOb: NonNegativeInteger, toOb: NonNegativeInteger, xOffset: Integer, yOffset: Integer, map: List NonNegativeInteger)) -> %
from FiniteGraph S
addArrow!: (%, String, NonNegativeInteger, NonNegativeInteger) -> %
from FiniteGraph S
addArrow!: (%, String, NonNegativeInteger, NonNegativeInteger, List NonNegativeInteger) -> %
from FiniteGraph S
addArrow!: (%, String, S, S) -> %
from FiniteGraph S
addObject!: (%, Record(value: S, posX: NonNegativeInteger, posY: NonNegativeInteger)) -> %
from FiniteGraph S
addObject!: (%, S) -> %
from Poset S
adjacencyMatrix: % -> Matrix NonNegativeInteger
from FiniteGraph S
arrowName: (%, NonNegativeInteger, NonNegativeInteger) -> String
from FiniteGraph S
arrowsFromArrow: (%, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
arrowsFromNode: (%, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
arrowsToArrow: (%, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
arrowsToNode: (%, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
coerce: % -> OutputForm
from CoercibleTo OutputForm
completeReflexivity: % -> %
from Poset S
completeTransitivity: % -> %
from Poset S
coverMatrix: % -> IncidenceAlgebra(Integer, S)
from Poset S
createWidth: NonNegativeInteger -> NonNegativeInteger
from FiniteGraph S
createX: (NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph S
createY: (NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph S
cycleClosed: (List S, String) -> %
from FiniteGraph S
cycleOpen: (List S, String) -> %
from FiniteGraph S
deepDiagramSvg: (String, %, Boolean) -> Void
from FiniteGraph S
diagramHeight: % -> NonNegativeInteger
from FiniteGraph S
diagramsSvg: (String, List %, Boolean) -> Void
from FiniteGraph S
diagramSvg: (String, %, Boolean) -> Void
from FiniteGraph S
diagramWidth: % -> NonNegativeInteger
from FiniteGraph S
distance: (%, NonNegativeInteger, NonNegativeInteger) -> Integer
from FiniteGraph S
distanceMatrix: % -> Matrix Integer
from FiniteGraph S
finitePoset: (List S, (S, S) -> Boolean) -> %
from Poset S
finitePoset: (List S, List List Boolean) -> %
from Poset S
flatten: DirectedGraph % -> %
from FiniteGraph S
getArr: % -> List List Boolean
from Poset S
getArrowIndex: (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph S
getArrows: % -> List Record(name: String, arrType: NonNegativeInteger, fromOb: NonNegativeInteger, toOb: NonNegativeInteger, xOffset: Integer, yOffset: Integer, map: List NonNegativeInteger)
from FiniteGraph S
getVert: % -> List S
from Poset S
getVertexIndex: (%, S) -> NonNegativeInteger
from FiniteGraph S
getVertices: % -> List Record(value: S, posX: NonNegativeInteger, posY: NonNegativeInteger)
from FiniteGraph S
glb: (%, List NonNegativeInteger) -> Union(NonNegativeInteger, failed)
from Poset S
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
implies: (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
from Poset S
incidenceMatrix: % -> Matrix Integer
from FiniteGraph S
inDegree: (%, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph S
indexToObject: (%, NonNegativeInteger) -> S
from Poset S
initial: () -> %
from FiniteGraph S
isAcyclic?: % -> Boolean
from FiniteGraph S
isAntiChain?: % -> Boolean
from Poset S
isAntisymmetric?: % -> Boolean
from Poset S
isChain?: % -> Boolean
from Poset S
isDirected?: () -> Boolean
from FiniteGraph S
isDirectSuccessor?: (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
from FiniteGraph S
isFixPoint?: (%, NonNegativeInteger) -> Boolean
from FiniteGraph S
isFunctional?: % -> Boolean
from FiniteGraph S
isGreaterThan?: (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
from FiniteGraph S
join: (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from Dcpo S
joinIfCan: (%, List NonNegativeInteger) -> Union(NonNegativeInteger, failed)
from Poset S
joinIfCan: (%, NonNegativeInteger, NonNegativeInteger) -> Union(NonNegativeInteger, failed)
from Poset S
kgraph: (List S, String) -> %
from FiniteGraph S
laplacianMatrix: % -> Matrix Integer
from FiniteGraph S
latex: % -> String
from SetCategory
le: (%, NonNegativeInteger, NonNegativeInteger) -> Boolean
from Preorder S
loopsArrows: % -> List Loop
from FiniteGraph S
loopsAtNode: (%, NonNegativeInteger) -> List Loop
from FiniteGraph S
loopsNodes: % -> List Loop
from FiniteGraph S
looseEquals: (%, %) -> Boolean
from FiniteGraph S
lowerSet: % -> %
from Poset S
lub: (%, List NonNegativeInteger) -> Union(NonNegativeInteger, failed)
from Poset S
map: (%, List NonNegativeInteger, List S, Integer, Integer) -> %
from FiniteGraph S
mapContra: (%, List NonNegativeInteger, List S, Integer, Integer) -> %
from FiniteGraph S
max: % -> NonNegativeInteger
from FiniteGraph S
max: (%, List NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph S
meet: (%, NonNegativeInteger, NonNegativeInteger) -> NonNegativeInteger
from CoDcpo S
meetIfCan: (%, List NonNegativeInteger) -> Union(NonNegativeInteger, failed)
from Poset S
meetIfCan: (%, NonNegativeInteger, NonNegativeInteger) -> Union(NonNegativeInteger, failed)
from Poset S
merge: (%, %) -> %
from FiniteGraph S
min: % -> NonNegativeInteger
from FiniteGraph S
min: (%, List NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph S
moebius: % -> IncidenceAlgebra(Integer, S)
from Poset S
nodeFromArrow: (%, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
nodeFromNode: (%, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
nodeToArrow: (%, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
nodeToNode: (%, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
objectToIndex: (%, S) -> NonNegativeInteger
from Poset S
opposite: % -> %
from Poset S
outDegree: (%, NonNegativeInteger) -> NonNegativeInteger
from FiniteGraph S
powerSetStructure: S -> %
from Poset S
routeArrows: (%, NonNegativeInteger, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
routeNodes: (%, NonNegativeInteger, NonNegativeInteger) -> List NonNegativeInteger
from FiniteGraph S
setArr: (%, List List Boolean) -> Void
from Poset S
setVert: (%, List S) -> Void
from Poset S
spanningForestArrow: % -> List Tree Integer
from FiniteGraph S
spanningForestNode: % -> List Tree Integer
from FiniteGraph S
spanningTreeArrow: (%, NonNegativeInteger) -> Tree Integer
from FiniteGraph S
spanningTreeNode: (%, NonNegativeInteger) -> Tree Integer
from FiniteGraph S
subdiagramSvg: (Scene SCartesian 2, %, Boolean, Boolean) -> Void
from FiniteGraph S
terminal: S -> %
from FiniteGraph S
unit: (List S, String) -> %
from FiniteGraph S
upperSet: % -> %
from Poset S
zetaMatrix: % -> IncidenceAlgebra(Integer, S)
from Poset S

BasicType

CoDcpo S

CoercibleTo OutputForm

Dcpo S

FiniteGraph S

Poset S

Preorder S

SetCategory