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Chapter 0

Introduction to FriCAS

Welcome to the world of FriCAS. We call FriCAS a scientific computation system: a self-contained
toolbox designed to meet your scientific programming needs, from symbolics, to numerics, to graphics.

This introduction is a quick overview of what FriCAS offers.

0.1 Symbolic computation

FriCAS provides a wide range of simple commands for symbolic mathematical problem solving. Do
you need to solve an equation, to expand a series, or to obtain an integral? If so, just ask FriCAS to
do it.

Integrate 1
(x3 (a+bx)1/3)

with respect to x.

integrate (1/(x^3 * (a+b*x)^(1/3) ),x)

(1)

−2 b2 x2
√
3 log

(

3
√
a

3
√
b x+ a

2
+ 3

√
a
2 3
√
b x+ a+ a

)

+ 4 b2 x2
√
3 log

(

3
√
a
2 3
√
b x+ a− a

)

+ 12 b2 x2 arctan

(

2
√

3
3
√
a
2 3
√
b x+ a+a

√
3

3 a

18 a2 x2
√
3 3
√
a

Union(Expression( Integer ) , ...)

FriCAS provides state-of-the-art algebraic machinery to handle your most advanced symbolic problems.
For example, FriCAS’s integrator gives you the answer when an answer exists. If one does not, it
provides a proof that there is no answer. Integration is just one of a multitude of symbolic operations
that FriCAS provides.

0.2 Numeric computation

FriCAS has a numerical library that includes operations for linear algebra, solution of equations, and

3
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special functions. For many of these operations, you can select any number of floating point digits to
be carried out in the computation.

Solve x49 − 49x4 + 9 to 49 digits of accuracy.

digits (49); solve(x^49 -49* x^4+9 = 0,1.e -49)

(1)
[x = −0.6546536706904271136718122105095984761851224331556,

x = 1.086921395653859508493939035954893289009213388763,

x = 0.6546536707255271739694686066136764835361487607661]

List (Equation(Polynomial(Float)))

The output of a computation can be converted to FORTRAN to be used in a later numerical com-
putation. Besides floating point numbers, FriCAS provides literally dozens of kinds of numbers to
compute with. These range from various kinds of integers, to fractions, complex numbers, quaternions,
continued fractions, and to numbers represented with an arbitrary base.

What is 10 to the 100th power in base 32?

radix (10^100 ,32)

(2)4I9LKIP9GRSTC5IF164PO5V72ME827226JSLAP462585Q7H00000000000000000000

RadixExpansion(32)

0.3 Graphics

You may often want to visualize a symbolic formula or draw a graph from a set of numerical values.
To do this, you can call upon the FriCAS graphics capability.

Draw J0(
√

x2 + y2) for −20 ≤ x, y ≤ 20.

draw (5* besselJ (0, sqrt(x^2+y^2)), x= -20..20 , y= -20..20)
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Graphs in FriCAS are interactive objects you can manipulate with your mouse. Just click on the
graph, and a control panel pops up. Using this mouse and the control panel, you can translate, rotate,
zoom, change the coloring, lighting, shading, and perspective on the picture. You can also generate a
PostScript copy of your graph to produce hard-copy output.

0.4 HyperDoc

HyperDoc presents you windows on the world of FriCAS, offering on-line help, examples, tutorials,
a browser, and reference material. HyperDoc gives you on-line access to this book in a “hypertext”
format. Words that appear in a different font (for example, Matrix, factor, and category) are generally
mouse-active; if you click on one with your mouse, HyperDoc shows you a new window for that word.

As another example of a HyperDoc facility, suppose that you want to compute the roots of x49−49x4+9
to 49 digits (as in our previous example) and you don’t know how to tell FriCAS to do this. The “basic
command” facility of HyperDoc leads the way. Through the series of HyperDoc windows shown in
Figure 1 and the specified mouse clicks, you and HyperDoc generate the correct command to issue to
compute the answer.

0.5 Interactive Programming

FriCAS’s interactive programming language lets you define your own functions. A simple example of
a user-defined function is one that computes the successive Legendre polynomials. FriCAS lets you
define these polynomials in a piece-wise way.

The first Legendre polynomial.

p(0) == 1

The second Legendre polynomial.

p(1) == x

The nth Legendre polynomial for (n > 1).

p(n) == ((2*n -1)*x*p(n-1) - (n -1) * p(n -2))/n

In addition to letting you define simple functions like this, the interactive language can be used to
create entire application packages. All the graphs in the FriCAS Images section in the center of the
book, for example, were created by programs written in the interactive language.

The above definitions for p do no computation—they simply tell FriCAS how to compute p(k) for
some positive integer k. To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial (Fraction (

Integer ))

Compiling function p as a recurrence relation .
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Figure 1: Computing the roots of x49 − 49x4 + 9.

(4)
46189

256
x
10 − 109395

256
x
8 +

45045

128
x
6 − 15015

128
x
4 +

3465

256
x
2 − 63

256

Polynomial(Fraction ( Integer ))

FriCAS applies the above pieces for p to obtain the value of p(10). But it does more: it creates an
optimized, compiled function for p. The function is formed by putting the pieces together into a single
piece of code. By compiled, we mean that the function is translated into basic machine-code. By
optimized, we mean that certain transformations are performed on that code to make it run faster. For
p, FriCAS actually translates the original definition that is recursive (one that calls itself) to one that
is iterative (one that consists of a simple loop).

What is the coefficient of x90 in p(90)?
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coefficient (p(90) ,x,90)

(5)
5688265542052017822223458237426581853561497449095175

77371252455336267181195264

Polynomial(Fraction ( Integer ))

In general, a user function is type-analyzed and compiled on first use. Later, if you use it with a
different kind of object, the function is recompiled if necessary.

0.6 Data Structures

A variety of data structures are available for interactive use. These include strings, lists, vectors, sets,
multisets, and hash tables. A particularly useful structure for interactive use is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials

[D(p(i),x) for i in 1..]

(5)

[

1, 3x,
15

2
x
2 − 3

2
,
35

2
x
3 − 15

2
x,

315

8
x
4 − 105

4
x
2 +

15

8
,

693

8
x
5 − 315

4
x
3 +

105

8
x,

3003

16
x
6 − 3465

16
x
4 +

945

16
x
2 − 35

16
, . . .

]

Stream(Polynomial(Fraction( Integer )))

Streams display only a few of their initial elements. Otherwise, they are “lazy”: they only compute
elements when you ask for them.

Data structures are an important component for building application software. Advanced users can
represent data for applications in optimal fashion. In all, FriCAS offers over forty kinds of aggregate
data structures, ranging from mutable structures (such as cyclic lists and flexible arrays) to storage
efficient structures (such as bit vectors). As an example, streams are used as the internal data structure
for power series.

What is the series expansion of log(cot(x)) about x = π/2?

series (log(cot(x)),x = %pi/2)

(6)log

(

−2x+ π

2

)

+
1

3

(

x− π

2

)2

+
7

90

(

x− π

2

)4

+
62

2835

(

x− π

2

)6

+O

(

(

x− π

2

)8
)
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GeneralUnivariatePowerSeries (Expression( Integer ) , x, %pi/2)

Series and streams make no attempt to compute all their elements! Rather, they stand ready to deliver
elements on demand.

What is the coefficient of the 50th term of this series?

coefficient (% ,50)

(7)
44590788901016030052447242300856550965644

7131469286438669111584090881309360354581359130859375

Expression( Integer )

0.7 Mathematical Structures

FriCAS also has many kinds of mathematical structures. These range from simple ones (like polyno-
mials and matrices) to more esoteric ones (like ideals and Clifford algebras). Most structures allow the
construction of arbitrarily complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [[x + %i,0], [1,-2]]

(1)

[

x+ i 0
1 −2

]

Matrix(Polynomial(Complex(Integer)))

The FriCAS interpreter builds types in response to user input. Often, the type of the result is changed
in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.

inverse (%)

(2)

[ 1
x+i

0
1

2 x+2 i
− 1

2

]

Union(Matrix(Fraction(Polynomial(Complex(Integer)))) , ...)
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0.8 Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose you have a trigonomet-
ric expression and you want to transform it to some equivalent form. Use a rule command to describe
the transformation rules you need. Then give the rules a name and apply that name as a function to
your trigonometric expression.

Introduce two rewrite rules.

sinCosExpandRules := rule

sin(x+y) == sin(x)*cos (y) + sin(y)*cos(x)

cos(x+y) == cos(x)*cos (y) - sin(x)*sin(y)

sin (2*x) == 2* sin(x)*cos(x)

cos (2*x) == cos(x)^2 - sin(x)^2

(1)
{

sin(y + x) == cos(x) sin(y) + cos(y) sin(x), cos(y + x) == − sin(x) sin(y) + cos(x) cos(y),

sin(2x) == 2 cos(x) sin(x), cos(2x) == −(sin(x))2 + (cos(x))2
}

Ruleset( Integer , Integer , Expression( Integer ))

Apply the rules to a simple trigonometric expression.

sinCosExpandRules(sin (a+2*b+c))

(2)
(

− cos(a) (sin(b))2 − 2 cos(b) sin(a) sin(b) + cos(a) (cos(b))2
)

sin(c)

− cos(c) sin(a) (sin(b))2 + 2 cos(a) cos(b) cos(c) sin(b) + (cos(b))2 cos(c) sin(a)

Expression( Integer )

Using input files, you can create your own library of transformation rules relevant to your applications,
then selectively apply the rules you need.

0.9 Polymorphic Algorithms

All components of the FriCAS algebra library are written in the FriCAS library language. This language
is similar to the interactive language except for protocols that authors are obliged to follow. The
library language permits you to write “polymorphic algorithms,” algorithms defined to work in their
most natural settings and over a variety of types.

Define a system of polynomial equations S.

S := [3*x^3 + y + 1 = 0,y^2 = 4]
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(1)
[

y + 3 x3 + 1 = 0, y2 = 4
]

List (Equation(Polynomial(Integer )))

Solve the system S using rational number arithmetic and 30 digits of accuracy.

digits (30); solve(S ,1/10^30)

(2)

[[

y = −2, x =
57602201066248085349435651342568509

83076749736557242056487941267521536

]

, [y = 2, x = −1]

]

List ( List (Equation(Polynomial(Fraction( Integer )))))

Solve S with the solutions expressed in radicals.

radicalSolve(S)

(3)

[

[y = 2, x = −1] ,

[

y = 2, x =
−
√
−3 + 1

2

]

,

[

y = 2, x =

√
−3 + 1

2

]

,

[

y = −2,

x =
1
3
√
3

]

,

[

y = −2, x =

√
−1

√
3− 1

2
3
√
3

]

,

[

y = −2, x =
−
√
−1

√
3− 1

2
3
√
3

]]

List ( List (Equation(Expression( Integer ))))

While these solutions look very different, the results were produced by the same internal algorithm!
The internal algorithm actually works with equations over any “field.” Examples of fields are the
rational numbers, floating point numbers, rational functions, power series, and general expressions
involving radicals.

0.10 Extensibility

Users and system developers alike can augment the FriCAS library, all using one common language.
Library code, like interpreter code, is compiled into machine binary code for run-time efficiency.

Using this language, you can create new computational types and new algorithmic packages. All
library code is polymorphic, described in terms of a database of algebraic properties. By following
the language protocols, there is an automatic, guaranteed interaction between your code and that of
colleagues and system implementers.



A Technical Introduction to FriCAS

FriCAS has both an interactive language for user interactions and a programming language for building
library modules. Like Modula 2, PASCAL, FORTRAN, and Ada, the programming language empha-
sizes strict type-checking. Unlike these languages, types in FriCAS are dynamic objects: they are
created at run-time in response to user commands.

Here is the idea of the FriCAS programming language in a nutshell. FriCAS types range from algebraic
ones (like polynomials, matrices, and power series) to data structures (like lists, dictionaries, and input
files). Types combine in any meaningful way. You can build polynomials of matrices, matrices of
polynomials of power series, hash tables with symbolic keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness. They ensure, for example,
that matrices of polynomials are OK, but matrices of input files are not. Through categories, pro-
grams can discover that polynomials of continued fractions have a commutative multiplication whereas
polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting. For example, an algorithm
can be defined to solve polynomial equations over any field. Likewise a greatest common divisor can
compute the “gcd” of two elements from any Euclidean domain. Categories foil attempts to compute
meaningless “gcds”, for example, of two hashtables. Categories also enable algorithms to be compiled
into machine code that can be run with arbitrary types.

The FriCAS interactive language is oriented towards ease-of-use. The FriCAS interpreter uses type-
inferencing to deduce the type of an object from user input. Type declarations can generally be omitted
for common types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten design principles:

Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains are defined by FriCAS
programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its members. For example,
Integer denotes “the class of integers,” Float, “the class of floating point numbers,” and String, “the
class of strings.”

The “...” part following Name lists zero or more parameters to the constructor. Some basic ones like

11
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Integer take no parameters. Others, like Matrix, Polynomial and List, take a single parameter
that again must be a domain. For example, Matrix(Integer) denotes “matrices over the integers,”
Polynomial (Float) denotes “polynomial with floating point coefficients,” and List (Matrix (Poly-
nomial (Integer))) denotes “lists of matrices of polynomials over the integers.” There is no restriction
on the number or type of parameters of a domain constructor.

The Exports part specifies operations for creating and manipulating objects of the domain. For
example, type Integer exports constants 0 and 1, and operations +, -, and *. While these operations
are common, others such as odd? and bit? are not.

The Implementation part defines functions that implement the exported operations of the domain.
These functions are frequently described in terms of another lower-level domain used to represent the
objects of the domain.
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The Type of Basic Objects is a Domain or Subdomain

Every FriCAS object belongs to a unique domain. The domain of an object is also called its type. Thus
the integer 7 has type Integer and the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not only Integer but
NonNegativeInteger, PositiveInteger, and possibly, in general, any other “subdomain” of the do-
main Integer. A subdomain is a domain with a “membership predicate”. PositiveInteger is a
subdomain of Integer with the predicate “is the integer > 0?”.

Subdomains with names are defined by abstract datatype programs similar to those for domains.
The Export part of a subdomain, however, must list a subset of the exports of the domain. The
Implementation part optionally gives special definitions for subdomain objects.

Domains Have Types Called Categories

Domain and subdomains in FriCAS are themselves objects that have types. The type of a domain or
subdomain is called a category. Categories are described by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category Name is used to
designate the class of domains of that type. For example, category Ring designates the class of all
rings. Like domains, categories can take zero or more parameters as indicated by the “...” part
following Name. Two examples are Module(R) and MatrixCategory(R,Row,Col).

The Exports part defines a set of operations. For example, Ring exports the operations 0, 1, +, -,
and *. Many algebraic domains such as Integer and Polynomial (Float) are rings. String and List
(R) (for any domain R) are not.

Categories serve to ensure the type-correctness. The definition of matrices states Matrix(R: Ring)

requiring its single parameter R to be a ring. Thus a “matrix of polynomials” is allowed, but “matrix
of lists” is not.

Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted by symbols that stand
for domains, called “symbolic domains.” The following lines of FriCAS code use a symbolic domain R:

R: Ring

power: (R, NonNegativeInteger): R -> R

power(x, n) == x ** n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power in terms of R. From the
definition on line 3, power(3,2) produces 9 for x = 3 and R = Integer. Also, power(3.0,2) produces
9.0 for x = 3.0 and R = Float. power("oxford",2) however fails since "oxford" has type String
which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural or general setting.
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Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified hierarchical world of
algebraic categories is shown below in Figure 2. At the top of this world is SetCategory, the class of
algebraic sets. The notions of parents, ancestors, and descendants is clear. Thus ordered sets (domains
of category OrderedSet) and rings are also algebraic sets. Likewise, fields and integral domains are
rings and algebraic sets. However fields and integral domains are not ordered sets.

SetCategory

Ring

IntegralDomain

Field

Finite OrderedSet

OrderedFinite

Figure 2: A simplified category hierarchy.
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Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think that Ring designates the
class of all domains that export 0, 1, +, -, and *. But this is not so. Each domain must assert which
categories it belongs to.

The Export part of the definition for Integer reads, for example:

Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral domain. In fact, Integer
does not explicitly export constants 0 and 1 and operations +, - and * at all: it inherits them all from
Ring! Since IntegralDomain is a descendant of Ring, Integer is therefore also a ring.

Assertions can be conditional. For example, Complex(R) defines its exports by:

Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is not a field.

You may wonder: “Why not simply let the set of operations determine whether a domain belongs to a
given category?”. FriCAS allows operation names (for example, norm) to have very different meanings
in different contexts. The meaning of an operation in FriCAS is determined by context. By associating
operations with categories, operation names can be reused whenever appropriate or convenient to do
so. As a simple example, the operation < might be used to denote lexicographic-comparison in an
algorithm. However, it is wrong to use the same < with this definition of absolute-value: abs(x) ==

if x < 0 then -x else x. Such a definition for abs in FriCAS is protected by context: argument x
is required to be a member of a domain of category OrderedSet.

Packages Are Clusters of Polymorphic Operations

In FriCAS, facilities for symbolic integration, solution of equations, and the like are placed in “pack-
ages”. A package is a special kind of domain: one whose exported operations depend solely on the
parameters of the constructor and/or explicit domains.

If you want to use FriCAS, for example, to define some algorithms for solving equations of polynomials
over an arbitrary field F, you can do so with a package of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export and Implementation defines functions
for implementing your algorithms. Once FriCAS has compiled your package, your algorithms can then
be used for any F: floating-point numbers, rational numbers, complex rational functions, and power
series, to name a few.
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The Interpreter Builds Domains Dynamically

The FriCAS interpreter reads user input then builds whatever types it needs to perform the indicated
computations. For example, to create the matrix

M =

(
x2 + 1 0

0 x/2

)

the interpreter first loads the modules Matrix, Polynomial, Fraction, and Integer from the library,
then builds the domain tower “matrices of polynomials of rational numbers (fractions of integers)”.

Once a domain tower is built, computation proceeds by calling operations down the tower. For example,
suppose that the user asks to square the above matrix. To do this, the function * from Matrix is
passed M to compute M * M. The function is also passed an environment containing R that, in this
case, is Polynomial (Fraction (Integer)). This results in the successive calling of the * operations
from Polynomial, then from Fraction, and then finally from Integer before a result is passed back
up the tower.

Categories play a policing role in the building of domains. Because the argument of Matrix is required
to be a ring, FriCAS will not build nonsensical types such as “matrices of input files”.

FriCAS Code is Compiled

FriCAS programs are statically compiled to machine code, then placed into library modules. Categories
provide an important role in obtaining efficient object code by enabling:

• static type-checking at compile time;

• fast linkage to operations in domain-valued parameters;

• optimization techniques to be used for partially specified types (operations for “vectors of R”, for
instance, can be open-coded even though R is unknown).

FriCAS is Extensible

Users and system implementers alike use the FriCAS language to add facilities to the FriCAS library.
The entire FriCAS library is in fact written in the FriCAS source code and available for user modification
and/or extension.

FriCAS’s use of abstract datatypes clearly separates the exports of a domain (what operations are
defined) from its implementation (how the objects are represented and operations are defined). Users
of a domain can thus only create and manipulate objects through these exported operations. This
allows implementers to “remove and replace” parts of the library safely by newly upgraded (and, we
hope, correct) implementations without consequence to its users.

Categories protect names by context, making the same names available for use in other contexts. Cat-
egories also provide for code-economy. Algorithms can be parameterized categorically to characterize
their correct and most general context. Once compiled, the same machine code is applicable in all such
contexts.

Finally, FriCAS provides an automatic, guaranteed interaction between new and old code. For example:
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• if you write a new algorithm that requires a parameter to be a field, then your algorithm will
work automatically with every field defined in the system; past, present, or future.

• if you introduce a new domain constructor that produces a field, then the objects of that domain
can be used as parameters to any algorithm using field objects defined in the system; past,
present, or future.

These are the key ideas. For further information, we particularly recommend your reading chapters
11, 12, and 13, where these ideas are explained in greater detail.
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Part I

Basic Features of FriCAS
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Chapter 1

An Overview of FriCAS

Welcome to the FriCAS environment for interactive computation and problem solving. Consider this
chapter a brief, whirlwind tour of the FriCAS world. We introduce you to FriCAS’s graphics and
the FriCAS language. Then we give a sampling of the large variety of facilities in the FriCAS system,
ranging from the various kinds of numbers, to data types (like lists, arrays, and sets) and mathematical
objects (like matrices, integrals, and differential equations). We conclude with the discussion of system
commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working interactively with FriCAS on
some details. Others can skip right immediately to Section 1.2 on page 22.

1.1 Starting Up and Winding Down

You need to know how to start the FriCAS system and how to stop it. We assume that FriCAS has
been correctly installed on your machine (as described in another FriCAS document).

To begin using FriCAS, issue the command fricas to the operating system shell. There is a brief pause,
some start-up messages, and then one or more windows appear.

If you are not running FriCAS under the X Window System, there is only one window (the console).
At the lower left of the screen there is a prompt that looks like

(1) ->

When you want to enter input to FriCAS, you do so on the same line after the prompt. The “1” in
“(1)” is the computation step number and is incremented after you enter FriCAS statements. Note,
however, that a system command such as )clear all may change the step number in other ways. We
talk about step numbers more when we discuss system commands and the workspace history facility.

If you are running FriCAS under the XWindow System, there may be two windows: the console window
(as just described) and the HyperDoc main menu. HyperDoc is a multiple-window hypertext system
that lets you view FriCAS documentation and examples on-line, execute FriCAS expressions, and
generate graphics. If you are in a graphical windowing environment, it is usually started automatically
when FriCAS begins. If it is not running, issue )hd to start it. We discuss the basics of HyperDoc in
Chapter 3.

21
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To interrupt an FriCAS computation, hold down the Ctrl (control) key and press c . This brings
you back to the FriCAS prompt.

To exit from FriCAS, move to the console window, type )quit at the input prompt and press the

Enter key. You will probably be prompted with the following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit FriCAS.

We are purposely vague in describing exactly what your screen looks like or what messages FriCAS
displays. FriCAS runs on a number of different machines, operating systems and window environments,
and these differences all affect the physical look of the system. You can also change the way that FriCAS
behaves via system commands described later in this chapter and in Appendix A. System commands
are special commands, like )set, that begin with a closing parenthesis and are used to change your
environment. For example, you can set a system variable so that you are not prompted for confirmation
when you want to leave FriCAS.

1.1.1 Clef

If you are using FriCAS under the X Window System, the Clef command line editor is probably
available and installed. With this editor you can recall previous lines with the up and down arrow
keys.

To move forward and backward on a line, use the right and left arrows. You can use the Insert key
to toggle insert mode on or off. When you are in insert mode, the cursor appears as a large block and
if you type anything, the characters are inserted into the line without deleting the previous ones.

If you press the Home key, the cursor moves to the beginning of the line and if you press the End

key, the cursor moves to the end of the line. Pressing Ctrl – End deletes all the text from the cursor
to the end of the line.

Clef also provides FriCAS operation name completion for a limited set of operations. If you enter a few

letters and then press the Tab key, Clef tries to use those letters as the prefix of an FriCAS operation

name. If a name appears and it is not what you want, press Tab again to see another name.

You are ready to begin your journey into the world of FriCAS. Proceed to the first stop.

1.2 Typographic Conventions

In this book we have followed these typographical conventions:

• Categories, domains and packages are displayed in a sans-serif typeface: Ring, Integer, Dio-
phantineSolutionPackage.

• Prefix operators, infix operators, and punctuation symbols in the FriCAS language are displayed
in the text like this: +, “$”, “+->”.
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• FriCAS expressions or expression fragments are displayed in a monospace typeface: inc(x)==
x + 1.

• For clarity of presentation, TEX is often used to format expressions: g(x) = x2 + 1.

• Function names and HyperDoc button names are displayed in the text in a bold typeface: factor,
integrate, Lighting.

• Italics are used for emphasis and for words defined in the glossary: category.

This book contains over 2500 examples of FriCAS input and output. All examples were run though
FriCAS and their output was created in LATEX form for this book by the FriCAS FormatLaTex
package.

1.3 The FriCAS Language

The FriCAS language is a rich language for performing interactive computations and for building
components of the FriCAS library. Here we present only some basic aspects of the language that you
need to know for the rest of this chapter. Our discussion here is intentionally informal, with details
unveiled on an “as needed” basis. For more information on a particular construct, we suggest you
consult the index at the back of the book.

1.3.1 Arithmetic Expressions

For arithmetic expressions, use the + and - operators as in mathematics. Use * for multiplication, and
^ for exponentiation. To create a fraction, use /. When an expression contains several operators, those
of highest precedence are evaluated first. For arithmetic operators, ^ has highest precedence, * and /

have the next highest precedence, and + and - have the lowest precedence.

FriCAS puts implicit parentheses around operations of higher precedence, and groups those of equal
precedence from left to right.

1 + 2 - 3 / 4 * 3 ^ 2 - 1

(1)− 19

4

Fraction ( Integer )

The above expression is equivalent to this.

((1 + 2) - ((3 / 4) * (3 ^ 2))) - 1

(2)− 19

4
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Fraction ( Integer )

If an expression contains subexpressions enclosed in parentheses, the parenthesized subexpressions are
evaluated first (from left to right, from inside out).

1 + 2 - 3/ (4 * 3 ^ (2 - 1))

(3)
11

4

Fraction ( Integer )

1.3.2 Previous Results

Use the percent sign (“%”) to refer to the last result. Also, use “%%” to refer to previous results. %%(-1)
is equivalent to “%”, %%(-2) returns the next to the last result, and so on. %%(1) returns the result
from step number 1, %%(2) returns the result from step number 2, and so on. %%(0) is not defined.

This is ten to the tenth power.

10 ^ 10

(1)10000000000

PositiveInteger

This is the last result minus one.

% - 1

(2)9999999999

PositiveInteger

This is the last result.

%%( -1)

(3)9999999999
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PositiveInteger

This is the result from step number 1.

%%(1)

(4)10000000000

PositiveInteger

1.3.3 Some Types

Everything in FriCAS has a type. The type determines what operations you can perform on an object
and how the object can be used. An entire chapter of this book (Chapter 2) is dedicated to the
interactive use of types. Several of the final chapters discuss how types are built and how they are
organized in the FriCAS library.

Positive integers are given type PositiveInteger.

8

(1)8

PositiveInteger

Negative ones are given type Integer. This fine distinction is helpful to the FriCAS interpreter.

-8

(2)− 8

Integer

Here a positive integer exponent gives a polynomial result.

x^8

(3)x
8
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Polynomial( Integer )

Here a negative integer exponent produces a fraction.

x^(-8)

(4)
1

x8

Fraction (Polynomial( Integer ))

1.3.4 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polynomials and power series.

We use the three symbols x, y, and z in entering this polynomial.

(x - y*z)^2

(1)y
2
z
2 − 2x y z + x

2

Polynomial( Integer )

A symbol has a name beginning with an uppercase or lowercase alphabetic character, “%”, or “!”.
Successive characters (if any) can be any of the above, digits, or “?”. Case is distinguished: the
symbol points is different from the symbol Points.

A symbol can also be used in FriCAS as a variable. A variable refers to a value. To assign a value to
a variable, the operator “:=” is used.1 A variable initially has no restrictions on the kinds of values to
which it can refer.

This assignment gives the value 4 (an integer) to a variable named x.

x := 4

(2)4

PositiveInteger

This gives the value z + 3/5 (a polynomial) to x.

x := z + 3/5

1FriCAS actually has two forms of assignment: immediate assignment, as discussed here, and delayed assignment.
See Section 5.1 on page 141 for details.



1.3. THE FRICAS LANGUAGE 27

(3)z +
3

5

Polynomial(Fraction ( Integer ))

To restrict the types of objects that can be assigned to a variable, use a declaration

y : Integer

After a variable is declared to be of some type, only values of that type can be assigned to that
variable.

y := 89

(5)89

Integer

The declaration for y forces values assigned to y to be converted to integer values.

y := sin %pi

(6)0

Integer

If no such conversion is possible, FriCAS refuses to assign a value to y.

y := 2/3

Cannot convert right -hand side of assignment

2

-

3

to an object of the type Integer of the left -hand side.

A type declaration can also be given together with an assignment. The declaration can assist FriCAS
in choosing the correct operations to apply.

f : Float := 2/3

(7)0.66666666666666666667
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Float

Any number of expressions can be given on input line. Just separate them by semicolons. Only the
result of evaluating the last expression is displayed.

These two expressions have the same effect as the previous single expression.

f : Float ; f := 2/3

(8)0.66666666666666666667

Float

The type of a symbol is either Symbol or Variable(name) where name is the name of the symbol.

By default, the interpreter gives this symbol the type Variable(q).

q

(9)q

Variable (q)

When multiple symbols are involved, Symbol is used.

[q, r]

(10)[q, r]

List ( OrderedVariableList ([q, r ]) )

What happens when you try to use a symbol that is the name of a variable?

f

(11)0.66666666666666666667

Float

Use a single quote (“’”) before the name to get the symbol.

’f
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(12)f

Variable ( f)

Quoting a name creates a symbol by preventing evaluation of the name as a variable. Experience will
teach you when you are most likely going to need to use a quote. We try to point out the location of
such trouble spots.

1.3.5 Conversion

Objects of one type can usually be “converted” to objects of several other types. To convert an object
to a new type, use the “::” infix operator.2 For example, to display an object, it is necessary to
convert the object to type OutputForm.

This produces a polynomial with rational number coefficients.

p := r^2 + 2/3

(1)r
2 +

2

3

Polynomial(Fraction ( Integer ))

Create a quotient of polynomials with integer coefficients by using “::”.

p :: Fraction Polynomial Integer

(2)
3 r2 + 2

3

Fraction (Polynomial( Integer ))

Some conversions can be performed automatically when FriCAS tries to evaluate your input. Others
conversions must be explicitly requested.

1.3.6 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the arithmetic operator +
or - between the two arguments denoting the values. To use most other FriCAS operations, however,
you use another syntax: write the name of the operation first, then an open parenthesis, then each of

2Conversion is discussed in detail in Section 2.7 on page 98.
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the arguments separated by commas, and, finally, a closing parenthesis. If the operation takes only
one argument and the argument is a number or a symbol, you can omit the parentheses.

This calls the operation factor with the single integer argument 120.

factor (120)

(1)23 3 5

Factored( Integer )

This is a call to divide with the two integer arguments 125 and 7.

divide (125 ,7)

(2)[quotient = 17, remainder = 6]

Record(quotient : Integer , remainder: Integer )

This calls quatern with four floating-point arguments.

quatern (3.4 ,5.6 ,2.9 ,0.1)

(3)3.4 + 5.6 i+ 2.9 j + 0.1 k

Quaternion(Float)

This is the same as factorial(10).

factorial 10

(4)3628800

PositiveInteger

An operations that returns a Boolean value (that is, true or false) frequently has a name suffixed
with a question mark (“?”). For example, the even? operation returns true if its integer argument is
an even number, false otherwise.

An operation that can be destructive on one or more arguments usually has a name ending in a
exclamation point (“!”). This actually means that it is allowed to update its arguments but it is
not required to do so. For example, the underlying representation of a collection type may not allow
the very last element to removed and so an empty object may be returned instead. Therefore, it is
important that you use the object returned by the operation and not rely on a physical change having
occurred within the object. Usually, destructive operations are provided for efficiency reasons.
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1.3.7 Some Predefined Macros

FriCAS provides several macros for your convenience.3 Macros are names (or forms) that expand to
larger expressions for commonly used values.

%i The square root of -1.
%e The base of the natural logarithm.
%pi π.
%infinity ∞.
%plusInfinity +∞.
%minusInfinity −∞.

1.3.8 Long Lines

When you enter FriCAS expressions from your keyboard, there will be times when they are too long
to fit on one line. FriCAS does not care how long your lines are, so you can let them continue from
the right margin to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have FriCAS glue them together. To
get this glue, put an underscore ( ) at the end of each line you wish to continue.

2_

+_

3

is the same as if you had entered

2+3

If you are putting your FriCAS statements in an input file (see Section 4.1 on page 121), you can use
indentation to indicate the structure of your program. (see Section 5.2 on page 145).

1.3.9 Comments

Comment statements begin with two consecutive hyphens or two consecutive plus signs and continue
until the end of the line.

The comment beginning with -- is ignored by FriCAS.

2 + 3 -- this is rather simple, no?

(1)5

3See Section 6.2 on page 172 for a discussion on how to write your own macros.
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PositiveInteger

There is no way to write long multi-line comments other than starting each line with “--” or “++”.

1.4 Graphics

FriCAS has a two- and three-dimensional drawing and rendering package that allows you to draw,
shade, color, rotate, translate, map, clip, scale and combine graphic output of FriCAS computations.
The graphics interface is capable of plotting functions of one or more variables and plotting parametric
surfaces. Once the graphics figure appears in a window, move your mouse to the window and click. A
control panel appears immediately and allows you to interactively transform the object.

This is an example of FriCAS’s two-dimensional plotting. From the 2D Control Panel you can rescale
the plot, turn axes and units on and off and save the image, among other things. This PostScript

image was produced by clicking on the PS 2D Control Panel button.

draw(cos (5*t/8) , t=0..16*% pi , coordinates == polar)

This is an example of FriCAS’s three-dimensional plotting. It is a monochrome graph of the complex
arctangent function. The image displayed was rotated and had the “shade” and “outline” display
options set from the 3D Control Panel. The PostScript output was produced by clicking on the save

3D Control Panel button and then clicking on the PS button. See Section 8.1 on page 287 for more
details and examples of FriCAS’s numeric and graphics capabilities.

draw((x,y) +-> real atan complex (x,y), -%pi..%pi , -%pi ..%pi , colorFunction == (x,y)

+-> argument atan complex (x,y))
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An exhibit of FriCAS Images is given in the center section of this book. For a description of the
commands and programs that produced these figures, see Appendix B. PostScript output is available
so that FriCAS images can be printed.4 See Chapter 7 for more examples and details about using
FriCAS’s graphics facilities.

1.5 Numbers

FriCAS distinguishes very carefully between different kinds of numbers, how they are represented and
what their properties are. Here are a sampling of some of these kinds of numbers and some things you
can do with them.

Integer arithmetic is always exact.

11^13 * 13^11 * 17^7 - 19^5 * 23^3

(1)25387751112538918594666224484237298

PositiveInteger

Integers can be represented in factored form.

factor 643238070748569023720594412551704344145570763243

(2)1113 1311 177 195 233 292

Factored( Integer )

Results stay factored when you do arithmetic. Note that the 12 is automatically factored for you.

% * 12

4PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.
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(3)22 3 1113 1311 177 195 233 292

Factored( Integer )

Integers can also be displayed to bases other than 10. This is an integer in base 11.

radix (25937424601 ,11)

(4)10000000000

RadixExpansion(11)

Roman numerals are also available for those special occasions.

roman (1992)

(5)MCMXCII

RomanNumeral

Rational number arithmetic is also exact.

r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

(6)
55739

2520

Fraction ( Integer )

To factor fractions, you have to map factor onto the numerator and denominator.

map (factor ,r)

(7)
139 401

23 32 5 7

Fraction (Factored( Integer ))

Type SingleInteger refers to machine word-length integers. In English, this expression means “11 as
a small integer”.

11 @SingleInteger
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(8)11

SingleInteger

Machine double-precision floating-point numbers are also available for numeric and graphical applica-
tions.

123.21 @DoubleFloat

(9)123.21000000000001

DoubleFloat

The normal floating-point type in FriCAS, Float, is a software implementation of floating-point num-
bers in which the exponent and the mantissa may have any number of digits.5 The types Com-
plex(Float) and Complex(DoubleFloat) are the corresponding software implementations of com-
plex floating-point numbers.

This is a floating-point approximation to about twenty digits. The “::” is used here to change from
one kind of object (here, a rational number) to another (a floating-point number).

r :: Float

(10)22.118650793650793651

Float

Use digits to change the number of digits in the representation. This operation returns the previous
value so you can reset it later.

digits (22)

(11)20

PositiveInteger

To 22 digits of precision, the number eπ
√
163.0 appears to be an integer.

exp (%pi * sqrt 163.0)

5See ‘Float’ on page 509 and ‘DoubleFloat’ on page 477 for additional information on floating-point types.
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(12)262537412640768744.0

Float

Increase the precision to forty digits and try again.

digits (40); exp (%pi * sqrt 163.0)

(13)262537412640768743.9999999999992500725976

Float

Here are complex numbers with rational numbers as real and imaginary parts.

(2/3 + %i)^3

(14)− 46

27
+

1

3
i

Complex(Fraction(Integer))

The standard operations on complex numbers are available.

conjugate %

(15)− 46

27
− 1

3
i

Complex(Fraction(Integer))

You can factor complex integers.

factor (89 - 23 * %i)

(16)− (1 + i) (2 + i)2 (3 + 2 i)2

Factored(Complex(Integer))

Complex numbers with floating point parts are also available.

exp (%pi /4.0 * %i)
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(17)0.7071067811865475244008443621048490392849 + 0.7071067811865475244008443621048490392848 i

Complex(Float)

Every rational number has an exact representation as a repeating decimal expansion (see ‘DecimalExpansion’
on page 467).

decimal (1/352)

(18)0.0028409

DecimalExpansion

A rational number can also be expressed as a continued fraction (see ‘ContinuedFraction’ on page
450).

continuedFraction (6543/210)

(19)31 +
1|
|6 +

1|
|2 +

1|
|1 +

1|
|3

ContinuedFraction( Integer )

Also, partial fractions can be used and can be displayed in a compact . . .

partialFraction(1, factorial (10))

(20)
159

28
− 23

34
− 12

52
+

1

7

PartialFraction ( Integer )

or expanded format (see ‘PartialFraction’ on page 662).

padicFraction(%)

(21)
1

2
+

1

24
+

1

25
+

1

26
+

1

27
+

1

28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1

7
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PartialFraction ( Integer )

Like integers, bases (radices) other than ten can be used for rational numbers (see ‘RadixExpansion’
on page 679). Here we use base eight.

radix (4/7, 8)

(22)0.4

RadixExpansion(8)

Of course, there are complex versions of these as well. FriCAS decides to make the result a complex
rational number.

% + 2/3*% i

(23)
4

7
+

2

3
i

Complex(Fraction(Integer))

You can also use FriCAS to manipulate fractional powers.

(5 + sqrt 63 + sqrt 847) ^(1/3)

(24)
3

√

14
√
7 + 5

AlgebraicNumber

You can also compute with integers modulo a prime.

x : PrimeField 7 := 5

(25)5

PrimeField(7)

Arithmetic is then done modulo 7.

x^3
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(26)6

PrimeField(7)

Since 7 is prime, you can invert nonzero values.

1/x

(27)3

PrimeField(7)

You can also compute modulo an integer that is not a prime.

y : IntegerMod 6 := 5

(28)5

IntegerMod(6)

All of the usual arithmetic operations are available.

y^3

(29)5

IntegerMod(6)

Inversion is not available if the modulus is not a prime number. Modular arithmetic and prime fields
are discussed in Section 8.11.1 on page 354.

1/y

There are 11 exposed and 15 unexposed library operations named /

having 2 argument (s) but none was determined to be applicable .

Use HyperDoc Browse , or issue

)display op /

to learn more about the available operations . Perhaps

package -calling the operation or using coercions on the arguments

will allow you to apply the operation .
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Cannot find a definition or applicable library operation named /

with argument type(s)

PositiveInteger

IntegerMod (6)

Perhaps you should use "@" to indicate the required return type ,

or "$" to specify which version of the function you need.

This defines a to be an algebraic number, that is, a root of a polynomial equation.

a := rootOf (a^5 + a^3 + a^2 + 3,a)

(30)a

Expression( Integer )

Computations with a are reduced according to the polynomial equation.

(a + 1) ^10

(31)− 85 a4 − 264 a3 − 378 a2 − 458 a− 287

Expression( Integer )

Define b to be an algebraic number involving a.

b := rootOf (b^4 + a,b)

(32)b

Expression( Integer )

Do some arithmetic.

2/( b - 1)

(33)
2

b− 1

Expression( Integer )

To expand and simplify this, call ratDenom to rationalize the denominator.

ratDenom (%)
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(

a
4 − a

3 + 2 a2 − a+ 1
)

b
3 +

(

a
4 − a

3 + 2 a2 − a+ 1
)

b
2 +

(

a
4 − a

3 + 2 a2 − a+ 1
)

b+ a
4 − a

3 + 2 a2 − a+ 1

(34)

Expression( Integer )

If we do this, we should get b.

2/%+1

(

a4 − a3 + 2 a2 − a+ 1
)

b3 +
(

a4 − a3 + 2 a2 − a+ 1
)

b2 +
(

a4 − a3 + 2 a2 − a+ 1
)

b+ a4 − a3 + 2 a2 − a+ 3

(a4 − a3 + 2 a2 − a+ 1) b3 + (a4 − a3 + 2 a2 − a+ 1) b2 + (a4 − a3 + 2 a2 − a+ 1) b+ a4 − a3 + 2 a2 − a+ 1

(35)

Expression( Integer )

But we need to rationalize the denominator again.

ratDenom (%)

(36)b

Expression( Integer )

TypesQuaternion andOctonion are also available. Multiplication of quaternions is non-commutative,
as expected.

q:= quatern (1,2,3,4)*quatern (5,6,7,8) - quatern (5,6,7,8)*quatern (1,2,3,4)

(37)− 8 i+ 16 j − 8 k

Quaternion(Integer )

1.6 Data Structures

FriCAS has a large variety of data structures available. Many data structures are particularly useful
for interactive computation and others are useful for building applications. The data structures of
FriCAS are organized into category hierarchies as shown on the inside back cover.
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A list is the most commonly used data structure in FriCAS for holding objects all of the same type.6

The name list is short for “linked-list of nodes.” Each node consists of a value (first) and a link (rest)
that points to the next node, or to a distinguished value denoting the empty list. To get to, say, the
third element, FriCAS starts at the front of the list, then traverses across two links to the third node.

Write a list of elements using square brackets with commas separating the elements.

u := [1,-7,11]

(1)[1, −7, 11]

List ( Integer )

This is the value at the third node. Alternatively, you can say u.3.

first rest rest u

(2)11

PositiveInteger

Many operations are defined on lists, such as: empty?, to test that a list has no elements; cons(x,l),
to create a new list with first element x and rest l; reverse, to create a new list with elements in reverse
order; and sort, to arrange elements in order.

An important point about lists is that they are “mutable”: their constituent elements and links can
be changed “in place.” To do this, use any of the operations whose names end with the character “!”.

The operation concat!(u,v) replaces the last link of the list u to point to some other list v. Since u

refers to the original list, this change is seen by u.

concat !(u,[9,1,3,-4]) ; u

(3)[1, −7, 11, 9, 1, 3, −4]

List ( Integer )

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of the list. To create a
cycle, first get a node somewhere down the list.

lastnode := rest(u,3)

6Lists are discussed in ‘List’ on page 607 and in Section 5.5 on page 164.
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(4)[9, 1, 3, −4]

List ( Integer )

Use setrest! to change the link emanating from that node to point back to an earlier part of the list.

setrest !( lastnode ,rest(u ,2)); u

(5)
[

1, −7, 11, 9
]

List ( Integer )

A stream is a structure that (potentially) has an infinite number of distinct elements.7 Think of a
stream as an “infinite list” where elements are computed successively.

Create an infinite stream of factored integers. Only a certain number of initial elements are computed
and displayed.

[factor (i) for i in 2.. by 2]

(6)
[

2, 22, 2 3, 23, 2 5, 22 3, 2 7, . . .
]

Stream(Factored(Integer))

FriCAS represents streams by a collection of already-computed elements together with a function to
compute the next element “on demand.” Asking for the nth element causes elements 1 through n to
be evaluated.

%.36

(7)23 32

Factored( Integer )

Streams can also be finite or cyclic. They are implemented by a linked list structure similar to lists
and have many of the same operations. For example, first and rest are used to access elements and
successive nodes of a stream.

7Streams are discussed in ‘Stream’ on page 728 and in Section 5.5 on page 164.
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A one-dimensional array is another data structure used to hold objects of the same type.8 Unlike
lists, one-dimensional arrays are inflexible—they are implemented using a fixed block of storage. Their
advantage is that they give quick and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation oneDimensionalArray to a list
of elements.

a := oneDimensionalArray [1, -7, 3, 3/2]

(8)

[

1, −7, 3,
3

2

]

OneDimensionalArray(Fraction(Integer))

One-dimensional arrays are also mutable: you can change their constituent elements “in place.”

a.3 := 11; a

(9)

[

1, −7, 11,
3

2

]

OneDimensionalArray(Fraction(Integer))

However, one-dimensional arrays are not flexible structures. You cannot destructively concat! them
together.

concat !(a,oneDimensionalArray [1,-2])

There are 5 exposed and 0 unexposed library operations named concat !

having 2 argument (s) but none was determined to be applicable .

Use HyperDoc Browse , or issue

)display op concat !

to learn more about the available operations . Perhaps

package -calling the operation or using coercions on the arguments

will allow you to apply the operation .

Cannot find a definition or applicable library operation named

concat ! with argument type(s)

OneDimensionalArray (Fraction (Integer ))

OneDimensionalArray(Integer )

Perhaps you should use "@" to indicate the required return type ,

or "$" to specify which version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vectors are mathematical
structures implemented by one-dimensional arrays), String (arrays of “characters,” represented by
byte vectors), and Bits (represented by “bit vectors”).

A vector of 32 bits, each representing the Boolean value true.

8See ‘OneDimensionalArray’ on page 646 for details.
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bits(32, true)

(10)"11111111111111111111111111111111"

Bits

A flexible array is a cross between a list and a one-dimensional array.9 Like a one-dimensional array,
a flexible array occupies a fixed block of storage. Its block of storage, however, has room to expand!
When it gets full, it grows (a new, larger block of storage is allocated); when it has too much room, it
contracts.

Create a flexible array of three elements.

f := flexibleArray [2, 7, -5]

(11)[2, 7, −5]

FlexibleArray ( Integer )

Insert some elements between the second and third elements.

insert !( flexibleArray [11, -3],f,3)

(12)[2, 7, 11, −3, −5]

FlexibleArray ( Integer )

Flexible arrays are used to implement “heaps.” A heap is an example of a data structure called a
priority queue, where elements are ordered with respect to one another.10 A heap is organized so as to
optimize insertion and extraction of maximum elements. The extract! operation returns the maximum
element of the heap, after destructively removing that element and reorganizing the heap so that the
next maximum element is ready to be delivered.

An easy way to create a heap is to apply the operation heap to a list of values.

h := heap [-4,7,11,3,4,-7]

(13)[11, 7, −4, 3, 4, −7]

9See ‘FlexibleArray’ on page 506 for details.
10See ‘Heap’ on page 537 for more details. Heaps are also examples of data structures called bags. Other bag data

structures are Stack, Queue, and Dequeue.
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Heap(Integer)

This loop extracts elements one-at-a-time from h until the heap is exhausted, returning the elements
as a list in the order they were extracted.

[extract !(h) while not empty ?(h)]

(14)[11, 7, 4, 3, −4, −7]

List ( Integer )

A binary tree is a “tree” with at most two branches per node: it is either empty, or else is a node
consisting of a value, and a left and right subtree (again, binary trees).11

A binary search tree is a binary tree such that, for each node, the value of the node is greater than all
values (if any) in the left subtree, and less than or equal all values (if any) in the right subtree.

binarySearchTree [5,3,2,9,4,7,11]

(15)[[2, 3, 4] , 5, [7, 9, 11]]

BinarySearchTree( PositiveInteger )

A balanced binary tree is useful for doing modular computations. Given a list lm of moduli, modTree(
a,lm) produces a balanced binary tree with the values a mod m at its leaves.

modTree (8,[2,3,5,7])

(16)[0, 2, 3, 1]

List ( Integer )

A set is a collection of elements where duplication and order is irrelevant.12 Sets are always finite and
have no corresponding structure like streams for infinite collections.

Create sets by using the set function.

fs := set [1/3 ,4/5 , -1/3 ,4/5]

11Example of binary tree types are BinarySearchTree (see ‘BinarySearchTree’ on page 414, PendantTree, Tour-
namentTree, and BalancedBinaryTree (see ‘BalancedBinaryTree’ on page 405).

12See ‘Set’ on page 713 for more details.
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(17)

{

−1

3
,
1

3
,
4

5

}

Set(Fraction ( Integer ))

A multiset is a set that keeps track of the number of duplicate values.13 For all the primes p between
2 and 1000, find the distribution of p mod 5.

multiset [x rem 5 for x in primes (2 ,1000)]

(18){47 : 2, 42 : 3, 0, 40 : 1, 38 : 4}

Multiset ( Integer )

A table is conceptually a set of “key–value” pairs and is a generalization of a multiset.14 The domain
Table(Key, Entry) provides a general-purpose type for tables with values of type Entry indexed by
keys of type Key.

Compute the above distribution of primes using tables. First, let t denote an empty table of keys and
values, each of type Integer.

t : Table (Integer ,Integer ) := empty ()

(19)table()

Table( Integer , Integer )

We define a function howMany to return the number of values of a given modulus k seen so far. It
calls search(k,t) which returns the number of values stored under the key k in table t, or "failed"
if no such value is yet stored in t under k.

In English, this says “Define howMany(k) as follows. First, let n be the value of search(k, t). Then, if
n has the value ”failed”, return the value 1; otherwise return n+ 1.”

howMany (k) == (n:= search (k,t); n case "failed " => 1; n+1)

Run through the primes to create the table, then print the table. The expression t.m := howMany(m)

updates the value in table t stored under key m.

for p in primes (2 ,1000) repeat (m:= p rem 5; t.m:= howMany (m)); t

Compiling function howMany with type Integer -> Integer

13See ‘Multiset’ on page 637 for details.
14For examples of tables, see AssociationList (‘AssociationList’ on page 403), HashTable, KeyedAccessFile

(‘KeyedAccessFile’ on page 562), Library (‘Library’ on page 583), SparseTable (‘SparseTable’ on page 719),
StringTable (‘StringTable’ on page 738), and Table (‘Table’ on page 743).
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(21)table(4 = 38, 1 = 40, 0 = 1, 3 = 42, 2 = 47)

Table( Integer , Integer )

A record is an example of an inhomogeneous collection of objects.15 A record consists of a set of named
selectors that can be used to access its components.

Declare that daniel can only be assigned a record with two prescribed fields.

daniel : Record (age : Integer , salary : Float)

Give daniel a value, using square brackets to enclose the values of the fields.

daniel := [28, 32005.12]

(23)[age = 28, salary = 32005.12]

Record(age: Integer , salary : Float)

Give daniel a raise.

daniel .salary := 35000; daniel

(24)[age = 28, salary = 35000.0]

Record(age: Integer , salary : Float)

A union is a data structure used when objects have multiple types.16

Let dog be either an integer or a string value.

dog : Union(licenseNumber: Integer , name: String )

Give dog a name.

dog := "Whisper "

(26)"Whisper"

15See Section 2.4 on page 88 for details.
16See Section 2.5 on page 92 for details.
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Union(name: String, ...)

All told, there are over forty different data structures in FriCAS. Using the domain constructors
described in Chapter 13, you can add your own data structure or extend an existing one. Choosing
the right data structure for your application may be the key to obtaining good performance.

1.7 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates with elements that
are themselves aggregates, for example, lists of lists, one-dimensional arrays of lists of multisets, and
so on. For applications requiring two-dimensional homogeneous aggregates, you will likely find two-
dimensional arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type, except that those
for Matrix must belong to a Ring. You create and access elements in roughly the same way. Since
matrices have an understood algebraic structure, certain algebraic operations are available for matrices
but not for arrays. Because of this, we limit our discussion here to Matrix, that can be regarded as
an extension of TwoDimensionalArray.17

You can create a matrix from a list of lists, where each of the inner lists represents a row of the matrix.

m := matrix ([[1,2], [3 ,4]])

(1)

[

1 2
3 4

]

Matrix( Integer )

The “collections” construct (see Section 5.5 on page 164) is useful for creating matrices whose entries
are given by formulas.

matrix ([[1/( i + j - x) for i in 1..4] for j in 1..4])

(2)









− 1
x−2

− 1
x−3

− 1
x−4

− 1
x−5

− 1
x−3

− 1
x−4

− 1
x−5

− 1
x−6

− 1
x−4

− 1
x−5

− 1
x−6

− 1
x−7

− 1
x−5

− 1
x−6

− 1
x−7

− 1
x−8









17See ‘TwoDimensionalArray’ on page 750 for more information about arrays. For more information about FriCAS’s
linear algebra facilities, see ‘Matrix’ on page 627, ‘Permanent’ on page 665, ‘SquareMatrix’ on page 727, ‘Vector’ on page
765, Section 8.4 on page 307 (computation of eigenvalues and eigenvectors) , and Section 8.5 on page 310 (solution of
linear and polynomial equations) .
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Matrix(Fraction (Polynomial( Integer )))

Let vm denote the three by three Vandermonde matrix.

vm := matrix [[1,1,1], [x,y,z], [x*x,y*y,z*z]]

(3)





1 1 1
x y z

x2 y2 z2





Matrix(Polynomial( Integer ))

Use this syntax to extract an entry in the matrix.

vm(3,3)

(4)z
2

Polynomial( Integer )

You can also pull out a row or a column.

column (vm ,2)

(5)
[

1, y, y2
]

Vector(Polynomial( Integer ))

You can do arithmetic.

vm * vm

(6)





x2 + x+ 1 y2 + y + 1 z2 + z + 1
x2 z + x y + x y2 z + y2 + x z3 + y z + x

x2 z2 + x y2 + x2 y2 z2 + y3 + x2 z4 + y2 z + x2





Matrix(Polynomial( Integer ))

You can perform operations such as transpose, trace, and determinant.

factor determinant vm
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(7)(y − x) (z − y) (z − x)

Factored(Polynomial( Integer ))

1.8 Writing Your Own Functions

FriCAS provides you with a very large library of predefined operations and objects to compute with.
You can use the FriCAS library of constructors to create new objects dynamically of quite arbitrary
complexity. For example, you can make lists of matrices of fractions of polynomials with complex
floating point numbers as coefficients. Moreover, the library provides a wealth of operations that allow
you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some FriCAS programs
to tackle your application. FriCAS allows you to write functions interactively, thereby effectively
extending the system library. Here we give a few simple examples, leaving the details to Chapter 6.

We begin by looking at several ways that you can define the “factorial” function in FriCAS. The first way
is to give a piece-wise definition of the function. This method is best for a general recurrence relation
since the pieces are gathered together and compiled into an efficient iterative function. Furthermore,
enough previously computed values are automatically saved so that a subsequent call to the function
can pick up from where it left off.

Define the value of fact at 0.

fact (0) == 1

Define the value of fact(n) for general n.

fact(n) == n*fact(n-1)

Ask for the value at 50. The resulting function created by FriCAS computes the value by iteration.

fact (50)

Compiling function fact with type Integer -> Integer

Compiling function fact as a recurrence relation .

(3)30414093201713378043612608166064768844377641568960512000000000000

PositiveInteger

A second definition uses an if-then-else and recursion.

fac (n) == if n < 3 then n else n * fac (n - 1)

This function is less efficient than the previous version since each iteration involves a recursive function
call.
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fac (50)

Compiling function fac with type Integer -> Integer

(5)30414093201713378043612608166064768844377641568960512000000000000

PositiveInteger

A third version directly uses iteration.

fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)

This is the least space-consumptive version.

fa(50)

Compiling function fa with type PositiveInteger -> PositiveInteger

(7)30414093201713378043612608166064768844377641568960512000000000000

PositiveInteger

A final version appears to construct a large list and then reduces over it with multiplication.

f(n) == reduce (*,[i for i in 2..n])

In fact, the resulting computation is optimized into an efficient iteration loop equivalent to that of the
third version.

f(50)

Compiling function f with type PositiveInteger -> PositiveInteger

(9)30414093201713378043612608166064768844377641568960512000000000000

PositiveInteger

The library version uses an algorithm that is different from the four above because it highly optimizes
the recurrence relation definition of factorial.

factorial (50)

(10)30414093201713378043612608166064768844377641568960512000000000000
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PositiveInteger

You are not limited to one-line functions in FriCAS. If you place your function definitions in .input
files (see Section 4.1 on page 121), you can have multi-line functions that use indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those elements down the diagonal.
This function uses a permutation matrix that interchanges the ith and jth rows of a matrix by which
it is right-multiplied.

This function definition shows a style of definition that can be used in .input files. Indentation is used
to create blocks: sequences of expressions that are evaluated in sequence except as modified by control
statements such as if-then-else and return.

permMat (n, i, j) ==

m := diagonalMatrix

[(if i = k or j = k then 0 else 1)

for k in 1.. n]

m(i,j) := 1

m(j,i) := 1

m

This creates a four by four matrix that interchanges the second and third rows.

p := permMat (4,2,3)

Compiling function permMat with type (PositiveInteger ,

PositiveInteger , PositiveInteger) -> Matrix ( NonNegativeInteger)

(12)









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









Matrix(NonNegativeInteger)

Create an example matrix to permute.

m := matrix [[4*i + j for j in 1..4] for i in 0..3]

(13)









1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16









Matrix(NonNegativeInteger)

Interchange the second and third rows of m.

permMat (4,2,3) * m
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(14)









1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16









Matrix(NonNegativeInteger)

A function can also be passed as an argument to another function, which then applies the function or
passes it off to some other function that does. You often have to declare the type of a function that
has functional arguments.

This declares t to be a two-argument function that returns a Float. The first argument is a function
that takes one Float argument and returns a Float.

t : (Float -> Float , Float) -> Float

This is the definition of t.

t(fun , x) == fun(x)^2 + sin(x)^2

We have not defined a cos in the workspace. The one from the FriCAS library will do.

t(cos , 5.2058)

Compiling function t with type (( Float -> Float ), Float) -> Float

(17)1.0

Float

Here we define our own (user-defined) function.

cosinv (y) == cos (1/y)

Pass this function as an argument to t.

t(cosinv , 5.2058)

Compiling function cosinv with type Float -> Float

(19)1.739223724180051649254147684772932520785

Float
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FriCAS also has pattern matching capabilities for simplification of expressions and for defining new
functions by rules. For example, suppose that you want to apply regularly a transformation that groups
together products of radicals: √

a
√
b 7→
√
ab, (∀a)(∀b)

Note that such a transformation is not generally correct. FriCAS never uses it automatically.

Give this rule the name groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

(20)%C
√
a
√
b == %C

√
a b

RewriteRule( Integer , Integer , Expression( Integer ))

Here is a test expression.

a := (sqrt(x) + sqrt(y) + sqrt(z))^4

(

(4 z + 4 y + 12x)
√
y + (4 z + 12 y + 4x)

√
x
)√

z+(12 z + 4 y + 4x)
√
x
√
y+z

2+(6 y + 6 x) z+y
2+6x y+x

2

(21)

Expression( Integer )

The rule groupSqrt successfully simplifies the expression.

groupSqrt a

(4 z + 4 y + 12 x)
√
y z + (4 z + 12 y + 4x)

√
x z + (12 z + 4 y + 4x)

√
x y + z

2 + (6 y + 6x) z + y
2 + 6x y + x

2

(22)

Expression( Integer )

1.9 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation. Interactive users of
FriCAS generally only see one type of polynomial: Polynomial(R). This type represents polynomials
in any number of unspecified variables over a particular coefficient domain R. This type represents its
coefficients sparsely: only terms with non-zero coefficients are represented.

In building applications, many other kinds of polynomial representations are useful. Polynomials may
have one variable or multiple variables, the variables can be named or unnamed, the coefficients can
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be stored sparsely or densely. So-called “distributed multivariate polynomials” store polynomials as
coefficients paired with vectors of exponents. This type is particularly efficient for use in algorithms
for solving systems of non-linear polynomial equations.

The polynomial constructor most familiar to the interactive user is Polynomial.

(x^2 - x*y^3 +3*y)^2

(1)x
2
y
6 − 6x y

4 − 2x3
y
3 + 9 y2 + 6x2

y + x
4

Polynomial( Integer )

If you wish to restrict the variables used, UnivariatePolynomial provides polynomials in one variable.

p: UP(x,INT) := (3*x-1) ^2 * (2*x + 8)

(2)18 x3 + 60x2 − 46 x+ 8

UnivariatePolynomial (x, Integer )

The constructor MultivariatePolynomial provides polynomials in one or more specified variables.

m: MPOLY ([x,y],INT ) := (x^2-x*y^3+3* y)^2

(3)x
4 − 2 y3

x
3 +

(

y
6 + 6 y

)

x
2 − 6 y4

x+ 9 y2

MultivariatePolynomial ([ x, y ], Integer )

You can change the way the polynomial appears by modifying the variable ordering in the explicit
list.

m :: MPOLY ([y,x],INT)

(4)x
2
y
6 − 6x y

4 − 2x3
y
3 + 9 y2 + 6x2

y + x
4

MultivariatePolynomial ([ y, x ], Integer )

The constructorDistributedMultivariatePolynomial provides polynomials in one or more specified
variables with the monomials ordered lexicographically.

m :: DMP ([y,x],INT )
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(5)y
6
x
2 − 6 y4

x− 2 y3
x
3 + 9 y2 + 6 y x2 + x

4

DistributedMultivariatePolynomial ([ y, x ], Integer )

The constructor HomogeneousDistributedMultivariatePolynomial is similar except that the
monomials are ordered by total order refined by reverse lexicographic order.

m :: HDMP ([y,x],INT)

(6)y
6
x
2 − 2 y3

x
3 − 6 y4

x+ x
4 + 6 y x2 + 9 y2

HomogeneousDistributedMultivariatePolynomial([y, x ], Integer )

More generally, the domain constructor GeneralDistributedMultivariatePolynomial allows the
user to provide an arbitrary predicate to define his own term ordering. These last three constructors
are typically used in Gröbner basis applications and when a flat (that is, non-recursive) display is
wanted and the term ordering is critical for controlling the computation.

1.10 Limits

FriCAS’s limit function is usually used to evaluate limits of quotients where the numerator and de-
nominator both tend to zero or both tend to infinity. To find the limit of an expression f as a real
variable x tends to a limit value a, enter limit(f, x=a). Use complexLimit if the variable is complex.
Additional information and examples of limits are in Section 8.6 on page 317.

You can take limits of functions with parameters.

g := csc(a*x) / csch(b*x)

(1)
csc(a x)

csch(b x)

Expression( Integer )

As you can see, the limit is expressed in terms of the parameters.

limit(g,x=0)

(2)
b

a
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Union(OrderedCompletion(Expression(Integer)) , ...)

A variable may also approach plus or minus infinity:

h := (1 + k/x)^x

(3)

(

x+ k

x

)x

Expression( Integer )

Use %plusInfinity and %minusInfinity to denote ∞ and −∞.

limit(h,x=% plusInfinity)

(4)e
k

Union(OrderedCompletion(Expression(Integer)) , ...)

A function can be defined on both sides of a particular value, but may tend to different limits as its
variable approaches that value from the left and from the right.

limit(sqrt(y^2) /y,y = 0)

(5)[leftHandLimit = −1, rightHandLimit = 1]

Union(Record(leftHandLimit: Union(OrderedCompletion(Expression(Integer)) , ” failed ”) , rightHandLimit: Union(

OrderedCompletion(Expression(Integer)) , ” failed ”)) , ...)

As x approaches 0 along the real axis, exp(-1/x^2) tends to 0.

limit(exp (-1/x^2) ,x = 0)

(6)0

Union(OrderedCompletion(Expression(Integer)) , ...)

However, if x is allowed to approach 0 along any path in the complex plane, the limiting value of
exp(-1/x^2) depends on the path taken because the function has an essential singularity at x=0. This
is reflected in the error message returned by the function.

complexLimit(exp (-1/x^2) ,x = 0)
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(7)"failed"

Union(” failed ”, ...)

1.11 Series

FriCAS also provides power series. By default, FriCAS tries to compute and display the first ten
elements of a series. Use )set streams calculate to change the default value to something else. For
the purposes of this book, we have used this system command to display fewer than ten terms. For
more information about working with series, see Section 8.9 on page 326.

You can convert a functional expression to a power series by using the operation series. In this example,
sin(a*x) is expanded in powers of (x - 0), that is, in powers of x.

series (sin(a*x),x = 0)

(1)a x− a3

6
x
3 +

a5

120
x
5 − a7

5040
x
7 +O

(

x
9)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

This expression expands sin(a*x) in powers of (x - %pi/4).

series (sin(a*x),x = %pi/4)

(2)

sin
(

a π

4

)

+ a cos
(

a π

4

)(

x− π

4

)

− a2 sin
(

aπ
4

)

2

(

x− π

4

)2

− a3 cos
(

aπ
4

)

6

(

x− π

4

)3

+
a4 sin

(

aπ
4

)

24

(

x− π

4

)4

+
a5 cos

(

aπ
4

)

120

(

x− π

4

)5

− a6 sin
(

aπ
4

)

720

(

x− π

4

)6

− a7 cos
(

aπ
4

)

5040

(

x− π

4

)7

+O

(

(

x− π

4

)8
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, %pi/4)

FriCAS provides Puiseux series: series with rational number exponents. The first argument to series
is an in-place function that computes the nth coefficient. (Recall that the “+->” is an infix operator
meaning “maps to.”)

series (n +-> (-1) ^((3*n - 4)/6)/factorial (n - 1/3) ,x = 0 ,4/3.. ,2)
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(3)x
4

3 − 1

6
x

10

3 +O
(

x
4)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

Once you have created a power series, you can perform arithmetic operations on that series. We
compute the Taylor expansion of 1/(1-x).

f := series (1/(1 - x),x = 0)

(4)1 + x+ x
2 + x

3 + x
4 + x

5 + x
6 + x

7 +O
(

x
8)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

Compute the square of the series.

f ^ 2

(5)1 + 2x+ 3x2 + 4x3 + 5x4 + 6 x5 + 7x6 + 8x7 +O
(

x
8
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

The usual elementary functions (log, exp, trigonometric functions, and so on) are defined for power
series.

f := series (1/(1 - x),x = 0)

(6)1 + x+ x
2 + x

3 + x
4 + x

5 + x
6 + x

7 +O
(

x
8
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

g := log(f)

(7)x+
1

2
x
2 +

1

3
x
3 +

1

4
x
4 +

1

5
x
5 +

1

6
x
6 +

1

7
x
7 +

1

8
x
8 +O

(

x
9
)
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UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

exp (g)

(8)1 + x+ x
2 + x

3 + x
4 + x

5 + x
6 + x

7 +O
(

x
8)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

Here is a way to obtain numerical approximations of e from the Taylor series expansion of exp(x).
First create the desired Taylor expansion.

f := taylor (exp (x))

(9)1 + x+
1

2
x
2 +

1

6
x
3 +

1

24
x
4 +

1

120
x
5 +

1

720
x
6 +

1

5040
x
7 +O

(

x
8
)

UnivariateTaylorSeries (Expression( Integer ) , x, 0)

Evaluate the series at the value 1.0. As you see, you get a sequence of partial sums.

eval(f ,1.0)

(10)
[1.0, 2.0, 2.5, 2.666666666666666666666666666666666666667,

2.708333333333333333333333333333333333333, 2.716666666666666666666666666666666666667,

2.718055555555555555555555555555555555556, . . .]

Stream(Expression(Float))

1.12 Derivatives

Use the FriCAS function D to differentiate an expression.

To find the derivative of an expression f with respect to a variable x, enter D(f, x).

f := exp exp x
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(1)e
ex

Expression( Integer )

D(f, x)

(2)e
x
e
ex

Expression( Integer )

An optional third argument n in D asks FriCAS for the nth derivative of f. This finds the fourth
derivative of f with respect to x.

D(f, x, 4)

(3)
(

(ex)4 + 6 (ex)3 + 7 (ex)2 + e
x
)

e
ex

Expression( Integer )

You can also compute partial derivatives by specifying the order of differentiation.

g := sin(x^2 + y)

(4)sin
(

y + x
2)

Expression( Integer )

D(g, y)

(5)cos
(

y + x
2)

Expression( Integer )

D(g, [y, y, x, x])
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(6)4x2 sin
(

y + x
2
)

− 2 cos
(

y + x
2
)

Expression( Integer )

FriCAS can manipulate the derivatives (partial and iterated) of expressions involving formal operators.
All the dependencies must be explicit. This returns 0 since F (so far) does not explicitly depend on
x.

D(F,x)

(7)0

Polynomial( Integer )

Suppose that we have F a function of x, y, and z, where x and y are themselves functions of z. Start
by declaring that F, x, and y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

(8)y

BasicOperator

You can use F, x, and y in expressions.

a := F(x z, y z, z^2) + x y(z+1)

(9)x(y(z + 1)) + F
(

x(z), y(z), z2
)

Expression( Integer )

Differentiate formally with respect to z. The formal derivatives appearing in dadz are not just formal
symbols, but do represent the derivatives of x, y, and F.

dadz := D(a, z)

(10)2 z F,3

(

x(z), y(z), z2
)

+ y
′(z)F,2

(

x(z), y(z), z2
)

+ x
′(z)F,1

(

x(z), y(z), z2
)

+ x
′(y(z + 1)) y′(z + 1)
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Expression( Integer )

You can evaluate the above for particular functional values of F, x, and y. If x(z) is exp(z) and y(z)

is log(z+1), then this evaluates dadz.

eval(eval(dadz , ’x, z +-> exp z), ’y, z +-> log (z+1))

(11)

(

2 z2 + 2 z
)

F,3

(

ez, log(z + 1), z2
)

+ F,2

(

ez, log(z + 1), z2
)

+ (z + 1) ez F,1

(

ez, log(z + 1), z2
)

+ z + 1

z + 1

Expression( Integer )

You obtain the same result by first evaluating a and then differentiating.

eval(eval(a, ’x, z +-> exp z), ’y, z +-> log (z+1))

(12)F
(

e
z
, log(z + 1), z2

)

+ z + 2

Expression( Integer )

D(%, z)

(13)

(

2 z2 + 2 z
)

F,3

(

ez, log(z + 1), z2
)

+ F,2

(

ez, log(z + 1), z2
)

+ (z + 1) ez F,1

(

ez, log(z + 1), z2
)

+ z + 1

z + 1

Expression( Integer )

1.13 Integration

FriCAS has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors into a quadratic and
a quartic irreducible polynomial. The usual partial fraction approach used by most other computer
algebra systems either fails or introduces expensive unneeded algebraic numbers.

We use a factorization-free algorithm.

integrate ((x^2+2*x+1) /(( x+1) ^6+1) ,x)
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(1)
arctan

(

x3 + 3x2 + 3 x+ 1
)

3

Union(Expression( Integer ) , ...)

When real parameters are present, the form of the integral can depend on the signs of some expressions.

Rather than query the user or make sign assumptions, FriCAS returns all possible answers.

integrate (1/(x^2 + a),x)

(2)









log

(

(x2−a)
√
−a+2 a x

x2+a

)

2
√
−a

,
arctan

(

x
√

a

a

)

√
a









Union(List(Expression( Integer )) , ...)

The integrate operation generally assumes that all parameters are real. The only exception is when
the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined and there is a unique
answer. You can request this answer by “prepending” the word “complex” to the command name:

complexIntegrate (1/(x^2 + a),x)

(3)

√

− 1
a
log
(

a
√

− 1
a
+ x
)

−
√

− 1
a
log
(

−a
√

− 1
a
+ x
)

2

Expression( Integer )

The following two examples illustrate the limitations of table-based approaches. The two integrands
are very similar, but the answer to one of them requires the addition of two new algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is much more complicated.

integrate (x^3 / (a+b*x)^(1/3) ,x)

(4)

(

120 b3 x3 − 135 a b2 x2 + 162 a2 b x− 243 a3
)

3
√
b x+ a

2

440 b4
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Union(Expression( Integer ) , ...)

Only an algorithmic approach is guaranteed to find what new constants must be added in order to find
a solution.

integrate (1 / (x^3 * (a+b*x)^(1/3) ),x)

(5)

−2 b2 x2
√
3 log

(

3
√
a

3
√
b x+ a

2
+ 3

√
a
2 3
√
b x+ a+ a

)

+ 4 b2 x2
√
3 log

(

3
√
a
2 3
√
b x+ a− a

)

+ 12 b2 x2 arctan

(

2
√

3
3
√
a
2 3
√
b x+ a+a

√
3

3 a

18 a2 x2
√
3 3
√
a

Union(Expression( Integer ) , ...)

Some computer algebra systems use heuristics or table-driven approaches to integration. When these
systems cannot determine the answer to an integration problem, they reply “I don’t know.” FriCAS
uses a algorithm for integration. that conclusively proves that an integral cannot be expressed in terms
of elementary functions.

When FriCAS returns an integral sign, it has proved that no answer exists as an elementary function.

integrate (log (1 + sqrt(a*x + b)) / x,x)

(6)

∫ x log
(√

b+%Da+ 1
)

%D
d%D

Union(Expression( Integer ) , ...)

FriCAS can handle complicated mixed functions much beyond what you can find in tables. Whenever
possible, FriCAS tries to express the answer using the functions present in the integrand.

integrate ((sinh (1+ sqrt(x+b))+2* sqrt(x+b)) / (sqrt(x+b) * (x + cosh (1+ sqrt(x + b)))), x)

(7)2 log

(

−2 cosh
(√

x+ b+ 1
)

− 2x

sinh
(√

x+ b+ 1
)

− cosh
(√

x+ b+ 1
)

)

− 2
√
x+ b

Union(Expression( Integer ) , ...)

A strong structure-checking algorithm in FriCAS finds hidden algebraic relationships between func-
tions.

integrate (tan(atan(x)/3) ,x)
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(8)

8 log

(

3
(

tan
(

arctan(x)
3

))2

− 1

)

− 3
(

tan
(

arctan(x)
3

))2

+ 18 x tan
(

arctan(x)
3

)

18

Union(Expression( Integer ) , ...)

The discovery of this algebraic relationship is necessary for correct integration of this function. Here
are the details:

1. If x = tan t and g = tan(t/3) then the following algebraic relation is true:

g3 − 3xg2 − 3g + x = 0

2. Integrate g using this algebraic relation; this produces:

(24g2 − 8) log(3g2 − 1) + (81x2 + 24)g2 + 72xg − 27x2 − 16

54g2 − 18

3. Rationalize the denominator, producing:

8 log(3g2 − 1)− 3g2 + 18xg + 16

18

Replace g by the initial definition g = tan(arctan(x)/3) to produce the final result.

This is an example of a mixed function where the algebraic layer is over the transcendental one.

integrate ((x + 1) / (x*(x + log x) ^ (3/2)), x)

(9)− 2
√

log(x) + x

log(x) + x

Union(Expression( Integer ) , ...)

While incomplete for non-elementary functions, FriCAS can handle some of them.

integrate (exp(-x^2) * erf(x) / (erf (x)^3 - erf(x)^2 - erf(x) + 1),x)

(10)
(erf(x)− 1)

√
π log

(

erf(x)−1
erf(x)+1

)

− 2
√
π

8 erf(x)− 8
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Union(Expression( Integer ) , ...)

More examples of FriCAS’s integration capabilities are discussed in Section 8.8 on page 322.

1.14 Differential Equations

The general approach used in integration also carries over to the solution of linear differential equations.

Let’s solve some differential equations. Let y be the unknown function in terms of x.

y := operator ’y

(1)y

BasicOperator

Here we solve a third order equation with polynomial coefficients.

deq := x^3 * D(y x, x, 3) + x^2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y x = 2 * x^4

(2)x
3
y
′′′(x) + x

2
y
′′(x)− 2x y′(x) + 2 y(x) = 2x4

Equation(Expression( Integer ))

solve(deq , y, x)

(3)

[

particular =
x5 − 10 x3 + 20 x2 + 4

15x
, basis =

[

2 x3 − 3x2 + 1

x
,
x3 − 1

x
,
x3 − 3x2 − 1

x

]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

Here we find all the algebraic function solutions of the equation.

deq := (x^2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0

(4)
(

x
2 + 1

)

y
′′(x) + 3 x y′(x) + y(x) = 0
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Equation(Expression( Integer ))

solve(deq , y, x)

(5)

[

particular = 0, basis =

[

1√
x2 + 1

,
log
(√

x2 + 1− x
)

√
x2 + 1

]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

Coefficients of differential equations can come from arbitrary constant fields. For example, coefficients
can contain algebraic numbers.

This example has solutions whose logarithmic derivative is an algebraic function of degree two.

eq := 2*x^3 * D(y x,x,2) + 3*x^2 * D(y x,x) - 2 * y x

(6)2x3
y
′′(x) + 3x2

y
′(x)− 2 y(x)

Expression( Integer )

solve(eq,y,x).basis

(7)
[

e
− 2√

x , e
2√
x

]

List (Expression( Integer ))

Here’s another differential equation to solve.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

(8)y
′(x) =

y(x)

y(x) log(y(x)) + x

Equation(Expression( Integer ))

solve(deq , y, x)
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(9)
y(x) (log(y(x)))2 − 2x

2 y(x)

Union(Expression( Integer ) , ...)

Rather than attempting to get a closed form solution of a differential equation, you instead might want
to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in power series. Tell FriCAS
that x is also an operator.

x := operator ’x

(10)x

BasicOperator

Here are the two equations forming our system.

eq1 := D(x(t), t) = 1 + x(t)^2

(11)x
′(t) = x(t)2 + 1

Equation(Expression( Integer ))

eq2 := D(y(t), t) = x(t) * y(t)

(12)y
′(t) = x(t) y(t)

Equation(Expression( Integer ))

We can solve the system around t = 0 with the initial conditions x(0) = 0 and y(0) = 1. Notice
that since we give the unknowns in the order [x, y], the answer is a list of two series in the order
[series for x(t), series for y(t)].

seriesSolve ([eq2 , eq1 ], [x, y], t = 0, [y(0) = 1, x(0) = 0])

Compiling function %JL with type List( UnivariateTaylorSeries (

Expression (Integer ),t ,0)) -> UnivariateTaylorSeries (Expression (

Integer ),t ,0)

Compiling function %JM with type List( UnivariateTaylorSeries (

Expression (Integer ),t ,0)) -> UnivariateTaylorSeries (Expression (

Integer ),t ,0)
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(13)

[

t+
1

3
t
3 +

2

15
t
5 +

17

315
t
7 +O

(

t
8)
, 1 +

1

2
t
2 +

5

24
t
4 +

61

720
t
6 +O

(

t
8)
]

List ( UnivariateTaylorSeries (Expression( Integer ) , t , 0))

1.15 Solution of Equations

FriCAS also has state-of-the-art algorithms for the solution of systems of polynomial equations. When
the number of equations and unknowns is the same, and you have no symbolic coefficients, you can use
solve for real roots and complexSolve for complex roots. In each case, you tell FriCAS how accurate
you want your result to be. All operations in the solve family return answers in the form of a list of
solution sets, where each solution set is a list of equations.

A system of two equations involving a symbolic parameter t.

S(t) == [x^2-2* y^2 - t,x*y-y-5*x + 5]

Find the real roots of S(19) with rational arithmetic, correct to within 1/1020.

solve(S(19) ,1/10^20)

Compiling function S with type PositiveInteger -> List(Polynomial (

Integer ))

(2)

[[

y = 5, x = −80336736493669365924189585

9671406556917033397649408

]

,

[

y = 5, x =
80336736493669365924189585

9671406556917033397649408

]]

List ( List (Equation(Polynomial(Fraction( Integer )))))

Find the complex roots of S(19) with floating point coefficients to 20 digits accuracy in the mantissa.

complexSolve(S(19) ,10.e -20)

(3)
[[y = 5.0, x = 8.306623862918074852584262744905695155698151691481840582865006639146088] ,

[y = 5.0, x = −8.306623862918074852584262744905695155698] ,

[y = −3.0 i, x = 1.0] , [y = 3.0 i, x = 1.0]]

List ( List (Equation(Polynomial(Complex(Float)))))

If a system of equations has symbolic coefficients and you want a solution in radicals, try radicalSolve.

radicalSolve(S(a) ,[x,y])
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Compiling function S with type Variable (a) -> List(Polynomial (

Integer ))

(4)

[

[

x = −
√
a+ 50, y = 5

]

,
[

x =
√
a+ 50, y = 5

]

,

[

x = 1, y =

√

−a+ 1

2

]

,

[

x = 1, y = −
√

−a+ 1

2

]]

List ( List (Equation(Expression( Integer ))))

For systems of equations with symbolic coefficients, you can apply solve, listing the variables that you
want FriCAS to solve for. For polynomial equations, a solution cannot usually be expressed solely in
terms of the other variables. Instead, the solution is presented as a “triangular” system of equations,
where each polynomial has coefficients involving only the succeeding variables. This is analogous to
converting a linear system of equations to “triangular form”. A system of three equations in five
variables.

eqns := [x^2 - y + z,x^2*z + x^4 - b*y, y^2 *z - a - b*x]

(5)
[

z − y + x
2
, x

2
z − b y + x

4
, y

2
z − b x− a

]

List (Polynomial( Integer ))

Solve the system for unknowns [x, y, z], reducing the solution to triangular form.

solve(eqns ,[x,y,z])

(6)

[[

x = −a

b
, y = 0, z = −a2

b2

]

,

[

x =
z3 + 2 b z2 + b2 z − a

b
, y = z + b,

z
6 + 4 b z5 + 6 b2 z4 +

(

4 b3 − 2 a
)

z
3 +

(

b
4 − 4 a b

)

z
2 − 2 a b2 z − b

3 + a
2 = 0

]]

List ( List (Equation(Fraction(Polynomial( Integer )))))

1.16 System Commands

We conclude our tour of FriCAS with a brief discussion of system commands. System commands are
special statements that start with a closing parenthesis (“)”). They are used to control or display your
FriCAS environment, start the HyperDoc system, issue operating system commands and leave FriCAS.
For example, )system is used to issue commands to the operating system from FriCAS. Here is a brief
description of some of these commands. For more information on specific commands, see Appendix A.
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Perhaps the most important user command is the )clear all command that initializes your envi-
ronment. Every section and subsection in this book has an invisible )clear all that is read prior
to the examples given in the section. )clear all gives you a fresh, empty environment with no user
variables defined and the step number reset to 1. The )clear command can also be used to selectively
clear values and properties of system variables.

Another useful system command is )read. A preferred way to develop an application in FriCAS is to
put your interactive commands into a file, say my.input file. To get FriCAS to read this file, you use
the system command )read my.input. If you need to make changes to your approach or definitions,
go into your favorite editor, change my.input, then )read my.input again.

Other system commands include: )history, to display previous input and/or output lines; )display,
to display properties and values of workspace variables; and )what.

Issue )what to get a list of FriCAS objects that contain a given substring in their name.

)what operations integrate

Operations whose names satisfy the above pattern (s):

HermiteIntegrate algintegrate complexIntegrate

expintegrate fintegrate infieldIntegrate

integrate integrateIfCan integrate_sols

internalIntegrate internalIntegrate0 lambintegrate

lazyGintegrate lazyIntegrate lfintegrate

monomialIntegrate palgintegrate pmintegrate

primintegrate

To get more information about an operation such as integrate ,

issue the command )display op integrate

A useful system command is )undo. Sometimes while computing interactively with FriCAS, you make
a mistake and enter an incorrect definition or assignment. Or perhaps you need to try one of several
alternative approaches, one after another, to find the best way to approach an application. For this,
you will find the undo facility of FriCAS helpful.

System command )undo n means “undo back to step n”; it restores the values of user variables to
those that existed immediately after input expression n was evaluated. Similarly, )undo -n undoes
changes caused by the last n input expressions. Once you have done an )undo, you can continue on
from there, or make a change and redo all your input expressions from the point of the )undo forward.
The )undo is completely general: it changes the environment like any user expression. Thus you can
)undo any previous undo.

Here is a sample dialogue between user and FriCAS. “Let me define two mutually dependent functions
f and g piece-wise.”

f(0) == 1; g(0) == 1

“Here is the general term for f.”

f(n) == e/2* f(n-1) - x*g(n-1)

“And here is the general term for g.”

g(n) == -x*f(n-1) + d/3* g(n -1)

“What is value of f(3)?”
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f(3)

Internal Error

The function * with signature (%, Integer ) -> % is missing from

domain Polynomial (Fraction (Integer ))

“Hmm, I think I want to define f differently. Undo to the environment right after I defined f.”

)undo 2

“Here is how I think I want f to be defined instead.”

f(n) == d/3* f(n-1) - x*g(n-1)

1 old definition (s) deleted for function or rule f

Redo the computation from expression 3 forward.

)undo )redo

“I want my old definition of f after all. Undo the undo and restore the environment to that immediately
after (4).”

)undo 4

“Check that the value of f(3) is restored.”

f(3)

Internal Error

The function * with signature (%, Integer ) -> % is missing from

domain Polynomial (Fraction (Integer ))

After you have gone off on several tangents, then backtracked to previous points in your conversation
using )undo, you might want to save all the “correct” input commands you issued, disregarding those
undone. The system command )history )write mynew.input writes a clean straight-line program
onto the file mynew.input on your disk.

This concludes your tour of FriCAS. To disembark, issue the system command )quit to leave FriCAS
and return to the operating system.



Chapter 2

Using Types and Modes

In this chapter we look at the key notion of type and its generalization mode. We show that every
FriCAS object has a type that determines what you can do with the object. In particular, we explain
how to use types to call specific functions from particular parts of the library and how types and modes
can be used to create new objects from old. We also look at Record and Union types and the special
type Any. Finally, we give you an idea of how FriCAS manipulates types and modes internally to
resolve ambiguities.

2.1 The Basic Idea

The FriCAS world deals with many kinds of objects. There are mathematical objects such as numbers
and polynomials, data structure objects such as lists and arrays, and graphics objects such as points
and graphic images. Functions are objects too.

FriCAS organizes objects using the notion of domain of computation, or simply domain. Each domain
denotes a class of objects. The class of objects it denotes is usually given by the name of the domain:
Integer for the integers, Float for floating-point numbers, and so on. The convention is that the
first letter of a domain name is capitalized. Similarly, the domain Polynomial(Integer) denotes
“polynomials with integer coefficients.” Also, Matrix(Float) denotes “matrices with floating-point
entries.”

Every basic FriCAS object belongs to a unique domain. The integer 3 belongs to the domain Integer
and the polynomial x + 3 belongs to the domain Polynomial(Integer). The domain of an object is
also called its type. Thus we speak of “the type Integer” and “the type Polynomial(Integer).”

After an FriCAS computation, the type is displayed toward the right-hand side of the page (or screen).

-3

(1)− 3

75
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Integer

Here we create a rational number but it looks like the last result. The type however tells you it is
different. You cannot identify the type of an object by how FriCAS displays the object.

-3/1

(2)− 3

Fraction ( Integer )

When a computation produces a result of a simpler type, FriCAS leaves the type unsimplified. Thus
no information is lost.

x + 3 - x

(3)3

Polynomial( Integer )

This seldom matters since FriCAS retracts the answer to the simpler type if it is necessary.

factorial (%)

(4)6

Expression( Integer )

When you issue a positive number, the type PositiveInteger is printed. Surely, 3 also has type
Integer! The curious reader may now have two questions. First, is the type of an object not unique?
Second, how is PositiveInteger related to Integer? Read on!

3

(5)3

PositiveInteger
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Any domain can be refined to a subdomain by a membership predicate.1 For example, the domain
Integer can be refined to the subdomain PositiveInteger, the set of integers x such that x > 0,
by giving the FriCAS predicate x 7→ x > 0. Similarly, FriCAS can define subdomains such as “the
subdomain of diagonal matrices,” “the subdomain of lists of length two,” “the subdomain of monic
irreducible polynomials in x,” and so on. Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of subdomains. Any
subdomain of the domain of an object can be used as the type of that object. The type of 3 is indeed
both Integer and PositiveInteger as well as any other subdomain of integer whose predicate is
satisfied, such as “the prime integers,” “the odd positive integers between 3 and 17,” and so on.

2.1.1 Domain Constructors

In FriCAS, domains are objects. You can create them, pass them to functions, and, as we’ll see later,
test them for certain properties.

In FriCAS, you ask for a value of a function by applying its name to a set of arguments.

To ask for “the factorial of 7” you enter this expression to FriCAS. This applies the function factorial

to the value 7 to compute the result.

factorial (7)

(1)5040

PositiveInteger

Enter the type Polynomial (Integer) as an expression to FriCAS. This looks much like a function
call as well. It is! The result is stated to be of type Type, which according to our usual convention,
denotes the class of all domains.

Polynomial (Integer )

(2)Polynomial(Integer)

Type

The most basic operation involving domains is that of building a new domain from a given one. To
create the domain of “polynomials over the integers,” FriCAS applies the function Polynomial to
the domain Integer. A function like Polynomial is called a domain constructor or, more simply, a
constructor. A domain constructor is a function that creates a domain. An argument to a domain
constructor can be another domain or, in general, an arbitrary kind of object. Polynomial takes
a single domain argument while SquareMatrix takes a positive integer as an argument to give its
dimension and a domain argument to give the type of its components.

1A predicate is a function that, when applied to an object of the domain, returns either true or false.
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What kinds of domains can you use as the argument to Polynomial or SquareMatrix or List? Well,
the first two are mathematical in nature. You want to be able to perform algebraic operations like +

and * on polynomials and square matrices, and operations such as determinant on square matrices. So
you want to allow polynomials of integers and polynomials of square matrices with complex number
coefficients and, in general, anything that “makes sense.” At the same time, you don’t want FriCAS
to be able to build nonsense domains such as “polynomials of strings!”

In contrast to algebraic structures, data structures can hold any kind of object. Operations on lists
such as insert, delete, and concat just manipulate the list itself without changing or operating on its
elements. Thus you can build List over almost any datatype, including itself. Create a complicated
algebraic domain.

List (List (Matrix (Polynomial (Complex (Fraction (Integer ))))))

(3)List(List(Matrix(Polynomial(Complex(Fraction(Integer))))))

Type

Try to create a meaningless domain.

Polynomial (String )

Polynomial (String ) is not a valid type.

Evidently from our last example, FriCAS has some mechanism that tells what a constructor can use
as an argument. This brings us to the notion of category. As domains are objects, they too have
a domain. The domain of a domain is a category. A category is simply a type whose members are
domains.

A common algebraic category is Ring, the class of all domains that are “rings.” A ring is an algebraic
structure with constants 0 and 1 and operations +, -, and *. These operations are assumed “closed”
with respect to the domain, meaning that they take two objects of the domain and produce a result
object also in the domain. The operations are understood to satisfy certain “axioms,” certain math-
ematical principles providing the algebraic foundation for rings. For example, the additive inverse
axiom for rings states:

Every element x has an additive inverse y such that x + y = 0.

The prototypical example of a domain that is a ring is the integers. Keep them in mind whenever we
mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction, take rings as argu-
ments and return rings as values. You can use the infix operator “has” to ask a domain if it belongs
to a particular category.

All numerical types are rings. Domain constructor Polynomial builds “the ring of polynomials over
any other ring.”

Polynomial (Integer ) has Ring
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(4)true

Boolean

Constructor List never produces a ring.

List(Integer ) has Ring

(5)false

Boolean

The constructor Matrix(R) builds “the domain of all matrices over the ring R.” This domain is never
a ring since the operations “+”, “-”, and “*” on matrices of arbitrary shapes are undefined.

Matrix (Integer ) has Ring

(6)false

Boolean

Thus you can never build polynomials over matrices.

Polynomial (Matrix (Integer ))

Polynomial (Matrix (Integer )) is not a valid type.

Use SquareMatrix(n,R) instead. For any positive integer n, it builds “the ring of n by n matrices
over R.”

Polynomial (SquareMatrix(7, Complex (Integer )))

(7)Polynomial(SquareMatrix(7,Complex(Integer)))

Type

Another common category is Field, the class of all fields. A field is a ring with additional operations.
For example, a field has commutative multiplication and a closed operation / for the division of two
elements. Integer is not a field since, for example, 3/2 does not have an integer result. The prototypical
example of a field is the rational numbers, that is, the domain Fraction(Integer). In general, the
constructor Fraction takes a ring as an argument and returns a field.2 Other domain constructors,
such as Complex, build fields only if their argument domain is a field.

The complex integers (often called the “Gaussian integers”) do not form a field.

2Actually, the argument domain must have some additional properties so as to belong to category IntegralDomain.
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Complex (Integer ) has Field

(8)false

Boolean

But fractions of complex integers do.

Fraction (Complex (Integer )) has Field

(9)true

Boolean

The algebraically equivalent domain of complex rational numbers is a field since domain constructor
Complex produces a field whenever its argument is a field.

Complex (Fraction (Integer )) has Field

(10)true

Boolean

The most basic category is Type. It denotes the class of all domains and subdomains.3 Domain
constructor List is able to build “lists of elements from domain D” for arbitrary D simply by requiring
that D belong to category Type.

Now, you may ask, what exactly is a category? Like domains, categories can be defined in the FriCAS
language. A category is defined by three components:

1. a name (for example, Ring), used to refer to the class of domains that the category represents;

2. a set of operations, used to refer to the operations that the domains of this class support (for
example, +, -, and * for rings); and

3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of FriCAS! Because categories can
extend one another, they form hierarchies. Detailed charts showing the category hierarchies in FriCAS
are displayed in the endpages of this book. There you see that all categories are extensions of Type
and that Field is an extension of Ring.

3Type does not denote the class of all types. The type of all categories is Category. The type of Type itself is
undefined.
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The operations supported by the domains of a category are called the exports of that category because
these are the operations made available for system-wide use. The exports of a domain of a given
category are not only the ones explicitly mentioned by the category. Since a category extends other
categories, the operations of these other categories—and all categories these other categories extend—
are also exported by the domains.

For example, polynomial domains belong to PolynomialCategory. This category explicitly mentions
some twenty-nine operations on polynomials, but it extends eleven other categories (including Ring).
As a result, the current system has over one hundred operations on polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient to say that the domain
exports Ring. The name of the category thus provides a convenient shorthand for the list of operations
exported by the category. Rather than listing operations such as + and * of Ring each time they are
needed, the definition of a type simply asserts that it exports category Ring.

The category name, however, is more than a shorthand. The name Ring, in fact, implies that the
operations exported by rings are required to satisfy a set of “axioms” associated with the name Ring.4

Why is it not correct to assume that some type is a ring if it exports all of the operations of Ring?
Here is why. Some languages such as APL denote the Boolean constants true and false by the
integers 1 and 0 respectively, then use + and * to denote the logical operators or and and. But with
these definitions Boolean is not a ring since the additive inverse axiom is violated.5 This alternative
definition of Boolean can be easily and correctly implemented in FriCAS, since Boolean simply does
not assert that it is of category Ring. This prevents the system from building meaningless domains
such as Polynomial(Boolean) and then wrongfully applying algorithms that presume that the ring
axioms hold.

Enough on categories. To learn more about them, see Chapter 12. We now return to our discussion of
domains.

Domains export a set of operations to make them available for system-wide use. Integer, for example,
exports the operations + and = given by the signatures +: (Integer,Integer)→Integer and =: (

Integer,Integer)→Boolean, respectively. Each of these operations takes two Integer arguments.
The + operation also returns an Integer but = returns a Boolean: true or false. The operations
exported by a domain usually manipulate objects of the domain—but not always.

The operations of a domain may actually take as arguments, and return as values, objects from any
domain. For example, Fraction (Integer) exports the operations /: (Integer,Integer)→Fraction

(Integer) and characteristic: →NonNegativeInteger.

Suppose all operations of a domain take as arguments and return as values, only objects from other
domains. This kind of domain is what FriCAS calls a package.

A package does not designate a class of objects at all. Rather, a package is just a collection of op-
erations. Actually the bulk of the FriCAS library of algorithms consists of packages. The facilities
for factorization; integration; solution of linear, polynomial, and differential equations; computation of
limits; and so on, are all defined in packages. Domains needed by algorithms can be passed to a package
as arguments or used by name if they are not “variable.” Packages are useful for defining operations
that convert objects of one type to another, particularly when these types have different parameter-
izations. As an example, the package PolynomialFunction2(R,S) defines operations that convert
polynomials over a domain R to polynomials over S. To convert an object from Polynomial(Integer)
to Polynomial(Float), FriCAS builds the package PolynomialFunctions2(Integer,Float) in or-

4This subtle but important feature distinguishes FriCAS from other abstract datatype designs.
5There is no inverse element a such that 1 + a = 0, or, in the usual terms: true or a = false.
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der to create the required conversion function. (This happens “behind the scenes” for you: see Section
2.7 on page 98 for details on how to convert objects.)

FriCAS categories, domains and packages and all their contained functions are written in the FriCAS
programming language and have been compiled into machine code. This is what comprises the FriCAS
library. In the rest of this book we show you how to use these domains and their functions and how to
write your own functions.

2.2 Writing Types and Modes

We have already seen in the last section several examples of types. Most of these examples had either
no arguments (for example, Integer) or one argument (for example, Polynomial (Integer)). In this
section we give details about writing arbitrary types. We then define modes and discuss how to write
them. We conclude the section with a discussion on constructor abbreviations.

When might you need to write a type or mode? You need to do so when you declare variables.

a : PositiveInteger

You need to do so when you declare functions (Section 2.3 on page 86),

f : Integer -> String

You need to do so when you convert an object from one type to another (Section 2.7 on page 98).

factor (2 :: Complex (Integer ))

(3)− i (1 + i)2

Factored(Complex(Integer))

(2 = 3) $Integer

(4)false

Boolean

You need to do so when you give computation target type information (Section 2.9 on page 105).

(2 = 3) @Boolean

(5)false
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Boolean

2.2.1 Types with No Arguments

A constructor with no arguments can be written either with or without trailing opening and closing
parentheses (“()”).

Boolean() is the same as Boolean Integer() is the same as Integer
String() is the same as String Void() is the same as Void

and so on. It is customary to omit the parentheses.

2.2.2 Types with One Argument

A constructor with one argument can frequently be written with no parentheses. Types nest from
right to left so that Complex Fraction Polynomial Integer is the same as Complex (Fraction
(Polynomial (Integer))). You need to use parentheses to force the application of a constructor to
the correct argument, but you need not use any more than is necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more restrictive than they
need to be). If the argument is an expression like 2 + 3 then you must enclose the argument in
parentheses.

e : PrimeField (2 + 3)

If the type is to be used with package calling then you must enclose the argument in parentheses.

content (2) $Polynomial (Integer )

(2)2

Integer

Alternatively, you can write the type without parentheses then enclose the whole type expression with
parentheses.

content (2)$( Polynomial Complex Fraction Integer )

(3)2

Complex(Fraction(Integer))

If you supply computation target type information (Section 2.9 on page 105) then you should enclose
the argument in parentheses.
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(2/3) @Fraction ( Polynomial (Integer ))

(4)
2

3

Fraction (Polynomial( Integer ))

If the type itself has parentheses around it and we are not in the case of the first example above, then
the parentheses can usually be omitted.

(2/3) @Fraction ( Polynomial Integer )

(5)
2

3

Fraction (Polynomial( Integer ))

If the type is used in a declaration and the argument is a single-word type, integer or symbol, then the
parentheses can usually be omitted.

(d,f,g) : Complex Polynomial Integer

2.2.3 Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses. Some examples are

UnivariatePolynomial(x, Float)
MultivariatePolynomial([z,w,r], Complex Float)

SquareMatrix(3, Integer)
FactoredFunctions2(Integer,Fraction Integer)

2.2.4 Modes

A mode is a type that possibly is a question mark (“?”) or contains one in an argument position. For
example, the following are all modes.

? Polynomial ?
Matrix Polynomial ? SquareMatrix(3,?)

Integer OneDimensionalArray(Float)

As is evident from these examples, a mode is a type with a part that is not specified (indicated by
a question mark). Only one “?” is allowed per mode and it must appear in the most deeply nested
argument that is a type. Thus ?(Integer), Matrix(? (Polynomial)), SquareMatrix(?, Integer)
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and SquareMatrix(?, ?) are all invalid. The question mark must take the place of a domain, not
data (for example, the integer that is the dimension of a square matrix). This rules out, for example,
the two SquareMatrix expressions.

Modes can be used for declarations (Section 2.3 on page 86) and conversions (Section 2.7 on page 98).
However, you cannot use a mode for package calling or giving target type information.

2.2.5 Abbreviations

Every constructor has an abbreviation that you can freely substitute for the constructor name. In
some cases, the abbreviation is nothing more than the capitalized version of the constructor name.

Aside from allowing types to be written more concisely, abbreviations are used by FriCAS to name
various system files for constructors (such as library filenames, test input files and example files).
Here are some common abbreviations.

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat

EXPR abbreviates Expression FLOAT abbreviates Float

FRAC abbreviates Fraction INT abbreviates Integer

MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger

PI abbreviates PositiveInteger POLY abbreviates Polynomial

STRING abbreviates String UP abbreviates UnivariatePolynomial

You can combine both full constructor names and abbreviations in a type expression. Here are some
types using abbreviations.

POLY INT is the same as Polynomial(INT)
POLY(Integer) is the same as Polynomial(Integer)
POLY(Integer) is the same as Polynomial(INT)

FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer
FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

There are several ways of finding the names of constructors and their abbreviations. For a specific
constructor, use )abbreviation query. You can also use the )what system command to see the names
and abbreviations of constructors. For more information about )what, see Section A.28 on page 939.
)abbreviation query can be abbreviated (no pun intended) to )abb q.

)abb q Integer

INT abbreviates domain Integer

The )abbreviation query command lists the constructor name if you give the abbreviation. Issue
)abb q if you want to see the names and abbreviations of all FriCAS constructors.

)abb q DMP

DMP abbreviates domain DistributedMultivariatePolynomial

Issue this to see all packages whose names contain the string “ode”.

)what packages ode
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-------------------------------- Packages ---------------------------------

Packages with names matching patterns :

ode

COMPCODE compCode EXPRODE ExpressionSpaceODESolver

FCPAK1 FortranCodePackage1 FCTOOL FortranCodeTools

GRAY GrayCode LODEEF ElementaryFunctionLODESolver

NODE1 NonLinearFirstOrderODESolver ODECONST ConstantLODE

ODEEF ElementaryFunctionODESolver ODEINT ODEIntegration

ODEPAL PureAlgebraicLODE ODERAT RationalLODE

ODERED ReduceLODE ODESYS SystemODESolver

ODETOOLS ODETools

UTSODE UnivariateTaylorSeriesODESolver

UTSODETL UTSodetools

2.3 Declarations

A declaration is an expression used to restrict the type of values that can be assigned to variables. A
colon (“:”) is always used after a variable or list of variables to be declared.

For a single variable, the syntax for declaration is

variableName : typeOrMode

For multiple variables, the syntax is

(variableName1, variableName2, ...variableNameN): typeOrMode

You can always combine a declaration with an assignment. When you do, it is equivalent to first giving
a declaration statement, then giving an assignment. For more information on assignment, see Section
1.3.4 on page 26 and Section 5.1 on page 141. To see how to declare your own functions, see Section
6.4 on page 176.

This declares one variable to have a type.

a : Integer

This declares several variables to have a type.

(b,c) : Integer

a, b and c can only hold integer values.

a := 45

(3)45

Integer

If a value cannot be converted to a declared type, an error message is displayed.
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b := 4/5

Cannot convert right -hand side of assignment

4

-

5

to an object of the type Integer of the left -hand side.

This declares a variable with a mode.

n : Complex ?

This declares several variables with a mode.

(p,q,r) : Matrix Polynomial ?

This complex object has integer real and imaginary parts.

n := -36 + 9 * %i

(6)− 36 + 9 i

Complex(Integer)

This complex object has fractional symbolic real and imaginary parts.

n := complex (4/(x + y),y/x)

(7)
4

y + x
+

y

x
i

Complex(Fraction(Polynomial(Integer)))

This matrix has entries that are polynomials with integer coefficients.

p := [[1 ,2] ,[3 ,4] ,[5 ,6]]

(8)





1 2
3 4
5 6





Matrix(Polynomial( Integer ))

This matrix has a single entry that is a polynomial with rational number coefficients.

q := [[x - 2/3]]
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(9)
[

x− 2
3

]

Matrix(Polynomial(Fraction ( Integer )))

This matrix has entries that are polynomials with complex integer coefficients.

r := [[1-%i*x ,7*y+4*%i]]

(10)
[

−i x+ 1 7 y + 4 i
]

Matrix(Polynomial(Complex(Integer)))

Note the difference between this and the next example. This is a complex object with polynomial real
and imaginary parts.

f : COMPLEX POLY ? := (x + y*%i)^2

(11)− y
2 + x

2 + 2 x y i

Complex(Polynomial(Integer))

This is a polynomial with complex integer coefficients. The objects are convertible from one to the
other. See Section 2.7 on page 98 for more information.

g : POLY COMPLEX ? := (x + y*%i)^2

(12)− y
2 + 2 i x y + x

2

Polynomial(Complex(Integer))

2.4 Records

A Record is an object composed of one or more other objects, each of which is referenced with a
selector. Components can all belong to the same type or each can have a different type.

The syntax for writing a Record type is

Record(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the workspace. If this occurs,
precede the selector name by a single quote.
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Record components are implicitly ordered. All the components of a record can be set at once by
assigning the record a bracketed tuple of values of the proper length (for example, r : Record(a:

Integer, b: String):= [1, "two"]). To access a component of a record r, write the name r,
followed by a period, followed by a selector.

The object returned by this computation is a record with two components: a quotient part and a
remainder part.

u := divide (5,2)

(1)[quotient = 2, remainder = 1]

Record(quotient : Integer , remainder: Integer )

This is the quotient part.

u.quotient

(2)2

PositiveInteger

This is the remainder part.

u.remainder

(3)1

PositiveInteger

You can use selector expressions on the left-hand side of an assignment to change destructively the
components of a record.

u.quotient := 8978

(4)8978

PositiveInteger

The selected component quotient has the value 8978, which is what is returned by the assignment.
Check that the value of u was modified.

u
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(5)[quotient = 8978, remainder = 1]

Record(quotient : Integer , remainder: Integer )

Selectors are evaluated. Thus you can use variables that evaluate to selectors instead of the selectors
themselves.

s := ’quotient

(6)quotient

Variable (quotient )

Be careful! A selector could have the same name as a variable in the workspace. If this occurs, precede
the selector name by a single quote, as in u.’quotient.

divide (5,2).s

(7)2

PositiveInteger

Here we declare that the value of bd has two components: a string, to be accessed via name, and an
integer, to be accessed via birthdayMonth.

bd : Record (name : String , birthdayMonth : Integer )

You must initially set the value of the entire Record at once.

bd := [" Judith ", 3]

(9)[name = "Judith", birthdayMonth = 3]

Record(name: String, birthdayMonth: Integer )

Once set, you can change any of the individual components.

bd.name := "Katie"
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(10)"Katie"

String

Records may be nested and the selector names can be shared at different levels.

r : Record (a : Record (b: Integer , c: Integer ), b: Integer )

The record r has a b selector at two different levels. Here is an initial value for r.

r := [[1 ,2] ,3]

(12)[a = [b = 1, c = 2] , b = 3]

Record(a: Record(b: Integer , c: Integer ) , b: Integer )

This extracts the b component from the a component of r.

r.a.b

(13)1

PositiveInteger

This extracts the b component from r.

r.b

(14)3

PositiveInteger

You can also use spaces or parentheses to refer to Record components. This is the same as r.a.

r(a)

(15)[b = 1, c = 2]
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Record(b: Integer , c: Integer )

This is the same as r.b.

r b

(16)3

PositiveInteger

This is the same as r.b := 10.

r(b) := 10

(17)10

PositiveInteger

Look at r to make sure it was modified.

r

(18)[a = [b = 1, c = 2] , b = 10]

Record(a: Record(b: Integer , c: Integer ) , b: Integer )

2.5 Unions

Type Union is used for objects that can be of any of a specific finite set of types. Two versions of
unions are available, one with selectors (like records) and one without.

2.5.1 Unions Without Selectors

The declaration x : Union(Integer, String, Float) states that x can have values that are integers,
strings or “big” floats. If, for example, the Union object is an integer, the object is said to belong to
the Integer branch of the Union.6

6Note that we are being a bit careless with the language here. Technically, the type of x is always Union(Integer,
String, Float). If it belongs to the Integer branch, x may be converted to an object of type Integer.
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The syntax for writing a Union type without selectors is

Union(type1, type2, ..., typeN)

The types in a union without selectors must be distinct.

It is possible to create unions like Union(Integer, PositiveInteger) but they are difficult to work
with because of the overlap in the branch types. See below for the rules FriCAS uses for converting
something into a union object.

The case infix operator returns a Boolean and can be used to determine the branch in which an
object lies.

This function displays a message stating in which branch of the Union the object (defined as x above)
lies.

sayBranch (x : Union(Integer ,String ,Float)) : Void ==

output

x case Integer => "Integer branch "

x case String => "String branch "

"Float branch "

Function declaration sayBranch : Union (Integer ,String ,Float ) -> Void

has been added to workspace .

This tries sayBranch with an integer.

sayBranch 1

Compiling function sayBranch with type Union (Integer ,String ,Float )

-> Void

This tries sayBranch with a string.

sayBranch "hello"

This tries sayBranch with a floating-point number.

sayBranch 2.718281828

There are two things of interest about this particular example to which we would like to draw your
attention.

1. FriCAS normally converts a result to the target value before passing it to the function. If we left
the declaration information out of this function definition then the sayBranch call would have
been attempted with an Integer rather than a Union, and an error would have resulted.

2. The types in a Union are searched in the order given. So if the type were given as

sayBranch(x: Union(String,Integer,Float,Any)): Void

then the result would have been “String branch” because there is a conversion from Integer to
String.

Sometimes Union types can have extremely long names. FriCAS therefore abbreviates the names of
unions by printing the type of the branch first within the Union and then eliding the remaining types
with an ellipsis (“...”).
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Here the Integer branch is displayed first. Use “::” to create a Union object from an object.

78 :: Union(Integer ,String )

(5)78

Union(Integer , ...)

Here the String branch is displayed first.

s := "string " :: Union(Integer ,String )

(6)"string"

Union(String , ...)

Use typeOf to see the full and actual Union type.

typeOf s

(7)Union(Integer, String)

Type

A common operation that returns a union is exquo which returns the “exact quotient” if the quotient
is exact,...

three := exquo (6,2)

(8)3

Union(Integer , ...)

and "failed" if the quotient is not exact.

exquo (5,2)

(9)"failed"
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Union(” failed ”, ...)

A union with a "failed" is frequently used to indicate the failure or lack of applicability of an object.
As another example, assign an integer a variable r declared to be a rational number.

r: FRAC INT := 3

(10)3

Fraction ( Integer )

The operation retractIfCan tries to retract the fraction to the underlying domain Integer. It produces
a union object. Here it succeeds.

retractIfCan(r)

(11)3

Union(Integer , ...)

Assign it a rational number.

r := 3/2

(12)
3

2

Fraction ( Integer )

Here the retraction fails.

retractIfCan(r)

(13)"failed"

Union(” failed ”, ...)

2.5.2 Unions With Selectors

Like records (Section 2.4 on page 88), you can write Union types with selectors.
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The syntax for writing a Union type with selectors is

Union(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the workspace. If this occurs,
precede the selector name by a single quote. It is an error to use a selector that does not correspond
to the branch of the Union in which the element actually lies.

Be sure to understand the difference between records and unions with selectors. Records can have more
than one component and the selectors are used to refer to the components. Unions always have one
component but the type of that one component can vary. An object of type Record(a: Integer, b:
Float, c: String) contains an integer and a float and a string. An object of type Union(a: Integer,
b: Float, c: String) contains an integer or a float or a string.

Here is a version of the sayBranch function (cf. Section 2.5.1 on page 92) that works with a union
with selectors. It displays a message stating in which branch of the Union the object lies.

sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==

output

x case i => "Integer branch"

x case s => "String branch"

"Float branch"

Note that case uses the selector name as its right-hand argument.

Declare variable u to have a union type with selectors.

u : Union (i : Integer , s : String )

Give an initial value to u.

u := "good morning "

(2)"good morning"

Union(s: String , ...)

Use case to determine in which branch of a Union an object lies.

u case i

(3)false

Boolean

u case s
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(4)true

Boolean

To access the element in a particular branch, use the selector.

u.s

(5)"good morning"

String

2.6 The “Any” Domain

With the exception of objects of type Record, all FriCAS data structures are homogeneous, that is,
they hold objects all of the same type. If you need to get around this, you can use type Any. Using
Any, for example, you can create lists whose elements are integers, rational numbers, strings, and even
other lists.

Declare u to have type Any.

u: Any

Assign a list of mixed type values to u

u := [1, 7.2, 3/2, x^2, "wally "]

(2)

[

1, 7.2,
3

2
, x

2
, "wally"

]

List (Any)

When we ask for the elements, FriCAS displays these types.

u.1

(3)1

PositiveInteger

Actually, these objects belong to Any but FriCAS automatically converts them to their natural types
for you.
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u.3

(4)
3

2

Fraction ( Integer )

Since type Any can be anything, it can only belong to type Type. Therefore it cannot be used in
algebraic domains.

v : Matrix (Any)

Matrix (Any) is not a valid type.

Perhaps you are wondering how FriCAS internally represents objects of type Any. An object of type
Any consists not only a data part representing its normal value, but also a type part (a badge) giving
its type. For example, the value 1 of type PositiveInteger as an object of type Any internally looks
like [1,PositiveInteger()].

2.7 Conversion

Conversion is the process of changing an object of one type into an object of another type. The
syntax for conversion is:

object :: newType

By default, 3 has the type PositiveInteger.

3

(1)3

PositiveInteger

We can change this into an object of type Fraction Integer by using “::”.

3 :: Fraction Integer

(2)3
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Fraction ( Integer )

A coercion is a special kind of conversion that FriCAS is allowed to do automatically when you enter
an expression. Coercions are usually somewhat safer than more general conversions. The FriCAS
library contains operations called coerce and convert. Only the coerce operations can be used by the
interpreter to change an object into an object of another type unless you explicitly use a “::”.

By now you will be quite familiar with what types and modes look like. It is useful to think of a
type or mode as a pattern for what you want the result to be. Let’s start with a square matrix of
polynomials with complex rational number coefficients.

m : SquareMatrix(2, POLY COMPLEX FRAC INT)

m := matrix [[x -3/4*% i,z*y^2+1/2] ,[3/7*% i*y^4 - x,12-%i*9/5]]

(4)

[

x− 3
4
i y2 z + 1

2
3
7
i y4 − x 12− 9

5
i

]

SquareMatrix(2, Polynomial(Complex(Fraction(Integer))))

We first want to interchange the Complex and Fraction layers. We do the conversion by doing the
interchange in the type expression.

m1 := m :: SquareMatrix(2, POLY FRAC COMPLEX INT )

(5)

[

x− 3 i
4

y2 z + 1
2

3 i
7
y4 − x 60−9 i

5

]

SquareMatrix(2, Polynomial(Fraction(Complex(Integer))))

Interchange the Polynomial and the Fraction levels.

m2 := m1 :: SquareMatrix(2, FRAC POLY COMPLEX INT)

(6)

[

4 x−3 i
4

2 y2 z+1
2

3 i y4−7 x

7
60−9 i

5

]

SquareMatrix(2, Fraction (Polynomial(Complex(Integer))))

Interchange the Polynomial and the Complex levels.

m3 := m2 :: SquareMatrix(2, FRAC COMPLEX POLY INT)
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(7)

[

4 x−3 i
4

2 y2 z+1
2

−7 x+3 y4 i

7
60−9 i

5

]

SquareMatrix(2, Fraction (Complex(Polynomial(Integer))))

All the entries have changed types, although in comparing the last two results only the entry in the
lower left corner looks different. We did all the intermediate steps to show you what FriCAS can do.

In fact, we could have combined all these into one conversion.

m :: SquareMatrix(2, FRAC COMPLEX POLY INT )

(8)

[

4 x−3 i
4

2 y2 z+1
2

−7 x+3 y4 i

7
60−9 i

5

]

SquareMatrix(2, Fraction (Complex(Polynomial(Integer))))

There are times when FriCAS is not be able to do the conversion in one step. You may need to break
up the transformation into several conversions in order to get an object of the desired type.

We cannot move either Fraction or Complex above (or to the left of, depending on how you look
at it) SquareMatrix because each of these levels requires that its argument type have commutative
multiplication, whereas SquareMatrix does not.7 The Integer level did not move anywhere because
it does not allow any arguments. We also did not move the SquareMatrix part anywhere, but we
could have. Recall that m looks like this.

m

(9)

[

x− 3
4
i y2 z + 1

2
3
7
i y4 − x 12− 9

5
i

]

SquareMatrix(2, Polynomial(Complex(Fraction(Integer))))

If we want a polynomial with matrix coefficients rather than a matrix with polynomial entries, we can
just do the conversion.

m :: POLY SquareMatrix(2, COMPLEX FRAC INT )

7Fraction requires that its argument belong to the category IntegralDomain and Complex requires that its
argument belong to CommutativeRing. See Section 2.1 on page 75 for a brief discussion of categories.
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(10)

[

0 1
0 0

]

y
2
z +

[

0 0
3
7
i 0

]

y
4 +

[

1 0
−1 0

]

x+

[

− 3
4
i 1

2

0 12− 9
5
i

]

Polynomial(SquareMatrix(2, Complex(Fraction(Integer))))

We have not yet used modes for any conversions. Modes are a great shorthand for indicating the type
of the object you want. Instead of using the long type expression in the last example, we could have
simply said this.

m :: POLY ?

(11)

[

0 1
0 0

]

y
2
z +

[

0 0
3
7
i 0

]

y
4 +

[

1 0
−1 0

]

x+

[

− 3
4
i 1

2

0 12− 9
5
i

]

Polynomial(SquareMatrix(2, Complex(Fraction(Integer))))

We can also indicate more structure if we want the entries of the matrices to be fractions.

m :: POLY SquareMatrix(2, FRAC ?)

(12)

[

0 1
0 0

]

y
2
z +

[

0 0
3 i
7

0

]

y
4 +

[

1 0
−1 0

]

x+

[

− 3 i
4

1
2

0 60−9 i
5

]

Polynomial(SquareMatrix(2, Fraction (Complex(Integer))))

2.8 Subdomains Again

A subdomain S of a domain D is a domain consisting of

1. those elements of D that satisfy some predicate (that is, a test that returns true or false) and

2. a subset of the operations of D.

Every domain is a subdomain of itself, trivially satisfying the membership test: true.

Currently, there are only two system-defined subdomains in FriCAS that receive substantial use. Pos-
itiveInteger and NonNegativeInteger are subdomains of Integer. An element x of NonNega-
tiveInteger is an integer that is greater than or equal to zero, that is, satisfies x >= 0. An element
x of PositiveInteger is a nonnegative integer that is, in fact, greater than zero, that is, satisfies
x > 0. Not all operations from Integer are available for these subdomains. For example, negation
and subtraction are not provided since the subdomains are not closed under those operations. When
you use an integer in an expression, FriCAS assigns to it the type that is the most specific subdomain
whose predicate is satisfied. This is a positive integer.
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5

(1)5

PositiveInteger

This is a nonnegative integer.

0

(2)0

NonNegativeInteger

This is neither of the above.

-5

(3)− 5

Integer

Furthermore, unless you are assigning an integer to a declared variable or using a conversion, any
integer result has as type the most specific subdomain.

(-2) - (-3)

(4)1

PositiveInteger

0 :: Integer

(5)0

Integer

x : NonNegativeInteger := 5
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(6)5

NonNegativeInteger

When necessary, FriCAS converts an integer object into one belonging to a less specific subdomain.
For example, in 3-2, the arguments to - are both elements of PositiveInteger, but this type does
not provide a subtraction operation. Neither does NonNegativeInteger, so 3 and 2 are viewed as
elements of Integer, where their difference can be calculated. The result is 1, which FriCAS then
automatically assigns the type PositiveInteger.

Certain operations are very sensitive to the subdomains to which their arguments belong. This is an
element of PositiveInteger.

2 ^ 2

(7)4

PositiveInteger

This is an element of Fraction Integer.

2 ^ (-2)

(8)
1

4

Fraction ( Integer )

It makes sense then that this is a list of elements of PositiveInteger.

[10^i for i in 2..5]

(9)[100, 1000, 10000, 100000]

List ( PositiveInteger )

What should the type of [10^(i-1)for i in 2..5] be? On one hand, i-1 is always an integer greater
than zero as i ranges from 2 to 5 and so 10^i is also always a positive integer. On the other, i-1 is a
very simple function of i. FriCAS does not try to analyze every such function over the index’s range
of values to determine whether it is always positive or nowhere negative. For an arbitrary FriCAS
function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.
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[10^(i-1) for i in 2..5]

(10)[10, 100, 1000, 10000]

List (Fraction ( Integer ))

To get a list of elements of PositiveInteger instead, you have two choices. You can use a conversion.

[10^((i -1) :: PI) for i in 2..5]

Compiling function G297 with type Integer -> Boolean

Compiling function G299 with type NonNegativeInteger -> Boolean

(11)[10, 100, 1000, 10000]

List ( PositiveInteger )

Or you can use pretend.

[10^((i -1) pretend PI) for i in 2..5]

(12)[10, 100, 1000, 10000]

List ( PositiveInteger )

The operation pretend is used to defeat the FriCAS type system. The expression object pretend D

means “make a new object (without copying) of type D from object.” If object were an integer and
you told FriCAS to pretend it was a list, you would probably see a message about a fatal error being
caught and memory possibly being damaged. Lists do not have the same internal representation as
integers!

You use pretend at your peril.

Use pretend with great care! FriCAS trusts you that the value is of the specified type.

(2/3) pretend Complex Integer

(13)2 + 3 i
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Complex(Integer)

2.9 Package Calling and Target Types

FriCAS works hard to figure out what you mean by an expression without your having to qualify it
with type information. Nevertheless, there are times when you need to help it along by providing hints
(or even orders!) to get FriCAS to do what you want.

We saw in Section 2.3 on page 86 that declarations using types and modes control the type of the
results produced. For example, we can either produce a complex object with polynomial real and
imaginary parts or a polynomial with complex integer coefficients, depending on the declaration.

Package calling is how you tell FriCAS to use a particular function from a particular part of the library.

Use the / from Fraction Integer to create a fraction of two integers.

2/3

(1)
2

3

Fraction ( Integer )

If we wanted a floating point number, we can say “use the / in Float.”

(2/3) $Float

(2)0.66666666666666666667

Float

Perhaps we actually wanted a fraction of complex integers.

(2/3) $Fraction (Complex Integer )

(3)
2

3

Fraction (Complex(Integer))

In each case, FriCAS used the indicated operations, sometimes first needing to convert the two integers
into objects of an appropriate type. In these examples, / is written as an infix operator.
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To use package calling with an infix operator, use the following syntax:

( arg1 op arg1 )$type

We used, for example, (2/3)$Float. The expression 2 + 3 + 4 is equivalent to (2+3) + 4. Therefore
in the expression (2 + 3 + 4)$Float the second + comes from the Float domain. Can you guess
whether the first + comes from Integer or Float?8

For an operator written before its arguments, you must use parentheses around the arguments
(even if there is only one), and follow the closing parenthesis by a “$” and then the type.

fun ( arg1, arg1, ..., argN )$type

For example, to call the “minimum” function from DoubleFloat on two integers, you could write
min(4,89)$DoubleFloat. Another use of package calling is to tell FriCAS to use a library function
rather than a function you defined. We discuss this in Section 6.9 on page 182.

Sometimes rather than specifying where an operation comes from, you just want to say what type the
result should be. We say that you provide a target type for the expression. Instead of using a “$”,
use a “@” to specify the requested target type. Otherwise, the syntax is the same. Note that giving a
target type is not the same as explicitly doing a conversion. The first says “try to pick operations so
that the result has such-and-such a type.” The second says “compute the result and then convert to
an object of such-and-such a type.”

Sometimes it makes sense, as in this expression, to say “choose the operations in this expression so
that the final result is a Float.”

(2/3) @Float

(4)0.66666666666666666667

Float

Here we used “@” to say that the target type of the left-hand side was Float. In this simple case, there
was no real difference between using “$” and “@”. You can see the difference if you try the following.
This says to try to choose + so that the result is a string. FriCAS cannot do this.

(2 + 3) @String

An expression involving @ String actually evaluated to one of type

PositiveInteger . Perhaps you should use :: String .

This says to get the + from String and apply it to the two integers. FriCAS also cannot do this
because there is no + exported by String.

8Float, because the package call causes FriCAS to convert (2 + 3) and 4 to type Float. Before the sum is converted,
it is given a target type (see below) of Float by FriCAS and then evaluated. The target type causes the + from Float
to be used.
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(2 + 3) $String

The function + is not implemented in String .

(By the way, the operation concat or juxtaposition is used to concatenate two strings.)

When we have more than one operation in an expression, the difference is even more evident. The
following two expressions show that FriCAS uses the target type to create different objects. The +, *
and ^ operations are all chosen so that an object of the correct final type is created.

This says that the operations should be chosen so that the result is a Complex object.

((x + y * %i)^2)@(Complex Polynomial Integer )

(5)− y
2 + x

2 + 2 x y i

Complex(Polynomial(Integer))

This says that the operations should be chosen so that the result is a Polynomial object.

((x + y * %i)^2)@( Polynomial Complex Integer )

(6)− y
2 + 2 i x y + x

2

Polynomial(Complex(Integer))

What do you think might happen if we left off all target type and package call information in this last
example?

(x + y * %i)^2

(7)− y
2 + 2 i x y + x

2

Polynomial(Complex(Integer))

We can convert it to Complex as an afterthought. But this is more work than just saying making
what we want in the first place.

% :: Complex ?

(8)− y
2 + x

2 + 2 x y i
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Complex(Polynomial(Integer))

Finally, another use of package calling is to qualify fully an operation that is passed as an argument
to a function.

Start with a small matrix of integers.

h := matrix [[8,6],[-4,9]]

(9)

[

8 6
−4 9

]

Matrix( Integer )

We want to produce a new matrix that has for entries the multiplicative inverses of the entries of h.
One way to do this is by calling map with the inv function from Fraction (Integer).

map (inv$Fraction(Integer ),h)

(10)

[

1
8

1
6

− 1
4

1
9

]

Matrix(Fraction ( Integer ))

We could have been a bit less verbose and used abbreviations.

map (inv$FRAC (INT),h)

(11)

[

1
8

1
6

− 1
4

1
9

]

Matrix(Fraction ( Integer ))

As it turns out, FriCAS is smart enough to know what we mean anyway. We can just say this.

map (inv ,h)

(12)

[

1
8

1
6

− 1
4

1
9

]



2.10. RESOLVING TYPES 109

Matrix(Fraction ( Integer ))

2.10 Resolving Types

In this section we briefly describe an internal process by which FriCAS determines a type to which two
objects of possibly different types can be converted. We do this to give you further insight into how
FriCAS takes your input, analyzes it, and produces a result.

What happens when you enter x + 1 to FriCAS? Let’s look at what you get from the two terms of
this expression.

This is a symbolic object whose type indicates the name.

x

(1)x

Variable (x)

This is a positive integer.

1

(2)1

PositiveInteger

There are no operations in PositiveInteger that add positive integers to objects of type Variable(x)
nor are there any in Variable(x). Before it can add the two parts, FriCAS must come up with a
common type to which both x and 1 can be converted. We say that FriCAS must resolve the two types
into a common type. In this example, the common type is Polynomial(Integer).

Once this is determined, both parts are converted into polynomials, and the addition operation from
Polynomial(Integer) is used to get the answer.

x + 1

(3)x+ 1

Polynomial( Integer )

FriCAS can always resolve two types: if nothing resembling the original types can be found, then Any
is be used. This is fine and useful in some cases.
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[" string " ,3.14159]

(4)["string", 3.14159]

List (Any)

In other cases objects of type Any can’t be used by the operations you specified.

"string " + 3.14159

There are 13 exposed and 11 unexposed library operations named +

having 2 argument (s) but none was determined to be applicable .

Use HyperDoc Browse , or issue

)display op +

to learn more about the available operations . Perhaps

package -calling the operation or using coercions on the arguments

will allow you to apply the operation .

Cannot find a definition or applicable library operation named +

with argument type(s)

String

Float

Perhaps you should use "@" to indicate the required return type ,

or "$" to specify which version of the function you need.

Although this example was contrived, your expressions may need to be qualified slightly to help FriCAS
resolve the types involved. You may need to declare a few variables, do some package calling, provide
some target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and see what FriCAS does. We
think you will be impressed with its ability to “do what I mean.” If FriCAS is still being obtuse, give
it some hints. As you work with FriCAS, you will learn where it needs a little help to analyze quickly
and perform your computations.

2.11 Exposing Domains and Packages

In this section we discuss how FriCAS makes some operations available to you while hiding others that
are meant to be used by developers or only in rare cases. If you are a new user of FriCAS, it is likely
that everything you need is available by default and you may want to skip over this section on first
reading.

Every domain and package in the FriCAS library is either exposed (meaning that you can use its
operations without doing anything special) or it is hidden (meaning you have to either package call
(see Section 2.9 on page 105) the operations it contains or explicitly expose it to use the operations).
The initial exposure status for a constructor is set in the file exposed.lsp (see the Installer’s Note for
FriCAS if you need to know the location of this file). Constructors are collected together in exposure
groups. Categories are all in the exposure group “categories” and the bulk of the basic set of packages
and domains that are exposed are in the exposure group “basic.” Here is an abbreviated sample of the
file (without the Lisp parentheses):
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basic

AlgebraicNumber AN

AlgebraGivenByStructuralConstants ALGSC

Any ANY

AnyFunctions1 ANY1

BinaryExpansion BINARY

Boolean BOOLEAN

CardinalNumber CARD

CartesianTensor CARTEN

Character CHAR

CharacterClass CCLASS

CliffordAlgebra CLIF

Color COLOR

Complex COMPLEX

ContinuedFraction CONTFRAC

DecimalExpansion DECIMAL

...

categories

AbelianGroup ABELGRP

AbelianMonoid ABELMON

AbelianMonoidRing AMR

AbelianSemiGroup ABELSG

Aggregate AGG

Algebra ALGEBRA

AlgebraicallyClosedField ACF

AlgebraicallyClosedFunctionSpace ACFS

ArcHyperbolicFunctionCategory AHYP

...

For each constructor in a group, the full name and the abbreviation is given. There are other groups
in exposed.lsp but initially only the constructors in exposure groups “basic” and “categories” are
exposed.

As an interactive user of FriCAS, you do not need to modify this file. Instead, use )set expose to
expose, hide or query the exposure status of an individual constructor or exposure group. The reason for
having exposure groups is to be able to expose or hide multiple constructors with a single command.
For example, you might group together into exposure group “quantum” a number of domains and
packages useful for quantum mechanical computations. These probably should not be available to
every user, but you want an easy way to make the whole collection visible to FriCAS when it is looking
for operations to apply.

If you wanted to hide all the basic constructors available by default, you would issue )set expose

drop group basic. We do not recommend that you do this. If, however, you discover that you have
hidden all the basic constructors, you should issue )set expose add group basic to restore your
default environment.

It is more likely that you would want to expose or hide individual constructors. In Section 6.19 on page
214 we use several operations from OutputForm, a domain usually hidden. To avoid package calling
every operation from OutputForm, we expose the domain and let FriCAS conclude that those oper-
ations should be used. Use )set expose add constructor and )set expose drop constructor to
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expose and hide a constructor, respectively. You should use the constructor name, not the abbreviation.
The )set expose command guides you through these options.

If you expose a previously hidden constructor, FriCAS exhibits new behavior (that was your intention)
though you might not expect the results that you get. OutputForm is, in fact, one of the worst
offenders in this regard. This domain is meant to be used by other domains for creating a structure
that FriCAS knows how to display. It has functions like + that form output representations rather than
do mathematical calculations. Because of the order in which FriCAS looks at constructors when it is
deciding what operation to apply, OutputForm might be used instead of what you expect. This is
a polynomial.

x + x

(1)2x

Polynomial( Integer )

Expose OutputForm.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame initial

This is what we get when OutputForm is automatically available.

x + x

(2)x+ x

OutputForm

Hide OutputForm so we don’t run into problems with any later examples!

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame initial

Finally, exposure is done on a frame-by-frame basis. A frame (see Section A.11 on page 923) is one
of possibly several logical FriCAS workspaces within a physical one, each having its own environment
(for example, variables and function definitions). If you have several FriCAS workspace windows on
your screen, they are all different frames, automatically created for you by HyperDoc. Frames can
be manually created, made active and destroyed by the )frame system command. They do not share
exposure information, so you need to use )set expose in each one to add or drop constructors from
view.
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2.12 Commands for Snooping

To conclude this chapter, we introduce you to some system commands that you can use for getting more
information about domains, packages, categories, and operations. The most powerful FriCAS facility
for getting information about constructors and operations is the Browse component of HyperDoc. This
is discussed in Chapter 14.

Use the )what system command to see lists of system objects whose name contain a particular substring
(uppercase or lowercase is not significant).

Issue this to see a list of all operations with “complex” in their names.

)what operation complex

Operations whose names satisfy the above pattern (s):

chainComplex coChainComplex

complex complex ?

complexEigenvalues complexEigenvectors

complexElementary complexExpand

complexForm complexIntegrate

complexLimit complexNormalize

complexNumeric complexNumericIfCan

complexRoots complexSolve

complexZeros complex_curve

complex_roots createLowComplexityNormalBasis

createLowComplexityTable cubicalComplex

deltaComplex doubleComplex?

drawComplex drawComplexVectorField

fortranComplex fortranDoubleComplex

simplicialComplex simplicialComplexIfCan

testComplexEquals testComplexEqualsAux

xftestComplexEquals xftestComplexEqualsAux

To get more information about an operation such as complexForm ,

issue the command )display op complexForm

If you want to see all domains with “matrix” in their names, issue this.

)what domain matrix

--------------------------------- Domains ---------------------------------

Domains with names matching patterns :

matrix

CDFMAT ComplexDoubleFloatMatrix DFMAT DoubleFloatMatrix

DHMATRIX DenavitHartenbergMatrix DPMM DirectProductMatrixModule

I16MAT I16Matrix I32MAT I32Matrix

I8MAT I8Matrix IMATRIX IndexedMatrix

LINPEN LinearMultivariateMatrixPencil

LSQM LieSquareMatrix M3D ThreeDimensionalMatrix

MATCAT - MatrixCategory& MATRIX Matrix

RMATCAT - RectangularMatrixCategory & RMATRIX RectangularMatrix

SEM SparseEchelonMatrix SMATCAT - SquareMatrixCategory &

SQMATRIX SquareMatrix U16MAT U16Matrix

U32MAT U32Matrix U8MAT U8Matrix

Similarly, if you wish to see all packages whose names contain “gauss”, enter this.
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)what package gauss

-------------------------------- Packages ---------------------------------

Packages with names matching patterns :

gauss

FFFG FractionFreeFastGaussian

FFFGF FractionFreeFastGaussianFractions

GAUSSFAC GaussianFactorizationPackage UGAUSS UnitGaussianElimination

This command shows all the operations that Any provides. Wherever “%” appears, it means “Any”.

)show Any

Any is a domain constructor .

Abbreviation for Any is ANY

This constructor is exposed in this frame.

10 Names for 10 Operations in this Domain .

------------------------------- Operations --------------------------------

?=? : (%, %) -> Boolean any : (SExpression , None) -> %

coerce : % -> OutputForm dom : % -> SExpression

domainOf : % -> OutputForm latex : % -> String

obj : % -> None objectOf : % -> OutputForm

?~=? : (%, %) -> Boolean

showTypeInOutput : Boolean -> String

This displays all operations with the name complex.

)display operation complex

There is one exposed function called complex :

[1] (D1 ,D1) -> D from D if D has COMPCAT (D1) and D1 has COMRING

Let’s analyze this output. First we find out what some of the abbreviations mean.

)abbreviation query COMPCAT

COMPCAT abbreviates category ComplexCategory

)abbreviation query COMRING

COMRING abbreviates category CommutativeRing

So if D1 is a commutative ring (such as the integers or floats) and D belongs to ComplexCategory
D1, then there is an operation called complex that takes two elements of D1 and creates an element of
D. The primary example of a constructor implementing domains belonging to ComplexCategory is
Complex. See ‘Complex’ on page 447 for more information on that and see Section 6.4 on page 176
for more information on function types.
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Using HyperDoc

Figure 3.1: The HyperDoc root window page.

HyperDoc is the gateway to FriCAS. It’s both an on-line tutorial and an on-line reference manual.
It also enables you to use FriCAS simply by using the mouse and filling in templates. HyperDoc is
available to you if you are running FriCAS under the X Window System.

Pages usually have active areas, marked in this font (bold face). As you move the mouse pointer to
an active area, the pointer changes from a filled dot to an open circle. The active areas are usually
linked to other pages. When you click on an active area, you move to the linked page.

115



116 CHAPTER 3. USING HYPERDOC

3.1 Headings

Most pages have a standard set of buttons at the top of the page. This is what they mean:

Click on this to get help. The button only appears if there is specific help for the page you
are viewing. You can get general help for HyperDoc by clicking the help button on the home
page.

Click here to go back one page. By clicking on this button repeatedly, you can go back several
pages and then take off in a new direction.

Go back to the home page, that is, the page on which you started. Use HyperDoc to explore,
to make forays into new topics. Don’t worry about how to get back. HyperDoc remembers where
you came from. Just click on this button to return.

From the root window (the one that is displayed when you start the system) this button
leaves the HyperDoc program, and it must be restarted if you want to use it again. From any
other HyperDoc window, it just makes that one window go away. You must use this button to
get rid of a window. If you use the window manager “Close” button, then all of HyperDoc goes
away.

The buttons are not displayed if they are not applicable to the page you are viewing. For example,

there is no button on the top-level menu.

3.2 Key Definitions

The following keyboard definitions are in effect throughout HyperDoc. See Section 3.3 on page 117
and Section 3.4 on page 117 for some contextual key definitions.

F1 Display the main help page.

F3 Same as , makes the window go away if you are not at the top-level window or quits the
HyperDoc facility if you are at the top-level.

F5 Rereads the HyperDoc database, if necessary (for system developers).

F9 Displays this information about key definitions.

F12 Same as F3.

Up Arrow Scroll up one line.

Down Arrow Scroll down one line.

Page Up Scroll up one page.

Page Down Scroll down one page.
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3.3 Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically appears along the right
side.

With a scroll bar, your page becomes an aperture, that is, a window into a larger amount of text than
can be displayed at one time. The scroll bar lets you move up and down in the text to see different
parts. It also shows where the aperture is relative to the whole text. The aperture is indicated by a
strip on the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of the scroll bar and click. See
that the aperture moves down one line. Do it several times. Each time you click, the aperture moves
down one line. Move the mouse to the “up-arrow” at the top of the scroll bar and click. The aperture
moves up one line each time you click.

Next move the mouse to any position along the middle of the scroll bar and click. HyperDoc attempts
to move the top of the aperture to this point in the text.

You cannot make the aperture go off the bottom edge. When the aperture is about half the size of
text, the lowest you can move the aperture is halfway down.

To move up or down one screen at a time, use the PageUp and PageDown keys on your keyboard.

They move the visible part of the region up and down one page each time you press them.

If the HyperDoc page does not contain an input area (see Section 3.4 on page 117), you can also use

the Home and ↑ and ↓ arrow keys to navigate. When you press the Home key, the screen is

positioned at the very top of the page. Use the ↑ and ↓ arrow keys to move the screen up and down

one line at a time, respectively.

3.4 Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within the HyperDoc page. Characters
that you type are inserted in front of the underscore. This means that when you type characters at
your keyboard, they go into this first input area.

The input area grows to accommodate as many characters as you type. Use the Backspace key to

erase characters to the left. To modify what you type, use the right-arrow → and left-arrow keys ←
and the keys Insert , Delete , Home and End . These keys are found immediately on the right
of the standard IBM keyboard.

If you press the Home key, the cursor moves to the beginning of the line and if you press the End

key, the cursor moves to the end of the line. Pressing Ctrl – End deletes all the text from the cursor
to the end of the line.

A page may have more than one input area. Only one input area has an underscore cursor. When you
first see a page, the top-most input area contains the cursor. To type information into another input

area, use the Enter or Tab key to move from one input area to another. To move in the reverse

order, use Shift – Tab .
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You can also move from one input area to another using your mouse. Notice that each input area is
active. Click on one of the areas. As you can see, the underscore cursor moves to that window.

3.5 Radio Buttons and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group of buttons like those on car
radios: you can select only one at a time. Once you have selected a button, it appears to be inverted
and contains a checkmark. To change the selection, move the cursor with the mouse to a different
radio button and click.

A toggle is an independent button that displays some on/off state. When “on”, the button appears
to be inverted and contains a checkmark. When “off”, the button is raised. Unlike radio buttons, you
can set a group of them any way you like. To change toggle the selection, move the cursor with the
mouse to the button and click.

3.6 Search Strings

A search string is used for searching some database. To learn about search strings, we suggest that
you bring up the HyperDoc glossary. To do this from the top-level page of HyperDoc:

1. Click on Reference, bringing up the FriCAS Reference page.

2. Click on Glossary, bringing up the glossary.

The glossary has an input area at its bottom. We review the various kinds of search strings you can
enter to search the glossary.

The simplest search string is a word, for example, operation. A word only matches an entry having
exactly that spelling. Enter the word operation into the input area above then click on Search. As
you can see, operation matches only one entry, namely with operation itself.

Normally matching is insensitive to whether the alphabetic characters of your search string are in
uppercase or lowercase. Thus operation and OperAtion both have the same effect.

You will very often want to use the wildcard “*” in your search string so as to match multiple entries
in the list. The search key “*” matches every entry in the list. You can also use “*” anywhere within
a search string to match an arbitrary substring. Try cat* for example: enter cat* into the input area
and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are not adjacent. Try search strings
such as *dom*. As you see, this search string matches domain, domain constructor, subdomain, and
so on.

3.6.1 Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with basic search strings; write
logical expressions using these three operators just as in the FriCAS language. For example, domain or

package matches the two entries domain and package. Similarly, dom* and *con* matches domain
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constructor and others. Also not *a* matches every entry that does not contain the letter a some-
where.

Use parentheses for grouping. For example, dom* and (not *con*) matches domain but not domain
constructor.

There is no limit to how complex your logical expression can be. For example,

a* or b* or c* or d* or e* and (not *a*)

is a valid expression.

3.7 Example Pages

Many pages have FriCAS example commands. Each command has an active “button” along the left
margin. When you click on this button, the output for the command is “pasted-in.” Click again on
the button and you see that the pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part of its text! When you do,
the example line is copied into a new interactive FriCAS buffer for this HyperDoc page.

Sometimes one example line cannot be run before you run an earlier one. Don’t worry—HyperDoc
automatically runs all the necessary lines in the right order!

The new interactive FriCAS buffer disappears when you leave HyperDoc. If you want to get rid of it
beforehand, use the Cancel button of the X Window manager or issue the FriCAS system command
)close.

3.8 X Window Resources for HyperDoc

You can control the appearance of HyperDoc while running under Version 11 of the X Window System
by placing the following resources in the file .Xdefaults in your home directory. In what follows, font is
any valid X11 font name (for example, Rom14) and color is any valid X11 color specification (for example,
NavyBlue). For more information about fonts and colors, refer to the X Window documentation for
your system.

FriCAS.hyperdoc.RmFont: font
This is the standard text font. The default value is "Rom14".

FriCAS.hyperdoc.RmColor: color
This is the standard text color. The default value is "black".

FriCAS.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value is "Bld14".

FriCAS.hyperdoc.ActiveColor: color
This is the color used for HyperDoc link buttons. The default value is "black".

FriCAS.hyperdoc.FriCASFont: font
This is the font used for active FriCAS commands. The default value is "Bld14".
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FriCAS.hyperdoc.FriCASColor: color
This is the color used for active FriCAS commands. The default value is "black".

FriCAS.hyperdoc.BoldFont: font
This is the font used for bold face. The default value is "Bld14".

FriCAS.hyperdoc.BoldColor: color
This is the color used for bold face. The default value is "black".

FriCAS.hyperdoc.TtFont: font
This is the font used for FriCAS output in HyperDoc. This font must be fixed-width. The default
value is "Rom14".

FriCAS.hyperdoc.TtColor: color
This is the color used for FriCAS output in HyperDoc. The default value is "black".

FriCAS.hyperdoc.EmphasizeFont: font
This is the font used for italics. The default value is "Itl14".

FriCAS.hyperdoc.EmphasizeColor: color
This is the color used for italics. The default value is "black".

FriCAS.hyperdoc.InputBackground: color
This is the color used as the background for input areas. The default value is "black".

FriCAS.hyperdoc.InputForeground: color
This is the color used as the foreground for input areas. The default value is "white".

FriCAS.hyperdoc.BorderColor: color
This is the color used for drawing border lines. The default value is "black".

FriCAS.hyperdoc.Background: color
This is the color used for the background of all windows. The default value is "white".

Note: In the past resource names used word Axiom instead of FriCAS.
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Input Files and Output Styles

In this chapter we discuss how to collect FriCAS statements and commands into files and then read the
contents into the workspace. We also show how to display the results of your computations in several
different styles including TEX, FORTRAN and monospace two-dimensional format.1

The printed version of this book uses the FriCAS TEX output formatter. When we demonstrate a
particular output style, we will need to turn TEX formatting off and the output style on so that the
correct output is shown in the text.

4.1 Input Files

In this section we explain what an input file is and why you would want to know about it. We discuss
where FriCAS looks for input files and how you can direct it to look elsewhere. We also show how to
read the contents of an input file into the workspace and how to use the history facility to generate an
input file from the statements you have entered directly into the workspace.

An input file contains FriCAS expressions and system commands. Anything that you can enter directly
to FriCAS can be put into an input file. This is how you save input functions and expressions that
you wish to read into FriCAS more than one time.

To read an input file into FriCAS, use the )read system command. For example, you can read a file
in a particular directory by issuing

)read /spad/src/input/matrix.input

The “.input” is optional; this also works:

)read /spad/src/input/matrix

What happens if you just enter )read matrix.input or even )read matrix? FriCAS looks in your
current working directory for input files that are not qualified by a directory name. Typically, this
directory is the directory from which you invoked FriCAS. To change the current working directory,

1TEX is a trademark of the American Mathematical Society.
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use the )cd system command. The command )cd by itself shows the current working directory. To
change it to the src/input subdirectory for user “babar”, issue

)cd /u/babar/src/input

FriCAS looks first in this directory for an input file. If it is not found, it looks in the system’s directories,
assuming you meant some input file that was provided with FriCAS.

If you have the FriCAS history facility turned on (which it is by default), you can save all the lines
you have entered into the workspace by entering

)history )write

FriCAS tells you what input file to edit to see your statements. The file is in your home directory
or in the directory you specified with )cd.

In Section 5.2 on page 145 we discuss using indentation in input files to group statements into blocks.

4.2 The .fricas.input File

When FriCAS starts up, it tries to read the input file .fricas.input from your home directory. It there
is no .fricas.input in your home directory, it reads the copy located in its own src/input directory.
The file usually contains system commands to personalize your FriCAS environment. In the remainder
of this section we mention a few things that users frequently place in their .fricas.input files.

In order to have FORTRAN output always produced from your computations, place the system com-
mand )set output fortran on in .fricas.input. If you do want to be prompted for confirmation
when you issue the )quit system command, place )set quit protected in .fricas.input. If you
then decide that you do not want to be prompted, issue )set quit unprotected. This is the default
setting 2

To see the other system variables you can set, issue )set or use the HyperDoc Settings facility to
view and change FriCAS system variables.

4.3 Common Features of Using Output Formats

In this section we discuss how to start and stop the display of the different output formats and how to
send the output to the screen or to a file. To fix ideas, we use FORTRAN output format for most of
the examples.

You can use the )set output system command to toggle or redirect the different kinds of output. The
name of the kind of output follows “output” in the command. The names are

2The system command )pquit always prompts you for confirmation.
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fortran for FORTRAN output.
algebra for monospace two-dimensional mathematical output.
tex for TEX output.
mathml for Math ML output.
texmacs for Texmacs output.

For example, issue )set output fortran on to turn on FORTRAN format and issue )set output

fortran off to turn it off. By default, algebra is on and all others are off. When output is started,
it is sent to the screen. To send the output to a file, give the file name without directory or extension.
FriCAS appends a file extension depending on the kind of output being produced. Issue this to
redirect FORTRAN output to, for example, the file linalg.sfort.

)set output fortran linalg

FORTRAN output will be written to file

/dev/shm/hemmecke /fricas /b/src/doc/linalg .sfort .

You must also turn on the creation of FORTRAN output. The above just says where it goes if it is
created.

)set output fortran on

In what directory is this output placed? It goes into the directory from which you started FriCAS, or
if you have used the )cd system command, the one that you specified with )cd. You should use )cd

before you send the output to the file.

You can always direct output back to the screen by issuing this.

)set output fortran console

Let’s make sure FORTRAN formatting is off so that nothing we do from now on produces FORTRAN
output.

)set output fortran off

We also delete the demonstrated output file we created.

)system rm linalg .sfort

You can abbreviate the words “on,” “off” and “console” to the minimal number of characters needed
to distinguish them. Because of this, you cannot send output to files called on.sfort, off.sfort,
of.sfort, console.sfort, consol.sfort and so on.

The width of the output on the page is set by )set output length for all formats except FORTRAN.
Use )set fortran fortlength to change the FORTRAN line length from its default value of 72.

4.4 Monospace Two-Dimensional Mathematical Format

This is the default output format for FriCAS. It is usually on when you start the system.

If it is not, issue this.

)set output algebra on

Since the printed version of this book (as opposed to the HyperDoc version) shows output produced
by the TEX output formatter, let us temporarily turn off TEX output.
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)set output tex off

Here is an example of what it looks like.

matrix [[i*x^i + j*%i*y^j for i in 1..2] for j in 3..4]

+ 3 3 2+

|3%i y + x 3%i y + 2x |

| |

| 4 4 2|

+4%i y + x 4%i y + 2x +

Issue this to turn off this kind of formatting.

)set output algebra off

Turn TEX output on again.

)set output tex on

The characters used for the matrix brackets above are rather ugly. You get this character set when
you issue )set output characters plain. This character set should be used when your machine or
your version of FriCAS does not support Unicode character set. If your machine and your version of
FriCAS support Unicode, issue )set output characters default to get better looking output.

4.5 TeX Format

FriCAS can produce TEX output for your expressions. The output is produced using macros from
the LATEX document preparation system by Leslie Lamport.3 The printed version of this book was
produced using this formatter.

To turn on TEX output formatting, issue this.

)set output tex on

Here is an example of its output.

matrix [[i*x^i + j*\%i*y^j for i in 1..2] for j in 3..4]

\begin{fricasmath}{1}

\begin{MATRIX}{2}3\TIMES \ImaginaryI \TIMES \SUPER{\SYMBOL{y}}{3}+\SYMBOL{x}&%

3\TIMES \ImaginaryI \TIMES \SUPER{\SYMBOL{y}}{3}+2\TIMES \SUPER{\SYMBOL{x}}{2%

}\\4\TIMES \ImaginaryI \TIMES \SUPER{\SYMBOL{y}}{4}+\SYMBOL{x}&4\TIMES %

\ImaginaryI \TIMES \SUPER{\SYMBOL{y}}{4}+2\TIMES \SUPER{\SYMBOL{x}}{2}%

\end{MATRIX}%

\end{fricasmath}

3See Leslie Lamport, LaTeX: A Document Preparation System, Reading, Massachusetts: Addison-Wesley Publishing
Company, Inc., 1986.
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With the definition of the fricasmath environment as defined in fricasmath.sty this formats as

(1)

[
3 i y3 + x 3 i y3 + 2 x2

4 i y4 + x 4 i y4 + 2 x2

]

To turn TEX output formatting off, issue )set output tex off. The LATEX macros in the output
generated by FriCAS are generic. See the source file of TexFormat for appropriate definitions of these
commands.

4.6 Math ML Format

FriCAS can produce Math ML format output for your expressions.

To turn Math ML Format on, issue this.

)set output mathml on

Here is an example of its output.

x+sqrt(2)

<math xmlns="http://www.w3.org/1998/Math/MathML" mathsize="big" display="block">

<mrow><mi>x</mi><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow>

</math>

To turn Math ML Format output formatting off, issue this.

)set output mathml off

4.7 Texmacs Format

FriCAS can produce Texmacs Scheme format output for your expressions. This is mostly useful for
interfacing with Texmacs.

To turn Texmacs Format on, issue this.

)set output texmacs on

Here is an example of its output.

x+sqrt(2)

scheme: (with "mode" "math"

(concat (concat "x" ) "+" (sqrt (concat "2" )))

)

To turn Texmacs Format output formatting off, issue this.

)set output texmacs off
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4.8 FORTRAN Format

In addition to turning FORTRAN output on and off and stating where the output should be placed,
there are many options that control the appearance of the generated code. In this section we describe
some of the basic options. Issue )set fortran to see a full list with their current settings.

The output FORTRAN expression usually begins in column 7. If the expression needs more than
one line, the ampersand character “&” is used in column 6. Since some versions of FORTRAN have
restrictions on the number of lines per statement, FriCAS breaks long expressions into segments with
a maximum of 1320 characters (20 lines of 66 characters) per segment. If you want to change this, say,
to 660 characters, issue the system command )set fortran explength 660. You can turn off the
line breaking by issuing )set fortran segment off. Various code optimization levels are available.
FORTRAN output is produced after you issue this.

)set output fortran on

For the initial examples, we set the optimization level to 0, which is the lowest level.

)set fortran optlevel 0

The output is usually in columns 7 through 72, although fewer columns are used in the following
examples so that the output fits nicely on the page.

)set fortran fortlength 60

By default, the output goes to the screen and is displayed before the standard FriCAS two-dimensional
output. In this example, an assignment to the variable R1 was generated because this is the result of
step 1.

(x+y)^3

(1)y
3 + 3 x y2 + 3x2

y + x
3

Polynomial( Integer )

Here is an example that illustrates the line breaking.

(x+y+z)^3

(2)z
3 + (3 y + 3x) z2 +

(

3 y2 + 6x y + 3x2)
z + y

3 + 3x y2 + 3 x2
y + x

3

Polynomial( Integer )

Note in the above examples that integers are generally converted to floating point numbers, except in
exponents. This is the default behavior but can be turned off by issuing )set fortran ints2floats

off. The rules governing when the conversion is done are:
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1. If an integer is an exponent, convert it to a floating point number if it is greater than 32767 in
absolute value, otherwise leave it as an integer.

2. Convert all other integers in an expression to floating point numbers.

These rules only govern integers in expressions. Numbers generated by FriCAS for DIMENSION state-
ments are also integers.

To set the type of generated FORTRAN data, use one of the following:

)set fortran defaulttype REAL

)set fortran defaulttype INTEGER

)set fortran defaulttype COMPLEX

)set fortran defaulttype LOGICAL

)set fortran defaulttype CHARACTER

When temporaries are created, they are given a default type of REAL. Also, the REAL versions of
functions are used by default.

sin (x)

(3)sin(x)

Expression( Integer )

At optimization level 1, FriCAS removes common subexpressions.

)set fortran optlevel 1

(x+y+z)^3

(4)z
3 + (3 y + 3x) z2 +

(

3 y2 + 6x y + 3x2)
z + y

3 + 3x y2 + 3 x2
y + x

3

Polynomial( Integer )

This changes the precision to DOUBLE. Substitute single for double to return to single precision.

)set fortran precision double

Complex constants display the precision.

2.3 + 5.6*%i

(5)2.3 + 5.6 i
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Complex(Float)

The function names that FriCAS generates depend on the chosen precision.

sin %e

(6)sin(e)

Expression( Integer )

Reset the precision to single and look at these two examples again.

)set fortran precision single

2.3 + 5.6*%i

(7)2.3 + 5.6 i

Complex(Float)

sin %e

(8)sin(e)

Expression( Integer )

Expressions that look like lists, streams, sets or matrices cause array code to be generated.

[x+1,y+1,z+1]

(9)[x+ 1, y + 1, z + 1]

List (Polynomial( Integer ))

A temporary variable is generated to be the name of the array. This may have to be changed in your
particular application.

set [2,3,4,3,5]
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(10){2, 3, 4, 5}

Set( PositiveInteger )

By default, the starting index for generated FORTRAN arrays is 0.

matrix [[2.3 ,9.7] ,[0.0 ,18.778]]

(11)

[

2.3 9.7
0.0 18.778

]

Matrix(Float)

To change the starting index for generated FORTRAN arrays to be 1, issue this. This value can only
be 0 or 1.

)set fortran startindex 1

Look at the code generated for the matrix again.

matrix [[2.3 ,9.7] ,[0.0 ,18.778]]

(12)

[

2.3 9.7
0.0 18.778

]

Matrix(Float)

4.9 General Fortran-generation utilities in FriCAS

This section describes more advanced facilities which are available to users who wish to generate Fortran
code from within FriCAS. There are facilities to manipulate templates, store type information, and
generate code fragments or complete programs.

4.9.1 Template Manipulation

A template is a skeletal program which is “fleshed out” with data when it is processed. It is a sequence
of active and passive parts: active parts are sequences of FriCAS commands which are processed as
if they had been typed into the interpreter; passive parts are simply echoed verbatim on the Fortran
output stream.

Suppose, for example, that we have the following template, stored in the file “test.tem”:
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-- A simple template

beginVerbatim

DOUBLE PRECISION FUNCTION F(X)

DOUBLE PRECISION X

endVerbatim

outputAsFortran("F",f)

beginVerbatim

RETURN

END

endVerbatim

The passive parts lie between the two tokens beginVerbatim and
endVerbatim. There are two active statements: one which is simply a FriCAS ( --) comment, and
one which produces an assignment to the current value of f. We could use it as follows:

(4) ->f := 4.0/(1+X^2)

4

(4) ------

2

X + 1

(5) ->processTemplate "test.tem"

DOUBLE PRECISION FUNCTION F(X)

DOUBLE PRECISION X

F=4.0D0/(X*X+1.0D0)

RETURN

END

(5) "CONSOLE"

(A more reliable method of specifying the filename will be introduced below.) Note that the Fortran
assignment F=4.0D0/(X*X+1.0D0) automatically converted 4.0 and 1 into DOUBLE PRECISION
numbers; in general, the FriCAS Fortran generation facility will convert anything which should be a
floating point object into either a Fortran REAL or DOUBLE PRECISION object. Which alternative
is used is determined by the command

)set fortran precision

-------------------------- The precision Option ---------------------------

Description : precision of generated FORTRAN objects

The precision option may be followed by any one of the following :

-> single

double

The current setting is indicated within the list.

It is sometimes useful to end a template before the file itself ends (e.g. to allow the template to be
tested incrementally or so that a piece of text describing how the template works can be included).
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It is of course possible to “comment-out” the remainder of the file. Alternatively, the single token
endInput as part of an active portion of the template will cause processing to be ended prematurely
at that point.

The processTemplate command comes in two flavours. In the first case, illustrated above, it takes one
argument of domain FileName, the name of the template to be processed, and writes its output on
the current Fortran output stream. In general, a filename can be generated from directory, name and
extension components, using the operation filename, as in

processTemplate filename("","test","tem")

There is an alternative version of processTemplate, which takes two arguments (both of domain File-
Name). In this case the first argument is the name of the template to be processed, and the second is
the file in which to write the results. Both versions return the location of the generated Fortran code
as their result ("CONSOLE" in the above example).

It is sometimes useful to be able to mix active and passive parts of a line or statement. For example
you might want to generate a Fortran Comment describing your data set. For this kind of application
we provide three functions as follows:

fortranLiteral writes a string on the Fortran output
stream

fortranCarriageReturn writes a carriage return on the Fortran out-
put stream

fortranLiteralLine writes a string followed by a return on the
Fortran output stream

So we could create our comment as follows:

m := matrix [[1,2,3],[4 ,5 ,6]]

(1)

[

1 2 3
4 5 6

]

Matrix( Integer )

fortranLiteralLine(concat ["C\ \ \ \ \ \ The \ Matrix \ has\ ", nrows(m)::String , "\

rows\ and \ ", ncols(m):: String , "\ columns "]) $FortranTemplate

or, alternatively:

fortranLiteral("C\ \ \ \ \ \ The\ Matrix \ has\ ") $FortranTemplate

fortranLiteral(nrows(m):: String ) $FortranTemplate

fortranLiteral("\ rows\ and\ ") $FortranTemplate

fortranLiteral(ncols(m):: String ) $FortranTemplate
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fortranLiteral("\ columns ") $FortranTemplate

fortranCarriageReturn () $FortranTemplate

We should stress that these functions, together with the outputAsFortran function are the only sure
ways of getting output to appear on the Fortran output stream. Attempts to use FriCAS commands
such as output or writeline! may appear to give the required result when displayed on the console, but
will give the wrong result when Fortran and algebraic output are sent to differing locations. On the
other hand, these functions can be used to send helpful messages to the user, without interfering with
the generated Fortran.

4.9.2 Manipulating the Fortran Output Stream

Sometimes it is useful to manipulate the Fortran output stream in a program, possibly without being
aware of its current value. The main use of this is for gathering type declarations (see “Fortran Types”
below) but it can be useful in other contexts as well. Thus we provide a set of commands to manipulate
a stack of (open) output streams. Only one stream can be written to at any given time. The stack
is never empty—its initial value is the console or the current value of the Fortran output stream, and
can be determined using

topFortranOutputStack () $FortranOutputStackPackage

(1)"/dev/shm/hemmecke/fricas/b/src/doc/linalg.sfort"

String

(see below). The commands available to manipulate the stack are:

clearFortranOutputStack resets the stack to the console

pushFortranOutputStack pushes a FileName onto the stack

popFortranOutputStack pops the stack

showFortranOutputStack returns the current stack

topFortranOutputStack returns the top element of the stack

These commands are all part of FortranOutputStackPackage.

4.9.3 Fortran Types

When generating code it is important to keep track of the Fortran types of the objects which we are
generating. This is useful for a number of reasons, not least to ensure that we are actually generating
legal Fortran code. The current type system is built up in several layers, and we shall describe each in
turn.
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4.9.4 FortranScalarType

This domain represents the simple Fortran datatypes: REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, INTEGER, and CHARACTER. It is possible to coerce a String or Symbol into the
domain, test whether two objects are equal, and also apply the predicate functions real? etc.

4.9.5 FortranType

This domain represents “full” types: i.e., datatype plus array dimensions (where appropriate) plus
whether or not the parameter is an external subprogram. It is possible to coerce an object of For-
tranScalarType into the domain or construct one from an element of FortranScalarType, a list
of Polynomial Integers (which can of course be simple integers or symbols) representing its dimen-
sions, and a Boolean declaring whether it is external or not. The list of dimensions must be empty if
the Boolean is true. The functions scalarTypeOf, dimensionsOf and external? return the appropriate
parts, and it is possible to get the various basic Fortran Types via functions like fortranReal. For
example:

type:= construct (real ,[i,10], false )$FortranType

or

type :=[ real ,[i,10], false ]$FortranType

scalarTypeOf type

(1)REAL

Union(fst : FortranScalarType , ...)

dimensionsOf type

(2)[i, 10]

List (Polynomial( Integer ))

external ? type

(3)false

Boolean

fortranLogical() $FortranType
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(4)LOGICAL

FortranType

construct (integer ,[], true)$FortranType

4.9.6 SymbolTable

This domain creates and manipulates a symbol table for generated Fortran code. This is used by
FortranProgram to represent the types of objects in a subprogram. The commands available are:

empty creates a new SymbolTable

declare! creates a new entry in a table

fortranTypeOf returns the type of an object in a table

parametersOf returns a list of all the symbols in the table

typeList returns a list of all objects of a given type

typeLists returns a list of lists of all objects sorted by type

externalList returns a list of all EXTERNAL objects

printTypes produces Fortran type declarations from a table

symbols := empty () $SymbolTable

(1)table()

SymbolTable

declare !(X, fortranReal () $FortranType , symbols )

(2)REAL

FortranType

declare !(M,construct (real ,[i,j],false)$FortranType ,symbols )
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declare !([i,j], fortranInteger() $FortranType , symbols )

(3)INTEGER

FortranType

symbols

fortranTypeOf(i,symbols )

(4)INTEGER

FortranType

typeList (real ,symbols )

(5)[X, [M, i, j]]

List (Union(name: Symbol, bounds: List(Union(S: Symbol, P: Polynomial( Integer )))))

printTypes symbols

4.9.7 TheSymbolTable

This domain creates and manipulates one global symbol table to be used, for example, during template
processing. It is also used when linking to external Fortran routines. The information stored for each
subprogram (and the main program segment, where relevant) is:

• its name;

• its return type;

• its argument list;

• and its argument types.

Initially, any information provided is deemed to be for the main program segment. Issuing the
following command indicates that from now on all information refers to the subprogram F.

newSubProgram(F)$TheSymbolTable

It is possible to return to processing the main program segment by issuing the command:

endSubProgram() $TheSymbolTable
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(2)MAIN

Symbol

The following commands exist:

returnType! declares the return type of the current sub-
program

returnTypeOf returns the return type of a subprogram

argumentList! declares the argument list of the current sub-
program

argumentListOf returns the argument list of a subprogram

declare! provides type declarations for parameters of
the current subprogram

symbolTableOf returns the symbol table of a subprogram

printHeader produces the Fortran header for the current
subprogram

In addition there are versions of these commands which are parameterised by the name of a subprogram,
and others parameterised by both the name of a subprogram and by an instance of TheSymbol-
Table.

newSubProgram(F)$TheSymbolTable

argumentList!(F, [X]) $TheSymbolTable

returnType !(F,real)$TheSymbolTable

declare !(X,fortranReal (),F) $TheSymbolTable

(6)REAL

FortranType

printHeader (F)$TheSymbolTable

4.9.8 Advanced Fortran Code Generation

This section describes facilities for representing Fortran statements, and building up complete subpro-
grams from them.
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4.9.9 Switch

This domain is used to represent statements like x < y. Although these can be represented directly in
FriCAS, it is a little cumbersome.

Instead we have a set of operations, such as LT to represent <, to let us build such statements. The
available constructors are:

LT <
GT >
LE ≤
GE ≥
EQ =
AND and
OR or
NOT not

So for example:

LT(x,y)$Switch

(1)x < y

Switch

4.9.10 FortranCode

This domain represents code segments or operations: currently assignments, conditionals, blocks, com-
ments, gotos, continues, various kinds of loops, and return statements. For example we can create
quite a complicated conditional statement using assignments, and then turn it into Fortran code:

c :=

cond(LT(X,Y),assign (F,X),cond(GT(Y,Z),assign (F,Y),assign (F,Z)) $FortranCode)$FortranCode

(1)"conditional"

FortranCode

printCode c

The Fortran code is printed on the current Fortran output stream.

4.9.11 FortranProgram

This domain is used to construct complete Fortran subprograms out of elements of FortranCode. It is
parameterised by the name of the target subprogram (a Symbol), its return type (fromUnion(FortranScalarType,“void”)),
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its arguments (from List Symbol), and its symbol table (from SymbolTable). One can coerce ele-
ments of either FortranCode or Expression into it.

First of all we create a symbol table:

symbols := empty () $SymbolTable

(1)table()

SymbolTable

Now put some type declarations into it:

declare !([X,Y], fortranReal () $FortranType ,symbols )

(2)REAL

FortranType

Then (for convenience) we set up the particular instantiation of FortranProgram

FP := FortranProgram(F,real ,[X,Y], symbols )

(3)FortranProgram(F,REAL, [X, Y ] , table(Y = REAL,X = REAL))

Type

Create an object of type Expression(Integer):

asp := X*sin (Y)

(4)X sin(Y )

Expression( Integer )

Now coerce it into FP, and print its Fortran form:

outputAsFortran(asp ::FP)

We can generate a FortranProgram using FortranCode. For example: Augment our symbol
table:

declare !(Z,fortranReal () $FortranType ,symbols )
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(6)REAL

FortranType

prepare conditional:

cc := cond(LT(X,Y),assign (F,X),assign (F,Y))$FortranCode

(7)"conditional"

FortranCode

and transform the conditional expression we prepared earlier:

outputAsFortran([cc ,returns () $FortranCode]:: FP)



140 CHAPTER 4. INPUT FILES AND OUTPUT STYLES



Chapter 5

Introduction to the FriCAS
Interactive Language

In this chapter we look at some of the basic components of the FriCAS language that you can use
interactively. We show how to create a block of expressions, how to form loops and list iterations, how
to modify the sequential evaluation of a block and how to use if-then-else to evaluate parts of your
program conditionally. We suggest you first read the boxed material in each section and then proceed
to a more thorough reading of the chapter.

5.1 Immediate and Delayed Assignments

A variable in FriCAS refers to a value. A variable has a name beginning with an uppercase or lowercase
alphabetic character, “%”, or “!”. Successive characters (if any) can be any of the above, digits, or
“?”. Case is distinguished. The following are all examples of valid, distinct variable names:

a tooBig? a1B2c3%!?

A %j numberOfPoints

beta6 %J numberofpoints

The “:=” operator is the immediate assignment operator. Use it to associate a value with a variable.

The syntax for immediate assignment for a single variable is

variable := expression

The value returned by an immediate assignment is the value of expression.

The right-hand side of the expression is evaluated, yielding 1. This value is then assigned to a.

a := 1

141
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(1)1

PositiveInteger

The right-hand side of the expression is evaluated, yielding 1. This value is then assigned to b. Thus
a and b both have the value 1 after the sequence of assignments.

b := a

(2)1

PositiveInteger

What is the value of b if a is assigned the value 2?

a := 2

(3)2

PositiveInteger

As you see, the value of b is left unchanged.

b

(4)1

PositiveInteger

This is what we mean when we say this kind of assignment is immediate; b has no dependency on a

after the initial assignment. This is the usual notion of assignment found in programming languages
such as C, PASCAL and FORTRAN.

FriCAS provides delayed assignment with “==”. This implements a delayed evaluation of the right-hand
side and dependency checking.

The syntax for delayed assignment is

variable == expression

The value returned by a delayed assignment is the unique value of Void.

Using a and b as above, these are the corresponding delayed assignments.
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a == 1

b == a

The right-hand side of each delayed assignment is left unevaluated until the variables on the left-hand
sides are evaluated. Therefore this evaluation and . . .

a

Compiling body of rule a to compute value of type PositiveInteger

(7)1

PositiveInteger

this evaluation seem the same as before.

b

Compiling body of rule b to compute value of type PositiveInteger

(8)1

PositiveInteger

If we change a to 2

a == 2

Compiled code for a has been cleared .

Compiled code for b has been cleared .

1 old definition (s) deleted for function or rule a

then a evaluates to 2, as expected, but

a

Compiling body of rule a to compute value of type PositiveInteger

(10)2

PositiveInteger

the value of b reflects the change to a.

b

Compiling body of rule b to compute value of type PositiveInteger
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(11)2

PositiveInteger

It is possible to set several variables at the same time by using a tuple of variables and a tuple of
expressions.1

The syntax for multiple immediate assignments is

( var1, var2, ..., varN ) := ( expr1, expr2, ..., exprN )

The value returned by an immediate assignment is the value of exprN .

This sets x to 1 and y to 2.

(x,y) := (1,2)

(12)2

PositiveInteger

Multiple immediate assignments are parallel in the sense that the expressions on the right are all
evaluated before any assignments on the left are made. However, the order of evaluation of these
expressions is undefined. You can use multiple immediate assignment to swap the values held by
variables.

(x,y) := (y,x)

(13)1

PositiveInteger

x has the previous value of y.

x

(14)2

1A tuple is a collection of things separated by commas, often surrounded by parentheses.
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PositiveInteger

y has the previous value of x.

y

(15)1

PositiveInteger

There is no syntactic form for multiple delayed assignments. See the discussion in Section 6.8 on page
181 about how FriCAS differentiates between delayed assignments and user functions of no arguments.

5.2 Blocks

A block is a sequence of expressions evaluated in the order that they appear, except as modified by
control expressions such as break, return, iterate and if-then-else constructions. The value of a
block is the value of the expression last evaluated in the block.

To leave a block early, use “=>”. For example, i < 0 => x. The expression before the “=>” must
evaluate to true or false. The expression following the “=>” is the return value for the block.

A block can be constructed in two ways:

1. the expressions can be separated by semicolons and the resulting expression surrounded by paren-
theses, and

2. the expressions can be written on succeeding lines with each line indented the same number of
spaces (which must be greater than zero). A block entered in this form is called a pile.

Only the first form is available if you are entering expressions directly to FriCAS. Both forms are
available in .input files.

The syntax for a simple block of expressions entered interactively is

( expression1; expression2; ...; expressionN )

The value returned by a block is the value of an “=>” expression, or expressionN if no “=>” is
encountered.

In .input files, blocks can also be written using piles. The examples throughout this book are assumed
to come from .input files.

In this example, we assign a rational number to a using a block consisting of three expressions. This
block is written as a pile. Each expression in the pile has the same indentation, in this case two spaces
to the right of the first line.
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a :=

i := gcd (234 ,672)

i := 3*i^5 - i + 1

1 / i

(1)
1

23323

Fraction ( Integer )

Here is the same block written on one line. This is how you are required to enter it at the input
prompt.

a := (i := gcd (234 ,672); i := 3*i^5 - i + 1; 1 / i)

(2)
1

23323

Fraction ( Integer )

Blocks can be used to put several expressions on one line. The value returned is that of the last
expression.

(a := 1; b := 2; c := 3; [a,b,c])

(3)[1, 2, 3]

List ( PositiveInteger )

FriCAS gives you two ways of writing a block and the preferred way in an .input file is to use a pile.
Roughly speaking, a pile is a block whose constituent expressions are indented the same amount. You
begin a pile by starting a new line for the first expression, indenting it to the right of the previous line.
You then enter the second expression on a new line, vertically aligning it with the first line. And so
on. If you need to enter an inner pile, further indent its lines to the right of the outer pile. FriCAS
knows where a pile ends. It ends when a subsequent line is indented to the left of the pile or the end
of the file.

Blocks can be used to perform several steps before an assignment (immediate or delayed) is made.

d :=

c := a^2 + b^2

sqrt(c * 1.3)
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(4)2.549509756796392415

Float

Blocks can be used in the arguments to functions. (Here h is assigned 2.1 + 3.5.)

h := 2.1 +

1.0

3.5

(5)5.6

Float

Here the second argument to eval is x = z, where the value of z is computed in the first line of the
block starting on the second line.

eval(x^2 - x*y^2,

z := %pi /2.0 - exp (4.1)

x = z

)

(6)58.769491270567072878 y
2 + 3453.853104201259382

Polynomial(Float)

Blocks can be used in the clauses of if-then-else expressions (see Section 5.3 on page 148).

if h > 3.1 then 1.0 else (z := cos(h); max(z ,0.5))

(7)1.0

Float

This is the pile version of the last block.

if h > 3.1 then

1.0

else

z := cos (h)

max(z ,0.5)
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(8)1.0

Float

Blocks can be nested.

a := (b := factorial (12); c := (d := eulerPhi (22); factorial (d));b+c)

(9)482630400

PositiveInteger

This is the pile version of the last block.

a :=

b := factorial (12)

c :=

d := eulerPhi (22)

factorial (d)

b+c

(10)482630400

PositiveInteger

Since c + d does equal 3628855, a has the value of c and the last line is never evaluated.

a :=

c := factorial 10

d := fibonacci 10

c + d = 3628855 => c

d

(11)3628800

PositiveInteger

5.3 if-then-else

Like many other programming languages, FriCAS uses the three keywords if, then and else to form
conditional expressions. The else part of the conditional is optional. The expression between the if

and then keywords is a predicate: an expression that evaluates to or is convertible to either true or
false, that is, a Boolean.
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The syntax for conditional expressions is

if predicate then expression1 else expression2

where the else expression2 part is optional. The value returned from a conditional expression
is expression1 if the predicate evaluates to true and expression2 otherwise. If no else clause is
given, the value is always the unique value of Void.

An if-then-else expression always returns a value. If the else clause is missing then the entire
expression returns the unique value of Void. If both clauses are present, the type of the value returned
by if is obtained by resolving the types of the values of the two clauses. See Section 2.10 on page 109
for more information.

The predicate must evaluate to, or be convertible to, an object of type Boolean: true or false. By
default, the equal sign = creates an equation.

This is an equation. In particular, it is an object of type Equation Polynomial Integer.

x + 1 = y

(1)x+ 1 = y

Equation(Polynomial(Integer ))

However, for predicates in if expressions, FriCAS places a default target type of Boolean on the
predicate and equality testing is performed. Thus you need not qualify the “=” in any way. In other
contexts you may need to tell FriCAS that you want to test for equality rather than create an equation.
In those cases, use “@” and a target type ofBoolean. See Section 2.9 on page 105 for more information.

The compound symbol meaning “not equal” in FriCAS is ~=. This can be used directly without a
package call or a target specification. The expression a ~= b is directly translated into not (a = b).

Many other functions have return values of type Boolean. These include <, <=, >, >=, ~= and member?.
By convention, operations with names ending in “?” return Boolean values.

The usual rules for piles are suspended for conditional expressions. In .input files, the then and else

keywords can begin in the same column as the corresponding if but may also appear to the right.
Each of the following styles of writing if-then-else expressions is acceptable:

if i>0 then output("positive") else output("nonpositive")

if i > 0 then output("positive")

else output("nonpositive")

if i > 0 then output("positive")

else output("nonpositive")

if i > 0

then output("positive")
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else output("nonpositive")

if i > 0

then output("positive")

else output("nonpositive")

A block can follow the then or else keywords. In the following two assignments to a, the then and
else clauses each are followed by two-line piles. The value returned in each is the value of the second
line.

a :=

if i > 0 then

j := sin(i * pi())

exp(j + 1/j)

else

j := cos(i * 0.5 * pi())

log(abs(j)^5 + 1)

a :=

if i > 0

then

j := sin(i * pi())

exp(j + 1/j)

else

j := cos(i * 0.5 * pi())

log(abs(j)^5 + 1)

These are both equivalent to the following:

a :=

if i > 0 then (j := sin(i * pi()); exp(j + 1/j))

else (j := cos(i * 0.5 * pi()); log(abs(j)^5 + 1))

5.4 Loops

A loop is an expression that contains another expression, called the loop body, which is to be evaluated
zero or more times. All loops contain the repeat keyword and return the unique value of Void. Loops
can contain inner loops to any depth.

The most basic loop is of the form

repeat loopBody

Unless loopBody contains a break or return expression, the loop repeats forever. The value
returned by the loop is the unique value of Void.
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5.4.1 Compiling vs. Interpreting Loops

FriCAS tries to determine completely the type of every object in a loop and then to translate the loop
body to LISP or even to machine code. This translation is called compilation.

If FriCAS decides that it cannot compile the loop, it issues a message stating the problem and then
the following message:

We will attempt to step through and interpret the code.

It is still possible that FriCAS can evaluate the loop but in interpret-code mode. See Section 6.10 on
page 184 where this is discussed in terms of compiling versus interpreting functions.

5.4.2 return in Loops

A return expression is used to exit a function with a particular value. In particular, if a return is in
a loop within the function, the loop is terminated whenever the return is evaluated. Suppose we
start with this.

f() ==

i := 1

repeat

if factorial (i) > 1000 then return i

i := i + 1

When factorial(i) is big enough, control passes from inside the loop all the way outside the function,
returning the value of i (or so we think).

f()

Compiling function f with type () -> Void

What went wrong? Isn’t it obvious that this function should return an integer? Well, FriCAS makes
no attempt to analyze the structure of a loop to determine if it always returns a value because, in
general, this is impossible. So FriCAS has this simple rule: the type of the function is determined by
the type of its body, in this case a block. The normal value of a block is the value of its last expression,
in this case, a loop. And the value of every loop is the unique value of Void! So the return type of f
is Void.

There are two ways to fix this. The best way is for you to tell FriCAS what the return type of f is. You
do this by giving f a declaration f: ()→ Integer prior to calling for its value. This tells FriCAS:
“trust me—an integer is returned.” We’ll explain more about this in the next chapter. Another clumsy
way is to add a dummy expression as follows.

Since we want an integer, let’s stick in a dummy final expression that is an integer and will never be
evaluated.

f() ==

i := 1

repeat

if factorial (i) > 1000 then return i

i := i + 1

0

Compiled code for f has been cleared .
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1 old definition (s) deleted for function or rule f

When we try f again we get what we wanted. See Section 6.15 on page 199 for more information.

f()

Compiling function f with type () -> NonNegativeInteger

(4)7

PositiveInteger

5.4.3 break in Loops

The break keyword is often more useful in terminating a loop. A break causes control to transfer to
the expression immediately following the loop. As loops always return the unique value of Void, you
cannot return a value with break. That is, break takes no argument.

This example is a modification of the last example in the previous section. Instead of using return,
we’ll use break.

f() ==

i := 1

repeat

if factorial (i) > 1000 then break

i := i + 1

i

The loop terminates when factorial(i) gets big enough, the last line of the function evaluates to the
corresponding “good” value of i, and the function terminates, returning that value.

f()

Compiling function f with type () -> PositiveInteger

(2)7

PositiveInteger

You can only use break to terminate the evaluation of one loop. Let’s consider a loop within a loop,
that is, a loop with a nested loop. First, we initialize two counter variables.

(i,j) := (1, 1)

(3)1



5.4. LOOPS 153

PositiveInteger

Nested loops must have multiple break expressions at the appropriate nesting level. How would you
rewrite this so (i + j)> 10 is only evaluated once?

repeat

repeat

if (i + j) > 10 then break

j := j + 1

if (i + j) > 10 then break

i := i + 1

5.4.4 break vs. => in Loop Bodies

Compare the following two loops:

i := 1 i := 1

repeat repeat

i := i + 1 i := i + 1

i > 3 => i if i > 3 then break

output(i) output(i)

In the example on the left, the values 2 and 3 for i are displayed but then the “=>” does not allow
control to reach the call to output again. The loop will not terminate until you run out of space or
interrupt the execution. The variable i will continue to be incremented because the “=>” only means
to leave the block, not the loop.

In the example on the right, upon reaching 4, the break will be executed, and both the block and the
loop will terminate. This is one of the reasons why both “=>” and break are provided. Using a while

clause (see below) with the “=>” lets you simulate the action of break.

5.4.5 More Examples of break

Here we give four examples of repeat loops that terminate when a value exceeds a given bound.

First, initialize i as the loop counter.

i := 0

(1)0

NonNegativeInteger

Here is the first loop. When the square of i exceeds 100, the loop terminates.

repeat

i := i + 1

if i^2 > 100 then break
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Upon completion, i should have the value 11.

i

(3)11

NonNegativeInteger

Do the same thing except use “=>” instead an if-then expression.

i := 0

(4)0

NonNegativeInteger

repeat

i := i + 1

i^2 > 100 => break

i

(6)11

NonNegativeInteger

As a third example, we use a simple loop to compute n!.

(n, i, f) := (100, 1, 1)

(7)1

PositiveInteger

Use i as the iteration variable and f to compute the factorial.

repeat

if i > n then break

f := f * i

i := i + 1

Look at the value of f.

f
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(9)9332621544394415268169923885626670049071596826438162146859296389521759999322991560894146397615651828625369792082722

PositiveInteger

Finally, we show an example of nested loops. First define a four by four matrix.

m := matrix [[21 ,37 ,53 ,14] , [8,-24,22,-16], [2,10,15,14], [26 ,33 ,55 , -13]]

(10)









21 37 53 14
8 −24 22 −16
2 10 15 14
26 33 55 −13









Matrix( Integer )

Next, set row counter r and column counter c to 1. Note: if we were writing a function, these would
all be local variables rather than global workspace variables.

(r, c) := (1, 1)

(11)1

PositiveInteger

Also, let lastrow and lastcol be the final row and column index.

(lastrow , lastcol ) := (nrows(m), ncols (m))

(12)4

PositiveInteger

Scan the rows looking for the first negative element. We remark that you can reformulate this example
in a better, more concise form by using a for clause with repeat. See Section 5.4.8 on page 158 for
more information.

repeat

if r > lastrow then break

c := 1

repeat

if c > lastcol then break

if elt(m,r,c) < 0 then

output [r, c, elt(m,r,c)]

r := lastrow

break -- don’t look any further
c := c + 1

r := r + 1
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5.4.6 iterate in Loops

FriCAS provides an iterate expression that skips over the remainder of a loop body and starts the
next loop iteration. We first initialize a counter.

i := 0

(1)0

NonNegativeInteger

Display the even integers from 2 to 5.

repeat

i := i + 1

if i > 5 then break

if odd ?(i) then iterate

output (i)

5.4.7 while Loops

The repeat in a loop can be modified by adding one or more while clauses. Each clause contains a
predicate immediately following the while keyword. The predicate is tested before the evaluation of
the body of the loop. The loop body is evaluated whenever the predicates in a while clause are all
true.

The syntax for a simple loop using while is

while predicate repeat loopBody

The predicate is evaluated before loopBody is evaluated. A while loop terminates immediately
when predicate evaluates to false or when a break or return expression is evaluated in loopBody.
The value returned by the loop is the unique value of Void.

Here is a simple example of using while in a loop. We first initialize the counter.

i := 1

(1)1

PositiveInteger

The steps involved in computing this example are (1) set i to 1, (2) test the condition i < 1 and
determine that it is not true, and (3) do not evaluate the loop body and therefore do not display
"hello".
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while i < 1 repeat

output "hello "

i := i + 1

If you have multiple predicates to be tested use the logical and operation to separate them. FriCAS
evaluates these predicates from left to right.

(x, y) := (1, 1)

(3)1

PositiveInteger

while x < 4 and y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

A break expression can be included in a loop body to terminate a loop even if the predicate in any
while clauses are not false.

(x, y) := (1, 1)

(5)1

PositiveInteger

This loop has multiple while clauses and the loop terminates before any one of their conditions
evaluates to false.

while x < 4 while y < 10 repeat

if x + y > 7 then break

output [x,y]

x := x + 1

y := y + 2

Here’s a different version of the nested loops that looked for the first negative element in a matrix.

m := matrix [[21 ,37 ,53 ,14] , [8,-24,22,-16], [2,10,15,14], [26 ,33 ,55 , -13]]

(7)









21 37 53 14
8 −24 22 −16
2 10 15 14
26 33 55 −13
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Matrix( Integer )

Initialized the row index to 1 and get the number of rows and columns. If we were writing a function,
these would all be local variables.

r := 1

(8)1

PositiveInteger

(lastrow , lastcol ) := (nrows(m), ncols (m))

(9)4

PositiveInteger

Scan the rows looking for the first negative element.

while r <= lastrow repeat

c := 1 -- index of first column
while c <= lastcol repeat

if elt(m,r,c) < 0 then

output [r, c, elt(m,r,c)]

r := lastrow

break -- don’t look any further
c := c + 1

r := r + 1

5.4.8 for Loops

FriCAS provides the for and in keywords in repeat loops, allowing you to iterate across all elements
of a list, or to have a variable take on integral values from a lower bound to an upper bound. We
shall refer to these modifying clauses of repeat loops as for clauses. These clauses can be present in
addition to while clauses. As with all other types of repeat loops, break can be used to prematurely
terminate the evaluation of the loop.

The syntax for a simple loop using for is

for iterator repeat loopBody

The iterator has several forms. Each form has an end test which is evaluated before loopBody is
evaluated. A for loop terminates immediately when the end test succeeds (evaluates to true) or
when a break or return expression is evaluated in loopBody. The value returned by the loop is
the unique value of Void.
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5.4.9 for i in n..m repeat

If for is followed by a variable name, the in keyword and then an integer segment of the form n..m,
the end test for this loop is the predicate i > m. The body of the loop is evaluated m-n+1 times if this
number is greater than 0. If this number is less than or equal to 0, the loop body is not evaluated at
all.

The variable i has the value n, n+1, ..., m for successive iterations of the loop body. The loop
variable is a local variable within the loop body: its value is not available outside the loop body and
its value and type within the loop body completely mask any outer definition of a variable with the
same name.

This loop prints the values of 103, 113, and 123:

for i in 10..12 repeat output (i^3)

Here is a sample list.

a := [1,2,3]

(2)[1, 2, 3]

List ( PositiveInteger )

Iterate across this list, using “.” to access the elements of a list and the # operation to count its
elements.

for i in 1..#a repeat output (a.i)

This type of iteration is applicable to anything that uses “.”. You can also use it with functions that
use indices to extract elements. Define m to be a matrix.

m := matrix [[1 ,2] ,[4 ,3] ,[9 ,0]]

(4)





1 2
4 3
9 0





Matrix(NonNegativeInteger)

Display the rows of m.

for i in 1.. nrows(m) repeat output row (m,i)

You can use iterate with for-loops. Display the even integers in a segment.

for i in 1..5 repeat

if odd ?(i) then iterate

output (i)

See ‘Segment’ on page 709 for more information about segments.
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5.4.10 for i in n..m by s repeat

By default, the difference between values taken on by a variable in loops such as for i in n..m

repeat ... is 1. It is possible to supply another, possibly negative, step value by using the by

keyword along with for and in. Like the upper and lower bounds, the step value following the by

keyword must be an integer. Note that the loop for i in 1..2 by 0 repeat output(i) will not
terminate by itself, as the step value does not change the index from its initial value of 1.

This expression displays the odd integers between two bounds.

for i in 1..5 by 2 repeat output (i)

Use this to display the numbers in reverse order.

for i in 5..1 by -2 repeat output (i)

5.4.11 for i in n.. repeat

If the value after the “..” is omitted, the loop has no end test. A potentially infinite loop is thus
created. The variable is given the successive values n, n+1, n+2, ... and the loop is terminated only
if a break or return expression is evaluated in the loop body. However you may also add some other
modifying clause on the repeat (for example, a while clause) to stop the loop.

This loop displays the integers greater than or equal to 15 and less than the first prime greater than
15.

for i in 15.. while not prime ?(i) repeat output (i)

5.4.12 for x in l repeat

Another variant of the for loop has the form:

for x in list repeat loopBody

This form is used when you want to iterate directly over the elements of a list. In this form of the for
loop, the variable x takes on the value of each successive element in l. The end test is most simply
stated in English: “are there no more x in l?”

If l is this list,

l := [0,-5,3]

(1)[0, −5, 3]

List ( Integer )

display all elements of l, one per line.

for x in l repeat output (x)

Since the list constructing expression expand [n..m] creates the list [n, n+1, ..., m]2, you might

2This list is empty if n > m.
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be tempted to think that the loops

for i in n..m repeat output(i)

and

for x in expand [n..m] repeat output(x)

are equivalent. The second form first creates the list expand [n..m] (no matter how large it might be)
and then does the iteration. The first form potentially runs in much less space, as the index variable i
is simply incremented once per loop and the list is not actually created. Using the first form is much
more efficient. Of course, sometimes you really want to iterate across a specific list. This displays
each of the factors of 2400000.

for f in factors (factor (2400000) ) repeat output (f)

5.4.13 “Such that” Predicates

A for loop can be followed by a “|” and then a predicate. The predicate qualifies the use of the values
from the iterator following the for. Think of the vertical bar “|” as the phrase “such that.” This
loop expression prints out the integers n in the given segment such that n is odd.

for n in 0..4 | odd? n repeat output n

A for loop can also be written

for iterator | predicate repeat loopBody

which is equivalent to:

for iterator repeat if predicate then loopBody else iterate

The predicate need not refer only to the variable in the for clause: any variable in an outer scope can
be part of the predicate. In this example, the predicate on the inner for loop uses i from the outer
loop and the j from the for clause that it directly modifies.

for i in 1..50 repeat

for j in 1..50 | factorial (i+j) < 25 repeat

output [i,j]

5.4.14 Parallel Iteration

The last example of the previous section gives an example of nested iteration: a loop is contained
in another loop. Sometimes you want to iterate across two lists in parallel, or perhaps you want to
traverse a list while incrementing a variable.



162 CHAPTER 5. INTRODUCTION TO THE FRICAS INTERACTIVE LANGUAGE

The general syntax of a repeat loop is

iterator1 iterator2 ...iteratorN repeat loopBody

where each iterator is either a for or a while clause. The loop terminates immediately when the
end test of any iterator succeeds or when a break or return expression is evaluated in loopBody.
The value returned by the loop is the unique value of Void.

Here we write a loop to iterate across two lists, computing the sum of the pairwise product of elements.
Here is the first list.

l := [1,3,5,7]

(1)[1, 3, 5, 7]

List ( PositiveInteger )

And the second.

m := [100 ,200]

(2)[100, 200]

List ( PositiveInteger )

The initial value of the sum counter.

sum := 0

(3)0

NonNegativeInteger

The last two elements of l are not used in the calculation because m has two fewer elements than l.

for x in l for y in m repeat

sum := sum + x*y

Display the “dot product.”

sum
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(5)700

NonNegativeInteger

Next, we write a loop to compute the sum of the products of the loop elements with their positions in
the loop.

l := [2,3,5,7,11,13,17 ,19,23 ,29 ,31,37]

(6)[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

List ( PositiveInteger )

The initial sum.

sum := 0

(7)0

NonNegativeInteger

Here looping stops when the list l is exhausted, even though the for i in 0.. specifies no terminating
condition.

for i in 0.. for x in l repeat sum := i * x

Display this weighted sum.

sum

(9)407

NonNegativeInteger

When “|” is used to qualify any of the for clauses in a parallel iteration, the variables in the predicates
can be from an outer scope or from a for clause in or to the left of a modified clause.

This is correct:

for i in 1..10 repeat

for j in 200..300 | odd? (i+j) repeat

output [i,j]



164 CHAPTER 5. INTRODUCTION TO THE FRICAS INTERACTIVE LANGUAGE

This is not correct since the variable j has not been defined outside the inner loop.

for i in 1..10 | odd? (i+j) repeat -- wrong, j not defined

for j in 200..300 repeat

output [i,j]

This example shows that it is possible to mix several of the forms of repeat modifying clauses on a
loop.

for i in 1..10

for j in 151..160 | odd? j

while i + j < 160 repeat

output [i,j]

Here are useful rules for composing loop expressions:

1. while predicates can only refer to variables that are global (or in an outer scope) or that are
defined in for clauses to the left of the predicate.

2. A “such that” predicate (something following “|”) must directly follow a for clause and can only
refer to variables that are global (or in an outer scope) or defined in the modified for clause or
any for clause to the left.

5.5 Creating Lists and Streams with Iterators

All of what we did for loops in Section 5.4 on page 150 can be transformed into expressions that create
lists and streams. The repeat, break or iterate words are not used but all the other ideas carry
over. Before we give you the general rule, here are some examples which give you the idea.

This creates a simple list of the integers from 1 to 10.

mylist := [i for i in 1..10]

(1)[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

List ( PositiveInteger )

Create a stream of the integers greater than or equal to 1.

mystream := [i for i in 1..]

(2)[1, 2, 3, 4, 5, 6, 7, . . .]

Stream( PositiveInteger )

This is a list of the prime integers between 1 and 10, inclusive.
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[i for i in 1..10 | prime? i]

(3)[2, 3, 5, 7]

List ( PositiveInteger )

This is a stream of the prime integers greater than or equal to 1.

[i for i in 1.. | prime? i]

(4)[2, 3, 5, 7, 11, 13, 17, . . .]

Stream( PositiveInteger )

This is a list of the integers between 1 and 10, inclusive, whose squares are less than 700.

[i for i in 1..10 while i*i < 700]

(5)[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

List ( PositiveInteger )

This is a stream of the integers greater than or equal to 1 whose squares are less than 700.

[i for i in 1.. while i*i < 700]

(6)[1, 2, 3, 4, 5, 6, 7, . . .]

Stream( PositiveInteger )

Got the idea? Here is the general rule.

The general syntax of a collection is

[ collectExpression iterator1 iterator2 ...iteratorN ]

where each iteratori is either a for or a while clause. The loop terminates immediately when the
end test of any iteratori succeeds or when a return expression is evaluated in collectExpression.
The value returned by the collection is either a list or a stream of elements, one for each iteration
of the collectExpression.
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Be careful when you use while to create a stream. By default, FriCAS tries to compute and display
the first ten elements of a stream. If the while condition is not satisfied quickly, FriCAS can spend a
long (possibly infinite) time trying to compute the elements. Use )set streams calculate to change
the default to something else. This also affects the number of terms computed and displayed for power
series. For the purposes of this book, we have used this system command to display fewer than ten
terms. Use nested iterators to create lists of lists which can then be given as an argument to matrix.

matrix [[x^i+j for i in 1..3] for j in 10..12]

(7)





x+ 10 x2 + 10 x3 + 10
x+ 11 x2 + 11 x3 + 11
x+ 12 x2 + 12 x3 + 12





Matrix(Polynomial( Integer ))

You can also create lists of streams, streams of lists and streams of streams. Here is a stream of
streams.

[[i/j for i in j+1..] for j in 1..]

(8)

[

[2, 3, 4, 5, 6, 7, 8, . . .] ,

[

3

2
, 2,

5

2
, 3,

7

2
, 4,

9

2
, . . .

]

,

[

4

3
,
5

3
, 2,

7

3
,
8

3
, 3,

10

3
, . . .

]

,

[

5

4
,
3

2
,
7

4
, 2,

9

4
,
5

2
,
11

4
, . . .

]

,

[

6

5
,
7

5
,
8

5
,
9

5
, 2,

11

5
,
12

5
, . . .

]

,

[

7

6
,
4

3
,
3

2
,
5

3
,
11

6
, 2,

13

6
, . . .

]

,

[

8

7
,
9

7
,
10

7
,
11

7
,
12

7
,
13

7
, 2, . . .

]

, . . .

]

Stream(Stream(Fraction(Integer)))

You can use parallel iteration across lists and streams to create new lists.

[i/j for i in 3.. by 10 for j in 2..]

(9)

[

3

2
,
13

3
,
23

4
,
33

5
,
43

6
,
53

7
,
63

8
, . . .

]

Stream(Fraction( Integer ))

Iteration stops if the end of a list or stream is reached.

[i^j for i in 1..7 for j in 2.. ]
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(10)[1, 8, 81, 1024, 15625, 279936, 5764801]

Stream(Integer)

As with loops, you can combine these modifiers to make very complicated conditions.

[[[i,j] for i in 10..15 | prime? i] for j in 17..22 | j = squareFreePart j]

(11)[[[11, 17] , [13, 17]] , [[11, 19] , [13, 19]] , [[11, 21] , [13, 21]] , [[11, 22] , [13, 22]]]

List ( List ( List ( PositiveInteger )))

See ‘List’ on page 607 and ‘Stream’ on page 728 for more information on creating and manipulating
lists and streams, respectively.

5.6 An Example: Streams of Primes

We conclude this chapter with an example of the creation and manipulation of infinite streams of prime
integers. This might be useful for experiments with numbers or other applications where you are using
sequences of primes over and over again. As for all streams, the stream of primes is only computed
as far out as you need. Once computed, however, all the primes up to that point are saved for future
reference.

Two useful operations provided by the FriCAS library are prime? and nextPrime. A straight-forward
way to create a stream of prime numbers is to start with the stream of positive integers [2,..] and
filter out those that are prime. Create a stream of primes.

primes : Stream Integer := [i for i in 2.. | prime ? i]

(1)[2, 3, 5, 7, 11, 13, 17, . . .]

Stream(Integer)

A more elegant way, however, is to use the stream operation from Stream. Given an initial value a

and a function f, stream constructs the stream [a, f(a), f(f(a)), ...]. This function gives you
the quickest method of getting the stream of primes. This is how you use stream to generate an
infinite stream of primes.

primes := stream (nextPrime ,2)
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(2)[2, 3, 5, 7, 11, 13, 17, . . .]

Stream(Integer)

Once the stream is generated, you might only be interested in primes starting at a particular value.

smallPrimes := [p for p in primes | p > 1000]

(3)[1009, 1013, 1019, 1021, 1031, 1033, 1039, . . .]

Stream(Integer)

Here are the first 11 primes greater than 1000.

[p for p in smallPrimes for i in 1..11]

(4)[1009, 1013, 1019, 1021, 1031, 1033, 1039, . . .]

Stream(Integer)

Here is a stream of primes between 1000 and 1200.

[p for p in smallPrimes while p < 1200]

(5)[1009, 1013, 1019, 1021, 1031, 1033, 1039, . . .]

Stream(Integer)

To get these expanded into a finite stream, you call complete on the stream.

complete %

(6)[1009, 1013, 1019, 1021, 1031, 1033, 1039, . . .]

Stream(Integer)

Twin primes are consecutive odd number pairs which are prime. Here is the stream of twin primes.

twinPrimes := [[p,p+2] for p in primes | prime ?(p + 2)]
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(7)[[3, 5] , [5, 7] , [11, 13] , [17, 19] , [29, 31] , [41, 43] , [59, 61] , . . .]

Stream(List( Integer ))

Since we already have the primes computed we can avoid the call to prime? by using a double iteration.
This time we’ll just generate a stream of the first of the twin primes.

firstOfTwins:= [p for p in primes for q in rest primes | q=p+2]

(8)[3, 5, 11, 17, 29, 41, 59, . . .]

Stream(Integer)

Let’s try to compute the infinite stream of triplet primes, the set of primes p such that [p,p+2,p+4]
are primes. For example, [3,5,7] is a triple prime. We could do this by a triple for iteration. A more
economical way is to use firstOfTwins. This time however, put a semicolon at the end of the line.

Put a semicolon at the end so that no elements are computed.

firstTriplets := [p for p in firstOfTwins for q in rest firstOfTwins | q = p+2];

Stream(Integer)

What happened? As you know, by default FriCAS displays the first ten elements of a stream when
you first display it. And, therefore, it needs to compute them! If you want no elements computed, just
terminate the expression by a semicolon (“;”).3

Compute the first triplet prime.

firstTriplets.1

(10)3

PositiveInteger

If you want to compute another, just ask for it. But wait a second! Given three consecutive odd
integers, one of them must be divisible by 3. Thus there is only one triplet prime. But suppose that
you did not know this and wanted to know what was the tenth triplet prime.

firstTriples.10

3Why does this happen? The semi-colon prevents the display of the result of evaluating the expression. Since no
stream elements are needed for display (or anything else, so far), none are computed.
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To compute the tenth triplet prime, FriCAS first must compute the second, the third, and so on. But
since there isn’t even a second triplet prime, FriCAS will compute forever. Nonetheless, this effort can

produce a useful result. After waiting a bit, hit Ctrl – c . The system responds as follows.

>> System error:

Console interrupt.

You are being returned to the top level of

the interpreter.

Let’s say that you want to know how many primes have been computed. Issue

numberOfComputedEntries primes

and, for this discussion, let’s say that the result is 2045. How big is the 2045th prime?

primes .2045

(11)17837

PositiveInteger

What you have learned is that there are no triplet primes between 5 and 17837. Although this result
is well known (some might even say trivial), there are many experiments you could make where the
result is not known. What you see here is a paradigm for testing of hypotheses. Here our hypothesis
could have been: “there is more than one triplet prime.” We have tested this hypothesis for 17837
cases. With streams, you can let your machine run, interrupt it to see how far it has progressed, then
start it up and let it continue from where it left off.



Chapter 6

User-Defined Functions, Macros
and Rules

In this chapter we show you how to write functions and macros, and we explain how FriCAS looks for
and applies them. We show some simple one-line examples of functions, together with larger ones that
are defined piece-by-piece or through the use of piles.

6.1 Functions vs. Macros

A function is a program to perform some computation. Most functions have names so that it is easy
to refer to them. A simple example of a function is one named abs which computes the absolute value
of an integer. This is a use of the “absolute value” library function for integers.

abs (-8)

(1)8

PositiveInteger

This is an unnamed function that does the same thing, using the “maps-to” syntax “+->” that we
discuss in Section 6.17 on page 208.

(x +-> if x < 0 then -x else x)(-8)

(2)8

PositiveInteger

171
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Functions can be used alone or serve as the building blocks for larger programs. Usually they return
a value that you might want to use in the next stage of a computation, but not always (for example,
see ‘Exit’ on page 483 and ‘Void’ on page 767). They may also read data from your keyboard, move
information from one place to another, or format and display results on your screen.

In FriCAS, as in mathematics, functions are usually parameterized. Each time you call (some people
say apply or invoke) a function, you give values to the parameters (variables). Such a value is called
an argument of the function. FriCAS uses the arguments for the computation. In this way you get
different results depending on what you “feed” the function.

Functions can have local variables or refer to global variables in the workspace. FriCAS can often
compile functions so that they execute very efficiently. Functions can be passed as arguments to other
functions.

Macros are textual substitutions. They are used to clarify the meaning of constants or expressions
and to be templates for frequently used expressions. Macros can be parameterized but they are not
objects that can be passed as arguments to functions. In effect, macros are extensions to the FriCAS
expression parser.

6.2 Macros

A macro provides general textual substitution of an FriCAS expression for a name. You can think of
a macro as being a generalized abbreviation. You can only have one macro in your workspace with a
given name, no matter how many arguments it has.

The two general forms for macros are

macro name == body
macro name(arg1,...) == body

where the body of the macro can be any FriCAS expression.

For example, suppose you decided that you like to use df for D. You define the macro df like this.

macro df == D

Whenever you type df, the system expands it to D.

df(x^2 + x + 1,x)

(2)2x+ 1

Polynomial( Integer )

Macros can be parameterized and so can be used for many different kinds of objects.

macro ff(x) == x^2 + 1

Apply it to a number, a symbol, or an expression.
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ff z

(4)z
2 + 1

Polynomial( Integer )

Macros can also be nested, but you get an error message if you run out of space because of an infinite
nesting loop.

macro gg(x) == ff(2*x - 2/3)

This new macro is fine as it does not produce a loop.

gg(1/w)

(6)
13w2 − 24w + 36

9w2

Fraction (Polynomial( Integer ))

This, however, loops since gg is defined in terms of ff.

macro ff(x) == gg(-x)

The body of a macro can be a block.

macro next == (past := present ; present := future ; future := past + present )

Before entering next, we need values for present and future.

present : Integer := 0

(9)0

Integer

future : Integer := 1

(10)1
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Integer

Repeatedly evaluating next produces the next Fibonacci number.

next

(11)1

Integer

And the next one.

next

(12)2

Integer

Here is the infinite stream of the rest of the Fibonacci numbers.

[next for i in 1..]

(13)[3, 5, 8, 13, 21, 34, 55, . . .]

Stream(Integer)

Bundle all the above lines into a single macro.

macro fibStream ==

present : Integer := 1

future : Integer := 1

[next for i in 1..] where

macro next ==

past := present

present := future

future := past + present

Use concat to start with the first two Fibonacci numbers.

concat ([1,1], fibStream )

(15)[1, 1, 2, 3, 5, 8, 13, . . .]
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Stream(Integer)

An easier way to compute these numbers is to use the library operation fibonacci.

[fibonacci i for i in 1..]

(16)[1, 1, 2, 3, 5, 8, 13, . . .]

Stream(Integer)

6.3 Introduction to Functions

Each name in your workspace can refer to a single object. This may be any kind of object including
a function. You can use interactively any function from the library or any that you define in the
workspace. In the library the same name can have very many functions, but you can have only one
function with a given name, although it can have any number of arguments that you choose.

If you define a function in the workspace that has the same name and number of arguments as one
in the library, then your definition takes precedence. In fact, to get the library function you must
package-call it (see Section 2.9 on page 105).

To use a function in FriCAS, you apply it to its arguments. Most functions are applied by entering
the name of the function followed by its argument or arguments.

factor (12)

(1)22 3

Factored( Integer )

Some functions like + have infix operators as names.

3 + 4

(2)7

PositiveInteger

The function + has two arguments. When you give it more than two arguments, FriCAS groups the
arguments to the left. This expression is equivalent to (1 + 2)+ 7.

1 + 2 + 7
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(3)10

PositiveInteger

All operations, including infix operators, can be written in prefix form, that is, with the operation
name followed by the arguments in parentheses. For example, 2 + 3 can alternatively be written as
+(2,3). But +(2,3,4) is an error since + takes only two arguments.

Prefix operations are generally applied before the infix operation. Thus factorial 3 + 1 means
factorial(3)+ 1 producing 7, and - 2 + 5 means (-2) + 5 producing 3. An example of a prefix
operator is prefix -. For example, - 2 + 5 converts to (- 2) + 5 producing the value 3. Any prefix
function taking two arguments can be written in an infix manner by putting an ampersand (“&”) before
the name. Thus D(2*x,x) can be written as 2*x &D x returning 2.

Every function in FriCAS is identified by a name and type.1 The type of a function is always a mapping
of the form Source →Target where Source and Target are types. To enter a type from the keyboard,
enter the arrow by using a hyphen “-” followed by a greater-than sign “>”, e.g. Integer→Integer.

Let’s go back to +. There are many + functions in the FriCAS library: one for integers, one for floats,
another for rational numbers, and so on. These + functions have different types and thus are different
functions. You’ve seen examples of this overloading before—using the same name for different functions.
Overloading is the rule rather than the exception. You can add two integers, two polynomials, two
matrices or two power series. These are all done with the same function name but with different
functions.

6.4 Declaring the Type of Functions

In Section 2.3 on page 86 we discussed how to declare a variable to restrict the kind of values that can
be assigned to it. In this section we show how to declare a variable that refers to function objects.

A function is an object of type

Source→Type

where Source and Target can be any type. A common type for Source is (T1, . . . , Tn), to indicate
a function of n arguments.

If g takes an Integer, a Float and another Integer, and returns a String, the declaration is written
this way.

g: (Integer ,Float ,Integer ) -> String

The types need not be written fully; using abbreviations, the above declaration is:

g: (INT ,FLOAT ,INT) -> STRING

1An exception is an “anonymous function” discussed in Section 6.17 on page 208.
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It is possible for a function to take no arguments. If h takes no arguments but returns a Polynomial
Integer, any of the following declarations is acceptable.

h: () -> POLY INT

h: () -> Polynomial INT

h: () -> POLY Integer

Functions can also be declared when they are being defined. The syntax for combined declara-
tion/definition is:

functionName(parm1: parmType1, ..., parmN: parmTypeN): functionReturnType

The following definition fragments show how this can be done for the functions g and h above.

g(arg1: INT, arg2: FLOAT, arg3: INT): STRING == ...

h(): POLY INT == ...

A current restriction on function declarations is that they must involve fully specified types (that is,
cannot include modes involving explicit or implicit “?”). For more information on declaring things in
general, see Section 2.3 on page 86.

6.5 One-Line Functions

As you use FriCAS, you will find that you will write many short functions to codify sequences of
operations that you often perform. In this section we write some simple one-line functions.

This is a simple recursive factorial function for positive integers.

fac n == if n < 3 then n else n * fac(n -1)

fac 10

Compiling function fac with type Integer -> Integer

(2)3628800

PositiveInteger

This function computes 1 + 1/2 + 1/3 + ... + 1/n.

s n == reduce (+ ,[1/ i for i in 1..n])

s 50

Compiling function s with type PositiveInteger -> Fraction (Integer )
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(4)
13943237577224054960759

3099044504245996706400

Fraction ( Integer )

This function computes a Mersenne number, several of which are prime.

mersenne i == 2^i - 1

If you type mersenne, FriCAS shows you the function definition.

mersenne

(6)mersenne i == 2i − 1

FunctionCalled(mersenne)

Generate a stream of Mersenne numbers.

[mersenne i for i in 1..]

Compiling function mersenne with type PositiveInteger -> Integer

(7)[1, 3, 7, 15, 31, 63, 127, . . .]

Stream(Integer)

Create a stream of those values of i such that mersenne(i) is prime.

mersenneIndex := [n for n in 1.. | prime ?( mersenne (n))]

(8)[2, 3, 5, 7, 13, 17, 19, . . .]

Stream( PositiveInteger )

Finally, write a function that returns the nth Mersenne prime.

mersennePrime n == mersenne mersenneIndex(n)

mersennePrime 5

Compiling function mersennePrime with type PositiveInteger ->

Integer
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(10)8191

PositiveInteger

6.6 Declared vs. Undeclared Functions

If you declare the type of a function, you can apply it to any data that can be converted to the source
type of the function.

Define f with type Integer→Integer.

f(x: Integer ): Integer == x + 1

Function declaration f : Integer -> Integer has been added to

workspace .

The function f can be applied to integers, . . .

f 9

Compiling function f with type Integer -> Integer

(2)10

PositiveInteger

and to values that convert to integers, . . .

f( -2.0)

(3)− 1

Integer

but not to values that cannot be converted to integers.

f(2/3)

Conversion failed in the compiled user function f .

Cannot convert the value from type Fraction (Integer ) to Integer .

To make the function over a wide range of types, do not declare its type. Give the same definition
with no declaration.

g x == x + 1
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If x + 1 makes sense, you can apply g to x.

g 9

Compiling function g with type PositiveInteger -> PositiveInteger

(5)10

PositiveInteger

A version of g with different argument types get compiled for each new kind of argument used.

g(2/3)

Compiling function g with type Fraction (Integer ) -> Fraction (Integer

)

(6)
5

3

Fraction ( Integer )

Here x+1 for x = "fricas" makes no sense.

g(" fricas ")

There are 13 exposed and 11 unexposed library operations named +

having 2 argument (s) but none was determined to be applicable .

Use HyperDoc Browse , or issue

)display op +

to learn more about the available operations . Perhaps

package -calling the operation or using coercions on the arguments

will allow you to apply the operation .

Cannot find a definition or applicable library operation named +

with argument type(s)

String

PositiveInteger

Perhaps you should use "@" to indicate the required return type ,

or "$" to specify which version of the function you need.

FriCAS will attempt to step through and interpret the code.

There are 13 exposed and 11 unexposed library operations named +

having 2 argument (s) but none was determined to be applicable .

Use HyperDoc Browse , or issue

)display op +

to learn more about the available operations . Perhaps

package -calling the operation or using coercions on the arguments

will allow you to apply the operation .
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Cannot find a definition or applicable library operation named +

with argument type(s)

String

PositiveInteger

Perhaps you should use "@" to indicate the required return type ,

or "$" to specify which version of the function you need.

As you will see in Chapter 12, FriCAS has a formal idea of categories for what “makes sense.”

6.7 Functions vs. Operations

A function is an object that you can create, manipulate, pass to, and return from functions (for some
interesting examples of library functions that manipulate functions, see ‘MappingPackage1’ on page
622). Yet, we often seem to use the term operation and function interchangeably in FriCAS. What is
the distinction?

First consider values and types associated with some variable n in your workspace. You can make the
declaration n : Integer, then assign n an integer value. You then speak of the integer n. However,
note that the integer is not the name n itself, but the value that you assign to n.

Similarly, you can declare a variable f in your workspace to have type Integer→Integer, then assign
f, through a definition or an assignment of an anonymous function. You then speak of the function f.
However, the function is not f, but the value that you assign to f.

A function is a value, in fact, some machine code for doing something. Doing what? Well, performing
some operation. Formally, an operation consists of the constituent parts of f in your workspace,
excluding the value; thus an operation has a name and a type. An operation is what domains and
packages export. Thus Ring exports one operation +. Every ring also exports this operation. Also, the
author of every ring in the system is obliged under contract (see Section 11.3 on page 823) to provide
an implementation for this operation.

This chapter is all about functions—how you create them interactively and how you apply them to
meet your needs. In Chapter 11 you will learn how to create them for the FriCAS library. Then in
Chapter 12, you will learn about categories and exported operations.

6.8 Delayed Assignments vs. Functions with No Arguments

In Section 5.1 on page 141 we discussed the difference between immediate and delayed assignments.
In this section we show the difference between delayed assignments and functions of no arguments.

A function of no arguments is sometimes called a nullary function.

sin24 () == sin (24.0)

You must use the parentheses (“()”) to evaluate it. Like a delayed assignment, the right-hand-side of
a function evaluation is not evaluated until the left-hand-side is used.

sin24 ()

Compiling function sin24 with type () -> Float
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(2)− 0.90557836200662384514

Float

If you omit the parentheses, you just get the function definition.

sin24

(3)sin24 () == sin(24.0)

FunctionCalled(sin24)

You do not use the parentheses “()” in a delayed assignment. . .

cos24 == cos (24.0)

nor in the evaluation.

cos24

Compiling body of rule cos24 to compute value of type Float

(5)0.42417900733699697594

Float

The only syntactic difference between delayed assignments and nullary functions is that you use “()”
in the latter case.

6.9 How FriCAS Determines What Function to Use

What happens if you define a function that has the same name as a library function? Well, if your
function has the same name and number of arguments (we sometimes say arity) as another function
in the library, then your function covers up the library function. If you want then to call the library
function, you will have to package-call it. FriCAS can use both the functions you write and those that
come from the library. Let’s do a simple example to illustrate this. Suppose you (wrongly!) define
sin in this way.

sin x == 1.0

The value 1.0 is returned for any argument.

sin 4.3

Compiling function sin with type Float -> Float
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(2)1.0

Float

If you want the library operation, we have to package-call it (see Section 2.9 on page 105 for more
information).

sin (4.3) $Float

(3)− 0.91616593674945498404

Float

sin (34.6) $Float

(4)− 0.042468034716950101543

Float

Even worse, say we accidentally used the same name as a library function in the function.

sin x == sin x

Compiled code for sin has been cleared .

1 old definition (s) deleted for function or rule sin

Then FriCAS definitely does not understand us.

sin 4.3

FriCAS cannot determine the type of sin because it cannot analyze

the non -recursive part , if that exists . This may be remedied by

declaring the function .

Again, we could package-call the inside function.

sin x == sin (x)$Float

1 old definition (s) deleted for function or rule sin

sin 4.3

Compiling function sin with type Float -> Float
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(7)− 0.91616593674945498404

Float

Of course, you are unlikely to make such obvious errors. It is more probable that you would write a
function and in the body use a function that you think is a library function. If you had also written a
function by that same name, the library function would be invisible.

How does FriCAS determine what library function to call? It very much depends on the particular
example, but the simple case of creating the polynomial x + 2/3 will give you an idea.

1. The x is analyzed and its default type is Variable(x).

2. The 2 is analyzed and its default type is PositiveInteger.

3. The 3 is analyzed and its default type is PositiveInteger.

4. Because the arguments to / are integers, FriCAS gives the expression 2/3 a default target type
of Fraction(Integer).

5. FriCAS looks in PositiveInteger for /. It is not found.

6. FriCAS looks in Fraction(Integer) for /. It is found for arguments of type Integer.

7. The 2 and 3 are converted to objects of type Integer (this is trivial) and / is applied, creating
an object of type Fraction(Integer).

8. No + for arguments of types Variable(x) and Fraction(Integer) are found in either domain.

9. FriCAS resolves (see Section 2.10 on page 109) the types and gets Polynomial (Fraction
(Integer)).

10. The x and the 2/3 are converted to objects of this type and + is applied, yielding the answer, an
object of type Polynomial (Fraction (Integer)).

6.10 Compiling vs. Interpreting

When possible, FriCAS completely determines the type of every object in a function, then translates
the function definition to Common LISP or to machine code (see next section). This translation,
called compilation, happens the first time you call the function and results in a computational delay.
Subsequent function calls with the same argument types use the compiled version of the code without
delay.

If FriCAS cannot determine the type of everything, the function may still be executed but in interpret-
code mode : each statement in the function is analyzed and executed as the control flow indicates.
This process is slower than executing a compiled function, but it allows the execution of code that may
involve objects whose types change.
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If FriCAS decides that it cannot compile the code, it issues a message stating the problem and
then the following message:

We will attempt to step through and interpret the code.

This is not a time to panic. Rather, it just means that what you gave to FriCAS is somehow
ambiguous: either it is not specific enough to be analyzed completely, or it is beyond FriCAS’s
present interactive compilation abilities.

This function runs in interpret-code mode, but it does not compile.

varPolys (vars) ==

for var in vars repeat

output (1 :: UnivariatePolynomial (var ,Integer ))

For vars equal to [’x, ’y, ’z], this function displays 1 three times.

varPolys [’x,’y,’z]

Cannot compile conversion for types involving local variables . In

particular , could not compile the expression involving ::

UnivariatePolynomial(var ,Integer )

FriCAS will attempt to step through and interpret the code.

The type of the argument to output changes in each iteration, so FriCAS cannot compile the function.
In this case, even the inner loop by itself would have a problem:

for var in [’x,’y,’z] repeat

output (1 :: UnivariatePolynomial(var ,Integer ))

Cannot compile conversion for types involving local variables . In

particular , could not compile the expression involving ::

UnivariatePolynomial(var ,Integer )

FriCAS will attempt to step through and interpret the code.

Sometimes you can help a function to compile by using an extra conversion or by using pretend. See
Section 2.8 on page 101 for details.

When a function is compilable, you have the choice of whether it is compiled to Common LISP and then
interpreted by the Common LISP interpreter or then further compiled from Common LISP to machine
code. The option is controlled via )set functions compile. Issue )set functions compile on to
compile all the way to machine code. With the default setting )set functions compile off, FriCAS
has its Common LISP code interpreted because the overhead of further compilation is larger than the
run-time of most of the functions our users have defined. You may find that selectively turning this
option on and off will give you the best performance in your particular application. For example, if
you are writing functions for graphics applications where hundreds of points are being computed, it is
almost certainly true that you will get the best performance by issuing )set functions compile on.

6.11 Piece-Wise Function Definitions

To move beyond functions defined in one line, we introduce in this section functions that are defined
piece-by-piece. That is, we say “use this definition when the argument is such-and-such and use this
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other definition when the argument is that-and-that.”

6.11.1 A Basic Example

There are many other ways to define a factorial function for nonnegative integers. You might say
factorial of 0 is 1, otherwise factorial of n is n times factorial of n-1. Here is one way to do this in
FriCAS. Here is the value for n = 0.

fact (0) == 1

Here is the value for n > 0. The vertical bar “|” means “such that”.

fact(n | n > 0) == n * fact(n - 1)

What is the value for n = 3?

fact (3)

Compiling function fact with type Integer -> Integer

Compiling function fact as a recurrence relation .

(3)6

PositiveInteger

What is the value for n = -3?

fact(-3)

You did not define fact for argument -3 .

Now for a second definition. Here is the value for n = 0.

facto (0) == 1

Give an error message if n < 0.

facto(n | n < 0) == error " arguments to facto must be non -negative "

Here is the value otherwise.

facto(n) == n * facto (n - 1)

What is the value for n = 7?

facto (7)

Compiling function facto with type Integer -> Integer
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(7)5040

PositiveInteger

What is the value for n = -7?

facto (-7)

Error signalled from user code in function facto:

arguments to facto must be non -negative

To see the current piece-wise definition of a function, use )display value.

)display value facto

CONCAT

Definition :

,

facto 0 == 1

facto (n | n < 0) == error( arguments to facto must be non -negative )

facto n == n facto (n - 1)

In general a piece-wise definition of a function consists of two or more parts. Each part gives a “piece”
of the entire definition. FriCAS collects the pieces of a function as you enter them. When you ask for
a value of the function, it then “glues” the pieces together to form a function.

The two piece-wise definitions for the factorial function are examples of recursive functions, that is,
functions that are defined in terms of themselves. Here is an interesting doubly-recursive function.
This function returns the value 11 for all positive integer arguments. Here is the first of two pieces.

eleven (n | n < 1) == n + 11

And the general case.

eleven (m) == eleven (eleven (m - 12))

Compute elevens, the infinite stream of values of eleven.

elevens := [eleven (i) for i in 0..]

Compiling function eleven with type Integer -> Integer

(10)[11, 11, 11, 11, 11, 11, 11, . . .]

Stream(Integer)

What is the value at n = 200?

elevens 200
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(11)11

PositiveInteger

What is the FriCAS’s definition of eleven?

)display value eleven

CONCAT

Definition :

,

eleven (m | m < 1) == m + 11

eleven m == eleven (eleven (m - 12))

6.11.2 Picking Up the Pieces

Here are the details about how FriCAS creates a function from its pieces. FriCAS converts the ith

piece of a function definition into a conditional expression of the form: if predi then expressioni. If
any new piece has a predi that is identical

2 to an earlier predj , the earlier piece is removed. Otherwise,
the new piece is always added at the end.

If there are n pieces to a function definition for f, the function defined f is:
if pred1 then expression1 else

. . .
if predn then expressionn else

error "You did not define f for argument <arg>."

You can give definitions of any number of mutually recursive function definitions, piece-wise or other-
wise. No computation is done until you ask for a value. When you do ask for a value, all the relevant
definitions are gathered, analyzed, and translated into separate functions and compiled.

Let’s recall the definition of eleven from the previous section.

eleven (n | n < 1) == n + 11

eleven (m) == eleven (eleven (m - 12))

A similar doubly-recursive function below produces -11 for all negative positive integers. If you haven’t
worked out why or how eleven works, the structure of this definition gives a clue. This definition
we write as a block.

minusEleven (n) ==

n >= 0 => n - 11

minusEleven (5 + minusEleven (n + 7))

Define s(n) to be the sum of plus and minus “eleven” functions divided by n. Since 11 - 11 = 0, we
define s(0) to be 1.

2after all variables are uniformly named
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s(0) == 1

And the general term.

s(n) == (eleven (n) + minusEleven (n))/n

What are the first ten values of s?

[s(n) for n in 0..]

Compiling function eleven with type Integer -> Integer

Compiling function minusEleven with type Integer -> Integer

Compiling function s with type NonNegativeInteger -> Fraction (

Integer )

(6)[1, 1, 1, 1, 1, 1, 1, . . .]

Stream(Fraction( Integer ))

FriCAS can create infinite streams in the positive direction (for example, for index values 0, 1, . . .) or
negative direction (for example, for index values 0,−1,−2, . . .). Here we would like a stream of values

of s(n) that is infinite in both directions. The function t(n) below returns the nth term of the infinite
stream [s(0), s(1), s(−1), s(2), s(−2), . . .]. Its definition has three pieces. Define the initial term.

t(1) == s(0)

The even numbered terms are the s(i) for positive i. We use quo rather than / since we want the
result to be an integer.

t(n | even?(n)) == s(n quo 2)

Finally, the odd numbered terms are the s(i) for negative i. In piece-wise definitions, you can use
different variables to define different pieces. FriCAS will not get confused.

t(p) == s(- p quo 2)

Look at the definition of t. In the first piece, the variable n was used; in the second piece, p. FriCAS
always uses your last variable to display your definitions back to you.

)display value t

CONCAT

Definition :

,

t 1 == s(0)

t (p | even ?(p)) == s(p quo 2)

t p == s(- p quo 2)

Create a series of values of s applied to alternating positive and negative arguments.

[t(i) for i in 1..]
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Compiling function s with type Integer -> Fraction (Integer )

Compiling function t with type PositiveInteger -> Fraction (Integer )

(10)[1, 1, 1, 1, 1, 1, 1, . . .]

Stream(Fraction( Integer ))

Evidently t(n) = 1 for all i. Check it at n= 100.

t(100)

(11)1

Fraction ( Integer )

6.11.3 Predicates

We have already seen some examples of predicates (Section 6.11.1 on page 186). Predicates are
Boolean-valued expressions and FriCAS uses them for filtering collections (see Section 5.5 on page
164) and for placing constraints on function arguments. In this section we discuss their latter usage.

The simplest use of a predicate is one you don’t see at all.

opposite ’right == ’left

Here is a longer way to give the “opposite definition.”

opposite (x | x = ’left) == ’right

Try it out.

for x in [’right , ’left] repeat output opposite x

Compiling function opposite with type OrderedVariableList ([right ,

left]) -> Symbol

We get an error if there is no definition for given argument.

opposite (’ inbetween )

Compiling function opposite with type Variable (inbetween ) -> Symbol

The function opposite is not defined for the given argument (s).

Explicit predicates tell FriCAS that the given function definition piece is to be applied if the predicate
evaluates to true for the arguments to the function. You can use such “constant” arguments for
integers, strings, and quoted symbols. The Boolean values true and false can also be used if
qualified with “@” or “$” and Boolean. The following are all valid function definition fragments using
constant arguments.
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a(1) == ...

b("unramified") == ...

c(’untested) == ...

d(true@Boolean) == ...

If a function has more than one argument, each argument can have its own predicate. However, if a
predicate involves two or more arguments, it must be given after all the arguments mentioned in the
predicate have been given. You are always safe to give a single predicate at the end of the argument
list. A function involving predicates on two arguments.

inFirstHalfQuadrant(x | x > 0,y | y < x) == true

This is incorrect as it gives a predicate on y before the argument y is given.

inFirstHalfQuadrant(x | x > 0 and y < x,y) == true

1 old definition (s) deleted for function or rule inFirstHalfQuadrant

It is always correct to write the predicate at the end.

inFirstHalfQuadrant(x,y | x > 0 and y < x) == true

1 old definition (s) deleted for function or rule inFirstHalfQuadrant

Here is the rest of the definition.

inFirstHalfQuadrant(x,y) == false

Try it out.

[inFirstHalfQuadrant(i,3) for i in 1..5]

Compiling function inFirstHalfQuadrant with type (PositiveInteger ,

PositiveInteger) -> Boolean

(8)[false, false, false, true, true]

List (Boolean)

Remark: Very old versions of FriCAS allowed predicates to be given after a when keyword as
in inFirstHalfQuadrant(x ,y) == true when x >0 and y < x. This is no longer supported, is
WRONG, and will cause a syntax error or strange behavior.

6.12 Caching Previously Computed Results

By default, FriCAS does not save the values of any function. You can cause it to save values and not to
recompute unnecessarily by using )set functions cache. This should be used before the functions
are defined or, at least, before they are executed. The word following “cache” should be 0 to turn off
caching, a positive integer n to save the last n computed values or “all” to save all computed values.
If you then give a list of names of functions, the caching only affects those functions. Use no list of
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names when you want to define the default behavior for functions not specifically mentioned in other
)set functions cache statements. If you give no list of names, all functions will have the caching
behavior. If you explicitly turn on caching for one or more names, you must explicitly turn off caching
for those names when you want to stop saving their values.

This causes the functions f and g to have the last three computed values saved.

)set functions cache 3 f g

function f will cache the last 3 values .

function g will cache the last 3 values .

This is a sample definition for f.

f x == factorial (2^x)

A message is displayed stating what f will cache.

f(4)

Compiling function f with type PositiveInteger -> Integer

f will cache 3 most recently computed value(s).

(2)20922789888000

PositiveInteger

This causes all other functions to have all computed values saved by default.

)set functions cache all

In general , interpreter functions will cache all values .

This causes all functions that have not been specifically cached in some way to have no computed
values saved.

)set functions cache 0

In general , functions will cache no returned values .

We also make f and g uncached.

)set functions cache 0 f g

Caching for function f is turned off

Caching for function g is turned off

Be careful about caching functions that have side effects. Such a function might destructively
modify the elements of an array or issue a draw command, for example. A function that you
expect to execute every time it is called should not be cached. Also, it is highly unlikely that a
function with no arguments should be cached.

You should also be careful about caching functions that depend on free variables. See Section 6.16 on
page 202 for an example.
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6.13 Recurrence Relations

One of the most useful classes of function are those defined via a “recurrence relation.” A recurrence
relation makes each successive value depend on some or all of the previous values. A simple example
is the ordinary “factorial” function:

fact(0) == 1

fact(n | n > 0) == n * fact(n-1)

The value of fact(10) depends on the value of fact(9), fact(9) on fact(8), and so on. Because
it depends on only one previous value, it is usually called a first order recurrence relation. You can
easily imagine a function based on two, three or more previous values. The Fibonacci numbers are
probably the most famous function defined by a second order recurrence relation. The library
function fibonacci computes Fibonacci numbers. It is obviously optimized for speed.

[fibonacci (i) for i in 0..]

(1)[0, 1, 1, 2, 3, 5, 8, . . .]

Stream(Integer)

Define the Fibonacci numbers ourselves using a piece-wise definition.

fib (1) == 1

fib (2) == 1

fib (n) == fib(n-1) + fib (n-2)

As defined, this recurrence relation is obviously doubly-recursive. To compute fib(10), we need to
compute fib(9) and fib(8). And to fib(9), we need to compute fib(8) and fib(7). And so on. It
seems that to compute fib(10) we need to compute fib(9) once, fib(8) twice, fib(7) three times.
Look familiar? The number of function calls needed to compute any second order recurrence relation
in the obvious way is exactly fib(n). These numbers grow! For example, if FriCAS actually did
this, then fib(500) requires more than 10104 function calls. And, given all this, our definition of fib
obviously could not be used to calculate the five-hundredth Fibonacci number. Let’s try it anyway.

fib (500)

Compiling function fib with type Integer -> PositiveInteger

Compiling function fib as a recurrence relation .

(5)139423224561697880139724382870407283950070256587697307264108962948325571622863290691557658876222521294125
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PositiveInteger

Since this takes a short time to compute, it obviously didn’t do as many as 10104 operations! By default,
FriCAS transforms any recurrence relation it recognizes into an iteration. Iterations are efficient. To
compute the value of the nth term of a recurrence relation using an iteration requires only n function
calls.3

To turn off this special recurrence relation compilation, issue

)set functions recurrence off

To turn it back on, substitute “on” for “off”.

The transformations that FriCAS uses for fib caches the last two values.4 If, after computing a value
for fib, you ask for some larger value, FriCAS picks up the cached values and continues computing from
there. See Section 6.16 on page 202 for an example of a function definition that has this same behavior.
Also see Section 6.12 on page 191 for a more general discussion of how you can cache function values.

Recurrence relations can be used for defining recurrence relations involving polynomials, rational func-
tions, or anything you like. Here we compute the infinite stream of Legendre polynomials. The
Legendre polynomial of degree 0.

p(0) == 1

The Legendre polynomial of degree 1.

p(1) == x

The Legendre polynomial of degree n.

p(n) == ((2*n -1)*x*p(n-1) - (n -1)*p(n-2))/n

Compute the Legendre polynomial of degree 6.

p(6)

Compiling function p with type Integer -> Polynomial (Fraction (

Integer ))

Compiling function p as a recurrence relation .

(9)
231

16
x
6 − 315

16
x
4 +

105

16
x
2 − 5

16

Polynomial(Fraction ( Integer ))

3If you compare the speed of our fib function to the library function, our version is still slower. This is because the
library fibonacci uses a “powering algorithm” with a computing time proportional to log3(n) to compute fibonacci(n).

4For a more general kth order recurrence relation, FriCAS caches the last k values.
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6.14 Making Functions from Objects

There are many times when you compute a complicated expression and then wish to use that expression
as the body of a function. FriCAS provides an operation called function to do this. It creates a function
object and places it into the workspace. There are several versions, depending on how many arguments
the function has. The first argument to function is always the expression to be converted into the
function body, and the second is always the name to be used for the function. For more information,
see ‘MakeFunction’ on page 620.

Start with a simple example of a polynomial in three variables.

p := -x + y^2 - z^3

(1)− z
3 + y

2 − x

Polynomial( Integer )

To make this into a function of no arguments that simply returns the polynomial, use the two argument
form of function.

function (p,’f0)

(2)f0

Symbol

To avoid possible conflicts (see below), it is a good idea to quote always this second argument.

f0

(3)f0 () == − z
3 + y

2 − x

FunctionCalled(f0)

This is what you get when you evaluate the function.

f0()

Compiling function f0 with type () -> Polynomial (Integer )

(4)− z
3 + y

2 − x
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Polynomial( Integer )

To make a function in x, use a version of function that takes three arguments. The last argument is
the name of the variable to use as the parameter. Typically, this variable occurs in the expression and,
like the function name, you should quote it to avoid possible confusion.

function (p,’f1,’x)

(5)f1

Symbol

This is what the new function looks like.

f1

(6)f1 x == − z
3 + y

2 − x

FunctionCalled(f1)

This is the value of f1 at x = 3. Notice that the return type of the function is Polynomial (Integer),
the same as p.

f1(3)

Compiling function f1 with type PositiveInteger -> Polynomial (

Integer )

(7)− z
3 + y

2 − 3

Polynomial( Integer )

To use x and y as parameters, use the four argument form of function.

function (p,’f2,’x,’y)

(8)f2

Symbol

f2
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(9)f2 (x, y) == − z
3 + y

2 − x

FunctionCalled(f2)

Evaluate f2 at x = 3 and y = 0. The return type of f2 is still Polynomial(Integer) because the
variable z is still present and not one of the parameters.

f2(3,0)

Compiling function f2 with type (PositiveInteger , NonNegativeInteger

) -> Polynomial (Integer )

(10)− z
3 − 3

Polynomial( Integer )

Finally, use all three variables as parameters. There is no five argument form of function, so use the
one with three arguments, the third argument being a list of the parameters.

function (p,’f3 ,[’x,’y,’z])

(11)f3

Symbol

Evaluate this using the same values for x and y as above, but let z be -6. The result type of f3 is
Integer.

f3

(12)f3 (x, y, z) == − z
3 + y

2 − x

FunctionCalled(f3)

f3(3,0,-6)

Compiling function f3 with type (PositiveInteger , NonNegativeInteger

, Integer ) -> Integer
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(13)213

PositiveInteger

The four functions we have defined via p have been undeclared. To declare a function whose body is
to be generated by function, issue the declaration before the function is created.

g: (Integer , Integer ) -> Float

D(sin(x-y)/cos(x+y),x)

(15)
− sin(y − x) sin(y + x) + cos(y − x) cos(y + x)

(cos(y + x))2

Expression( Integer )

function (%,’g,’x,’y)

(16)g

Symbol

g

(17)g (x, y) ==
− sin(y − x) sin(y + x) + cos(y − x) cos(y + x)

(cos(y + x))2

FunctionCalled(g)

It is an error to use g without the quote in the penultimate expression since g had been declared but
did not have a value. Similarly, since it is common to overuse variable names like x, y, and so on, you
avoid problems if you always quote the variable names for function. In general, if x has a value and
you use x without a quote in a call to function, then FriCAS does not know what you are trying to do.

What kind of object is allowable as the first argument to function? Let’s use the Browse facility
of HyperDoc to find out. At the main Browse menu, enter the string function and then click on
Operations. The exposed operations called function all take an object whose type belongs to category
ConvertibleTo InputForm. What domains are those? Go back to the main Browse menu, erase
function, enter ConvertibleTo in the input area, and click on categories on the Constructors
line. At the bottom of the page, enter InputForm in the input area following S =. Click on Cross
Reference and then on Domains. The list you see contains over forty domains that belong to
the category ConvertibleTo InputForm. Thus you can use function for Integer, Float, String,
Complex, Expression, and so on.
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6.15 Functions Defined with Blocks

You need not restrict yourself to functions that only fit on one line or are written in a piece-wise
manner. The body of the function can be a block, as discussed in Section 5.2 on page 145.

Here is a short function that swaps two elements of a list, array or vector.

swap(m,i,j) ==

temp := m.i

m.i := m.j

m.j := temp

The significance of swap is that it has a destructive effect on its first argument.

k := [1,2,3,4,5]

(2)[1, 2, 3, 4, 5]

List ( PositiveInteger )

swap(k,2,4)

Compiling function swap with type (List(PositiveInteger),

PositiveInteger , PositiveInteger) -> PositiveInteger

(3)2

PositiveInteger

You see that the second and fourth elements are interchanged.

k

(4)[1, 4, 3, 2, 5]

List ( PositiveInteger )

Using this, we write a couple of different sort functions. First, a simple bubble sort. The operation #

returns the number of elements in an aggregate.

bubbleSort (m) ==

n := #m

for i in 1..(n -1) repeat

for j in n..(i+1) by -1 repeat

if m.j < m.(j-1) then swap(m,j,j-1)

m
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Let this be the list we want to sort.

m := [8,4,-3,9]

(6)[8, 4, −3, 9]

List ( Integer )

This is the result of sorting.

bubbleSort (m)

Compiling function swap with type (List(Integer ), Integer , Integer )

-> Integer

Compiling function bubbleSort with type List(Integer ) -> List(

Integer )

(7)[−3, 4, 8, 9]

List ( Integer )

Moreover, m is destructively changed to be the sorted version.

m

(8)[−3, 4, 8, 9]

List ( Integer )

This function implements an insertion sort. The basic idea is to traverse the list and insert the ith

element in its correct position among the i-1 previous elements. Since we start at the beginning of
the list, the list elements before the ith element have already been placed in ascending order.

insertionSort(m) ==

for i in 2..#m repeat

j := i

while j > 1 and m.j < m.(j -1) repeat

swap(m,j,j -1)

j := j - 1

m

As with our bubble sort, this is a destructive function.

m := [8,4,-3,9]
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(10)[8, 4, −3, 9]

List ( Integer )

insertionSort(m)

Compiling function swap with type (List(Integer ), NonNegativeInteger

, Integer ) -> Integer

Compiling function insertionSort with type List(Integer ) -> List(

Integer )

(11)[−3, 4, 8, 9]

List ( Integer )

m

(12)[−3, 4, 8, 9]

List ( Integer )

Neither of the above functions is efficient for sorting large lists since they reference elements by asking
for the jth element of the structure m.

Here is a more efficient bubble sort for lists.

bubbleSort2 (m: List Integer ): List Integer ==

empty ?(m) => m

l := m

while not empty ?(r := l.rest) repeat

r := bubbleSort2 r

x := l.first

if x < r.first then

l.first := r.first

r.first := x

l.rest := r

l := l.rest

m

Function declaration bubbleSort2 : List(Integer ) -> List(Integer )

has been added to workspace .

Try it out.

bubbleSort2 [3,7,2]

Compiling function bubbleSort2 with type List(Integer ) -> List(

Integer )
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(14)[7, 3, 2]

List ( Integer )

This definition is both recursive and iterative, and is tricky! Unless you are really curious about this
definition, we suggest you skip immediately to the next section.

Here are the key points in the definition. First notice that if you are sorting a list with less than two
elements, there is nothing to do: just return the list. This definition returns immediately if there are
zero elements, and skips the entire while loop if there is just one element.

The second point to realize is that on each outer iteration, the bubble sort ensures that the minimum
element is propagated leftmost. Each iteration of the while loop calls bubbleSort2 recursively to sort
all but the first element. When finished, the minimum element is either in the first or second position.
The conditional expression ensures that it comes first. If it is in the second, then a swap occurs. In
any case, the rest of the original list must be updated to hold the result of the recursive call.

6.16 Free and Local Variables

When you want to refer to a variable that is not local to your function, use a “free” declaration.
Variables declared to be free are assumed to be defined globally in the workspace.

This is a global workspace variable.

counter := 0

(1)0

NonNegativeInteger

This function refers to the global counter.

f() ==

free counter

counter := counter + 1

The global counter is incremented by 1.

f()

Compiling function f with type () -> NonNegativeInteger

(3)1



6.16. FREE AND LOCAL VARIABLES 203

PositiveInteger

counter

(4)1

NonNegativeInteger

Usually FriCAS can tell that you mean to refer to a global variable and so free isn’t always necessary.
However, for clarity and the sake of self-documentation, we encourage you to use it.

Declare a variable to be “local” when you do not want to refer to a global variable by the same name.

This function uses counter as a local variable.

g() ==

local counter

counter := 7

Apply the function.

g()

Compiling function g with type () -> PositiveInteger

(6)7

PositiveInteger

Check that the global value of counter is unchanged.

counter

(7)1

NonNegativeInteger

Parameters to a function are local variables in the function. Even if you issue a free declaration for
a parameter, it is still local.

What happens if you do not declare that a variable x in the body of your function is local or free?
Well, FriCAS decides on this basis:

1. FriCAS scans your function line-by-line, from top-to-bottom. The right-hand side of an assign-
ment is looked at before the left-hand side.
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2. If x is referenced before it is assigned a value, it is a free (global) variable.

3. If x is assigned a value before it is referenced, it is a local variable.

Set two global variables to 1.

a := b := 1

(8)1

PositiveInteger

Refer to a before it is assigned a value, but assign a value to b before it is referenced.

h() ==

b := a + 1

a := b + a

Can you predict this result?

h()

Compiling function h with type () -> PositiveInteger

(10)3

PositiveInteger

How about this one?

[a, b]

(11)[3, 1]

List ( PositiveInteger )

What happened? In the first line of the function body for h, a is referenced on the right-hand side
of the assignment. Thus a is a free variable. The variable b is not referenced in that line, but it is
assigned a value. Thus b is a local variable and is given the value a + 1 = 2. In the second line, the
free variable a is assigned the value b + a which equals 2 + 1 = 3. This is the value returned by the
function. Since a was free in h, the global variable a has value 3. Since b was local in h, the global
variable b is unchanged—it still has the value 1.

It is good programming practice always to declare global variables. However, by far the most common
situation is to have local variables in your functions. No declaration is needed for this situation, but
be sure to initialize their values.
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Be careful if you use free variables and you cache the value of your function (see Section 6.12 on page
191). Caching only checks if the values of the function arguments are the same as in a function call
previously seen. It does not check if any of the free variables on which the function depends have
changed between function calls. Turn on caching for p.

)set fun cache all p

function p will cache all values .

Define p to depend on the free variable N.

p(i,x) == ( free N; reduce ( + , [ (x-i)^n for n in 1..N ] ) )

Set the value of N.

N := 1

(13)1

PositiveInteger

Evaluate p the first time.

p(0, x)

Compiling function p with type (NonNegativeInteger , Variable (x)) ->

Polynomial (Integer )

p will cache all previously computed values .

(14)x

Polynomial( Integer )

Change the value of N.

N := 2

(15)2

PositiveInteger

Evaluate p the second time.

p(0, x)
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(16)x

Polynomial( Integer )

If caching had been turned off, the second evaluation would have reflected the changed value of N.
Turn off caching for p.

)set fun cache 0 p

Caching for function p is turned off

FriCAS does not allow fluid variables, that is, variables bound by a function f that can be referenced
by functions called by f.

Values are passed to functions by reference: a pointer to the value is passed rather than a copy of the
value or a pointer to a copy.

This is a global variable that is bound to a record object.

r : Record (i : Integer ) := [1]

(17)[i = 1]

Record(i : Integer )

This function first modifies the one component of its record argument and then rebinds the parameter
to another record.

resetRecord rr ==

rr.i := 2

rr := [10]

Pass r as an argument to resetRecord.

resetRecord r

Compiling function resetRecord with type Record (i: Integer ) ->

Record (i: Integer )

(19)[i = 10]

Record(i : Integer )

The value of r was changed by the expression rr.i := 2 but not by rr := [10].

r
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(20)[i = 2]

Record(i : Integer )

To conclude this section, we give an iterative definition of a function that computes Fibonacci num-
bers. This definition approximates the definition into which FriCAS transforms the recurrence relation
definition of fib in Section 6.13 on page 193.

Global variables past and present are used to hold the last computed Fibonacci numbers.

past := present := 1

(21)1

PositiveInteger

Global variable index gives the current index of present.

index := 2

(22)2

PositiveInteger

Here is a recurrence relation defined in terms of these three global variables.

fib (n) ==

free past , present , index

n < 3 => 1

n = index - 1 => past

if n < index -1 then

(past ,present ) := (1,1)

index := 2

while (index < n) repeat

(past ,present ) := (present , past+present )

index := index + 1

present

Compute the infinite stream of Fibonacci numbers.

fibs := [fib (n) for n in 1..]

Compiling function fib with type PositiveInteger -> PositiveInteger
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(24)[1, 1, 2, 3, 5, 8, 13, . . .]

Stream( PositiveInteger )

What is the 1000th Fibonacci number?

fibs 1000

(25)4346655768693745643568852767504062580256466051737178040248172908953655541794905189040387984007925516929592259308032

PositiveInteger

As an exercise, we suggest you write a function in an iterative style that computes the value of the
recurrence relation p(n) = p(n− 1)− 2 p(n− 2)+4 p(n−3) having the initial values p(1) = 1, p(2) = 3,
and p(3) = 9, How would you write the function using an element OneDimensionalArray or Vector
to hold the previously computed values?

6.17 Anonymous Functions

An anonymous function is a function that is defined by giving a list of parameters, the “maps-to”
compound symbol “+->”(from the mathematical symbol 7→), and by an expression involving the
parameters, the evaluation of which determines the return value of the function.

( parm1, parm2, ..., parmN ) +-> expression

You can apply an anonymous function in several ways.

1. Place the anonymous function definition in parentheses directly followed by a list of arguments.

2. Assign the anonymous function to a variable and then use the variable name when you would
normally use a function name.

3. Use “==” to use the anonymous function definition as the arguments and body of a regular
function definition.

4. Have a named function contain a declared anonymous function and use the result returned by
the named function.
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6.17.1 Some Examples

Anonymous functions are particularly useful for defining functions “on the fly.” That is, they are
handy for simple functions that are used only in one place. In the following examples, we show how
to write some simple anonymous functions.

This is a simple absolute value function.

x +-> if x < 0 then -x else x

(1)x 7→ if x < 0 then − x

else x

AnonymousFunction

abs1 := %

(2)x 7→ if x < 0 then − x

else x

AnonymousFunction

This function returns true if the absolute value of the first argument is greater than the absolute value
of the second, false otherwise.

(x,y) +-> abs1(x) > abs1(y)

(3)(x, y) 7→ abs1(x) > abs1(y)

AnonymousFunction

We use the above function to “sort” a list of integers.

sort(%,[3,9,-4,10,-3,-1,-9,5])

(4)[10, −9, 9, 5, −4, −3, 3, −1]

List ( Integer )

This function returns 1 if i + j is even, -1 otherwise.

ev := ( (i,j) +-> if even?(i+j) then 1 else -1)
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(5)(i, j) 7→ if even?(i+ j) then 1
else − 1

AnonymousFunction

We create a four-by-four matrix containing 1 or -1 depending on whether the row plus the column
index is even or not.

matrix ([[ ev(row ,col) for row in 1..4] for col in 1..4])

(6)









1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1









Matrix( Integer )

This function returns true if a polynomial in x has multiple roots, false otherwise. It is defined and
applied in the same expression.

( p +-> not one ?(gcd(p,D(p,x))) )(x^2+4*x+4)

(7)true

Boolean

This and the next expression are equivalent.

g(x,y,z) == cos (x + sin(y + tan(z)))

The one you use is a matter of taste.

g == (x,y,z) +-> cos(x + sin(y + tan(z)))

1 old definition (s) deleted for function or rule g

6.17.2 Declaring Anonymous Functions

If you declare any of the arguments you must declare all of them. Thus,

(x: INT,y): FRAC INT +-> (x + 2*y)/(y - 1)
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is not legal.

This is an example of a fully declared anonymous function. The output shown just indicates that the
object you created is a particular kind of map, that is, function.

(x: INT ,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)

(1)theMap(anonymousFunction)

(( Integer , Integer ) → Fraction ( Integer ))

FriCAS allows you to declare the arguments and not declare the return type.

(x: INT ,y: INT) +-> (x + 2*y)/(y - 1)

(2)theMap(anonymousFunction)

(( Integer , Integer ) → Fraction ( Integer ))

The return type is computed from the types of the arguments and the body of the function. You
cannot declare the return type if you do not declare the arguments. Therefore,

(x,y): FRAC INT +-> (x + 2*y)/(y - 1)

is not legal.

This and the next expression are equivalent.

h(x: INT ,y: INT ): FRAC INT == (x + 2*y)/(y - 1)

Function declaration h : (Integer , Integer ) -> Fraction (Integer ) has

been added to workspace .

The one you use is a matter of taste.

h == (x: INT ,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)

Function declaration h : (Integer , Integer ) -> Fraction (Integer ) has

been added to workspace .

1 old definition (s) deleted for function or rule h

When should you declare an anonymous function?

1. If you use an anonymous function and FriCAS can’t figure out what you are trying to do, declare
the function.

2. If the function has nontrivial argument types or a nontrivial return type that FriCAS may be
able to determine eventually, but you are not willing to wait that long, declare the function.
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3. If the function will only be used for arguments of specific types and it is not too much trouble
to declare the function, do so.

4. If you are using the anonymous function as an argument to another function (such as map or
sort), consider declaring the function.

5. If you define an anonymous function inside a named function, you must declare the anonymous
function.

This is an example of a named function for integers that returns a function.

addx x == ((y: Integer ): Integer +-> x + y)

We define g to be a function that adds 10 to its argument.

g := addx 10

Compiling function addx with type PositiveInteger -> (Integer ->

Integer )

(6)theMap(?)

( Integer → Integer )

Try it out.

g 3

(7)13

PositiveInteger

g(-4)

(8)6

PositiveInteger

An anonymous function cannot be recursive: since it does not have a name, you cannot even call it
within itself! If you place an anonymous function inside a named function, the anonymous function
must be declared.
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6.18 Example: A Database

This example shows how you can use FriCAS to organize a database of lineage data and then query
the database for relationships.

The database is entered as “assertions” that are really pieces of a function definition.

children (" albert ") == [" albertJr "," richard "," diane "]

Each piece children(x)== y means “the children of x are y”.

children (" richard ") == [" douglas "," daniel "," susan "]

This family tree thus spans four generations.

children (" douglas ") == [" dougie "," valerie "]

Say “no one else has children.”

children (x) == []

We need some functions for computing lineage. Start with childOf.

childOf (x,y) == member ?(x,children (y))

To find the parentOf someone, you have to scan the database of people applying children.

parentOf (x) ==

for y in people repeat

(if childOf (x,y) then return y)

"unknown "

And a grandparent of x is just a parent of a parent of x.

grandParentOf(x) == parentOf parentOf x

The grandchildren of x are the people y such that x is a grandparent of y.

grandchildren(x) == [y for y in people | grandParentOf(y) = x]

Suppose you want to make a list of all great-grandparents. Well, a great-grandparent is a grandparent
of a person who has children.

greatGrandParents == [x for x in people |

reduce (_or ,[not empty? children (y) for y in grandchildren(x)],false)]

Define descendants to include the parent as well.

descendants (x) ==

kids := children (x)

empty ?( kids) => [x]

concat (x,reduce (concat ,[ descendants (y)

for y in kids ],[]))

Finally, we need a list of people. Since all people are descendants of “albert”, let’s say so.

people == descendants "albert "
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We have used “==” to define the database and some functions to query the database. But no compu-
tation is done until we ask for some information. Then, once and for all, the functions are analyzed
and compiled to machine code for run-time efficiency. Notice that no types are given anywhere in this
example. They are not needed.

Who are the grandchildren of “richard”?

grandchildren "richard "

Compiling function children with type String -> List(String )

Compiling function descendants with type String -> List(String )

Compiling body of rule people to compute value of type List(String )

Compiling function childOf with type (String , String ) -> Boolean

Compiling function parentOf with type String -> String

Compiling function grandParentOf with type String -> String

Compiling function grandchildren with type String -> List(String )

(12)["dougie", "valerie"]

List (String )

Who are the great-grandparents?

greatGrandParents

Compiling body of rule greatGrandParents to compute value of type

List(String )

(13)["albert"]

List (String )

6.19 Example: A Famous Triangle

In this example we write some functions that display Pascal’s triangle. It demonstrates the use of
piece-wise definitions and some output operations you probably haven’t seen before.

To make these output operations available, we have to expose the domain OutputForm. See Section
2.11 on page 110 for more information about exposing domains and packages.

)set expose add constructor OutputForm
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OutputForm is now explicitly exposed in frame initial

Define the values along the first row and any column i.

pascal (1,i) == 1

Define the values for when the row and column index i are equal. Repeating the argument name
indicates that the two index values are equal.

pascal (n,n) == 1

pascal (i,j | 1 < i and i < j) ==

pascal (i-1,j-1) +pascal (i,j-1)

Now that we have defined the coefficients in Pascal’s triangle, let’s write a couple of one-liners to
display it. First, define a function that gives the nth row.

pascalRow (n) == [pascal (i,n) for i in 1.. n]

Next, we write the function displayRow to display the row, separating entries by blanks and center-
ing.

displayRow (n) == output center blankSeparate pascalRow (n)

Here we have used three output operations. Operation output displays the printable form of objects
on the screen, center centers a printable form in the width of the screen, and blankSeparate takes a list
of printable forms and inserts a blank between successive elements. Look at the result.

for i in 1..7 repeat displayRow i

Compiling function pascal with type (Integer , Integer ) ->

PositiveInteger

Compiling function pascalRow with type PositiveInteger -> List(

PositiveInteger)

Compiling function displayRow with type PositiveInteger -> Void

Being purists, we find this less than satisfactory. Traditionally, elements of Pascal’s triangle are centered
between the left and right elements on the line above. To fix this misalignment, we go back and
redefine pascalRow to right adjust the entries within the triangle within a width of four characters.

pascalRow (n) == [right(pascal (i,n) ,4) for i in 1.. n]

Compiled code for pascalRow has been cleared .

Compiled code for displayRow has been cleared .

1 old definition (s) deleted for function or rule pascalRow

Finally let’s look at our purely reformatted triangle.

for i in 1..7 repeat displayRow i

Compiling function pascalRow with type PositiveInteger -> List(

OutputForm )

Compiling function displayRow with type PositiveInteger -> Void

Unexpose OutputForm so we don’t get unexpected results later.

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame initial
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6.20 Example: Testing for Palindromes

In this section we define a function pal? that tests whether its argument is a palindrome, that is,
something that reads the same backwards and forwards. For example, the string “Madam I’m Adam”
is a palindrome (excluding blanks and punctuation) and so is the number 123454321. The definition
works for any datatype that has n components that are accessed by the indices 1 . . . n.

Here is the definition for pal?. It is simply a call to an auxiliary function called palAux?. We are
following the convention of ending a function’s name with “?” if the function returns a Boolean
value.

pal ? s == palAux ?(s,1,#s)

Here is palAux?. It works by comparing elements that are equidistant from the start and end of the
object.

palAux ?(s,i,j) ==

j > i =>

(s.i = s.j) and palAux ?(s,i+1,j-1)

true

Try pal? on some examples. First, a string.

pal ? "Oxford "

Compiling function palAux ? with type (String , Integer , Integer ) ->

Boolean

Compiling function pal? with type String -> Boolean

(3)false

Boolean

A list of polynomials.

pal ? [4,a,x-1,0,x-1,a,4]

Compiling function palAux ? with type (List(Polynomial (Integer )),

Integer , Integer ) -> Boolean

Compiling function pal? with type List(Polynomial (Integer )) ->

Boolean

(4)true

Boolean

A list of integers from the example in the last section.
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pal ? [1,6,15,20,15,6,1]

Compiling function palAux ? with type (List(PositiveInteger), Integer

, Integer ) -> Boolean

Compiling function pal? with type List(PositiveInteger) -> Boolean

(5)true

Boolean

To use pal? on an integer, first convert it to a string.

pal ?(1441:: String )

(6)true

Boolean

Compute an infinite stream of decimal numbers, each of which is an obvious palindrome.

ones := [reduce (+ ,[10^ j for j in 0..i]) for i in 1..]

(7)[11, 111, 1111, 11111, 111111, 1111111, 11111111, . . .]

Stream( PositiveInteger )

How about their squares?

squares := [x^2 for x in ones]

(8)[121, 12321, 1234321, 123454321, 12345654321, 1234567654321,

123456787654321, 12345678987654321, 1234567900987654321, . . .]

Stream( PositiveInteger )

Well, let’s test them all!

[pal ?(x:: String ) for x in squares ]
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(9)[true, true, true, true, true, true, true, true, false, . . .]

Stream(Boolean)

6.21 Rules and Pattern Matching

A common mathematical formula is

log(x) + log(y) = log(xy) ∀x and y.

The presence of “∀” indicates that x and y can stand for arbitrary mathematical expressions in the
above formula. You can use such mathematical formulas in FriCAS to specify “rewrite rules”. Rewrite
rules are objects in FriCAS that can be assigned to variables for later use, often for the purpose of
simplification. Rewrite rules look like ordinary function definitions except that they are preceded by
the reserved word rule. For example, a rewrite rule for the above formula is:

rule log(x) + log(y) == log(x * y)

Like function definitions, no action is taken when a rewrite rule is issued. Think of rewrite rules as
functions that take one argument. When a rewrite rule A = B is applied to an argument f, its meaning
is: “rewrite every subexpression of f that matches A by B.” The left-hand side of a rewrite rule is
called a pattern; its right-side side is called its substitution.

Create a rewrite rule named logrule. The generated symbol beginning with a “%” is a place-holder
for any other terms that might occur in the sum.

logrule := rule log(x) + log(y) == log (x * y)

(1)log(y) + log(x) + %B == log(x y) + %B

RewriteRule( Integer , Integer , Expression( Integer ))

Create an expression with logarithms.

f := log sin x + log x

(2)log(sin(x)) + log(x)

Expression( Integer )

Apply logrule to f.

logrule f
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(3)log(x sin(x))

Expression( Integer )

The meaning of our example rewrite rule is: “for all expressions x and y, rewrite log(x)+ log(y)

by log(x * y).” Patterns generally have both operation names (here, log and +) and variables (here,
x and y). By default, every operation name stands for itself. Thus log matches only “log” and not
any other operation such as sin. On the other hand, variables do not stand for themselves. Rather, a
variable denotes a pattern variable that is free to match any expression whatsoever.

When a rewrite rule is applied, a process called pattern matching goes to work by systematically
scanning the subexpressions of the argument. When a subexpression is found that “matches” the
pattern, the subexpression is replaced by the right-hand side of the rule. The details of what happens
will be covered later.

The customary FriCAS notation for patterns is actually a shorthand for a longer, more general notation.
Pattern variables can be made explicit by using a percent (“%”) as the first character of the variable
name. To say that a name stands for itself, you can prefix that name with a quote operator (“’”).
Although the current FriCAS parser does not let you quote an operation name, this more general
notation gives you an alternate way of giving the same rewrite rule:

rule log(%x) + log(%y) == log(x * y)

This longer notation gives you patterns that the standard notation won’t handle. For example, the
rule

rule %f(c * ’x) == c*%f(x)

means “for all f and c, replace f(y) by c * f(x) when y is the product of c and the explicit variable
x.”

Thus the pattern can have several adornments on the names that appear there. Normally, all these
adornments are dropped in the substitution on the right-hand side.

To summarize:

To enter a single rule in FriCAS, use the following syntax:

rule leftHandSide == rightHandSide

The leftHandSide is a pattern to be matched and the rightHandSide is its substitution. The rule
is an object of type RewriteRule that can be assigned to a variable and applied to expressions
to transform them.

Rewrite rules can be collected into rulesets so that a set of rules can be applied at once. Here is another
simplification rule for logarithms.

y log(x) = log(xy) ∀x and y.
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If instead of giving a single rule following the reserved word rule you give a “pile” of rules, you create
what is called a ruleset. Like rules, rulesets are objects in FriCAS and can be assigned to variables.
You will find it useful to group commonly used rules into input files, and read them in as needed.
Create a ruleset named logrules.

logrules := rule

log(x) + log(y) == log (x * y)

y * log x == log (x ^ y)

(4){log(y) + log(x) + %C == log(x y) + %C, y log(x) == log(xy)}

Ruleset( Integer , Integer , Expression( Integer ))

Again, create an expression f containing logarithms.

f := a * log (sin x) - 2 * log x

(5)a log(sin(x))− 2 log(x)

Expression( Integer )

Apply the ruleset logrules to f.

logrules f

(6)log

(

(sin(x))a

x2

)

Expression( Integer )

We have allowed pattern variables to match arbitrary expressions in the above examples. Often you
want a variable only to match expressions satisfying some predicate. For example, we may want to
apply the transformation

y log(x) = log(xy)

only when y is an integer. The way to restrict a pattern variable y by a predicate f(y) is by using
a vertical bar “|”, which means “such that,” in much the same way it is used in function definitions.
You do this only once, but at the earliest (meaning deepest and leftmost) part of the pattern. This
restricts the logarithmic rule to create integer exponents only.

logrules2 := rule

log(x) + log(y) == log(x * y)

(y | integer ? y) * log x == log(x ^ y)
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(7){log(y) + log(x) + %E == log(x y) + %E, y log(x) == log(xy)}

Ruleset( Integer , Integer , Expression( Integer ))

Compare this with the result of applying the previous set of rules.

f

(8)a log(sin(x))− 2 log(x)

Expression( Integer )

logrules2 f

(9)a log(sin(x)) + log

(

1

x2

)

Expression( Integer )

You should be aware that you might need to apply a function like integer within your predicate
expression to actually apply the test function. Here we use integer because n has type Expression
Integer but even? is an operation defined on integers.

evenRule := rule cos(x)^(n | integer ? n and even? integer n)==(1- sin(x)^2) ^(n/2)

(10)(cos(x))n ==
(

−(sin(x))2 + 1
)

n
2

RewriteRule( Integer , Integer , Expression( Integer ))

Here is the application of the rule.

evenRule ( cos(x)^2 )

(11)− (sin(x))2 + 1
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Expression( Integer )

This is an example of some of the usual identities involving products of sines and cosines.

sinCosProducts == rule

sin(x) * sin(y) == (cos(x-y) - cos(x + y))/2

cos(x) * cos(y) == (cos(x-y) + cos(x+y))/2

sin(x) * cos(y) == (sin(x-y) + sin(x + y))/2

g := sin(a)*sin (b) + cos (b)*cos(a) + sin (2*a)*cos (2*a)

(13)sin(a) sin(b) + cos(2 a) sin(2 a) + cos(a) cos(b)

Expression( Integer )

sinCosProducts g

Compiling body of rule sinCosProducts to compute value of type

Ruleset (Integer ,Integer , Expression (Integer ))

(14)
sin(4 a) + 2 cos(b− a)

2

Expression( Integer )

Another qualification you will often want to use is to allow a pattern to match an identity element.
Using the pattern x + y, for example, neither x nor y matches the expression 0. Similarly, if a pattern
contains a product x*y or an exponentiation x^y, then neither x or y matches 1. If identical elements
were matched, pattern matching would generally loop. Here is an expansion rule for exponentials.

exprule := rule exp(a + b) == exp(a) * exp(b)

(15)e
b+a == e

a
e
b

RewriteRule( Integer , Integer , Expression( Integer ))

This rule would cause infinite rewriting on this if either a or b were allowed to match 0.

exprule exp x

(16)e
x



6.21. RULES AND PATTERN MATCHING 223

Expression( Integer )

There are occasions when you do want a pattern variable in a sum or product to match 0 or 1. If so,
prefix its name with a “?” whenever it appears in a left-hand side of a rule. For example, consider the
following rule for the exponential integral:

∫ (
y + ex

x

)

dx =

∫
y

x
dx+ Ei(x) ∀x and y.

This rule is valid for y = 0. One solution is to create a Ruleset with two rules, one with and one
without y. A better solution is to use an “optional” pattern variable. Define rule eirule with a
pattern variable ?y to indicate that an expression may or may not occur.

eirule := rule integral ((?y + exp x)/x,x) == integral (y/x,x) + Ei x

(17)

∫ x e%D + y

%D
d%D ==

∫ x y

%D
d%D +Ei(x)

RewriteRule( Integer , Integer , Expression( Integer ))

Apply rule eirule to an integral without this term.

eirule integral (exp u/u, u)

(18)Ei(u)

Expression( Integer )

Apply rule eirule to an integral with this term.

eirule integral ((sin u + exp u)/u, u)

(19)

∫ u sin(%D)

%D
d%D + Ei(u)

Expression( Integer )

Here is one final adornment you will find useful. When matching a pattern of the form x + y to an
expression containing a long sum of the form a+ . . .+ b, there is no way to predict in advance which
subset of the sum matches x and which matches y. Aside from efficiency, this is generally unimportant
since the rule holds for any possible combination of matches for x and y. In some situations, however,
you may want to say which pattern variable is a sum (or product) of several terms, and which should
match only a single term. To do this, put a prefix colon “:” before the pattern variable that you want
to match multiple terms. The remaining rules involve operators u and v.
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u := operator ’u

(20)u

BasicOperator

These definitions tell FriCAS that u and v are formal operators to be used in expressions.

v := operator ’v

(21)v

BasicOperator

First define myRule with no restrictions on the pattern variables x and y.

myRule := rule u(x + y) == u x + v y

(22)u(y + x) == v(y) + u(x)

RewriteRule( Integer , Integer , Expression( Integer ))

Apply myRule to an expression.

myRule u(a + b + c + d)

(23)v(c+ b+ a) + u(d)

Expression( Integer )

Define myOtherRule to match several terms so that the rule gets applied recursively.

myOtherRule := rule u(:x + y) == u x + v y

(24)u(y + x) == v(y) + u(x)
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RewriteRule( Integer , Integer , Expression( Integer ))

Apply myOtherRule to the same expression.

myOtherRule u(a + b + c + d)

(25)v(d) + v(c) + v(b) + u(a)

Expression( Integer )

Summary of pattern variable adornments:

(x | predicate?(x)) means that the substitution s for x
must satisfy predicate?(s) = true.

?x means that x can match an identity
element (0 or 1).

:x means that x can match several terms
in a sum.

Here are some final remarks on pattern matching. Pattern matching provides a very useful paradigm for
solving certain classes of problems, namely, those that involve transformations of one form to another
and back. However, it is important to recognize its limitations.

First, pattern matching slows down as the number of rules you have to apply increases. Thus it is good
practice to organize the sets of rules you use optimally so that irrelevant rules are never included.

Second, careless use of pattern matching can lead to wrong answers. You should avoid using pattern
matching to handle hidden algebraic relationships that can go undetected by other programs. As a
simple example, a symbol such as “J” can easily be used to represent the square root of -1 or some
other important algebraic quantity. Many algorithms branch on whether an expression is zero or not,
then divide by that expression if it is not. If you fail to simplify an expression involving powers of J to
-1, algorithms may incorrectly assume an expression is non-zero, take a wrong branch, and produce a
meaningless result.

Pattern matching should also not be used as a substitute for a domain. In FriCAS, objects of one
domain are transformed to objects of other domains using well-defined coerce operations. Pattern
matching should be used on objects that are all the same type. Thus if your application can be
handled by type Expression in FriCAS and you think you need pattern matching, consider this
choice carefully. You may well be better served by extending an existing domain or by building a new
domain of objects for your application.
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Chapter 7

Graphics

Figure 7.1: Torus knot of type (15,17).

This chapter shows how to use the FriCAS graphics facilities under the X Window System. FriCAS
has two-dimensional and three-dimensional drawing and rendering packages that allow the drawing,
coloring, transforming, mapping, clipping, and combining of graphic output from FriCAS computations.
This facility is particularly useful for investigating problems in areas such as topology. The graphics
package is capable of plotting functions of one or more variables or plotting parametric surfaces and
curves. Various coordinate systems are also available, such as polar and spherical.

A graph is displayed in a viewport window and it has a control-panel that uses interactive mouse
commands. PostScript and other output forms are available so that FriCAS images can be printed or
used by other programs.1

7.1 Two-Dimensional Graphics

The FriCAS two-dimensional graphics package provides the ability to display

1PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.
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• curves defined by functions of a single real variable

• curves defined by parametric equations

• implicit non-singular curves defined by polynomial equations

• planar graphs generated from lists of point components.

These graphs can be modified by specifying various options, such as calculating points in the polar
coordinate system or changing the size of the graph viewport window.

7.1.1 Plotting Two-Dimensional Functions of One Variable

The first kind of two-dimensional graph is that of a curve defined by a function y = f(x) over a finite
interval of the x axis.

The general format for drawing a function defined by a formula f(x) is:

draw(f(x), x = a..b, options)

where a..b defines the range of x, and where options prescribes zero or more options as described
in Section 7.1.4 on page 233. An example of an option is curveColor == bright red(). An
alternative format involving functions f and g is also available.

A simple way to plot a function is to use a formula. The first argument is the formula. For the second
argument, write the name of the independent variable (here, x), followed by an “=”, and the range of
values.

Display this formula over the range 0 ≤ x ≤ 6. FriCAS converts your formula to a compiled function
so that the results can be computed quickly and efficiently.

draw(sin(tan (x)) - tan(sin(x)),x = 0..6)

Notice that FriCAS compiled the function before the graph was put on the screen.

Here is the same graph on a different interval. This time we give the graph a title.
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draw(sin(tan (x)) - tan(sin(x)),x = 10..16)

Once again the formula is converted to a compiled function before any points were computed. If you
want to graph the same function on several intervals, it is a good idea to define the function first so
that the function has to be compiled only once. This time we first define the function.

f(x) == (x -1) *(x -2) *(x-3)

To draw the function, the first argument is its name and the second is just the range with no independent
variable.

draw(f, 0..4)

7.1.2 Plotting Two-Dimensional Parametric Plane Curves

The second kind of two-dimensional graph is that of curves produced by parametric equations. Let
x = f(t) and y = g(t) be formulas or two functions f and g as the parameter t ranges over an
interval [a,b]. The function curve takes the two functions f and g as its parameters.
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The general format for drawing a two-dimensional plane curve defined by parametric formulas
x = f(t) and y = g(t) is:

draw(curve(f(t), g(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where options prescribes zero or
more options as described in Section 7.2.4 on page 258. An example of an option is curveColor
== bright red().

Here’s an example:

Define a parametric curve using a range involving %pi, FriCAS’s way of saying π. For parametric
curves, FriCAS compiles two functions, one for each of the functions f and g.

draw(curve(sin(t)*sin (2* t)*sin (3*t), sin (4*t)*sin (5*t)*sin (6*t)), t = 0..2*% pi)

The title may be an arbitrary string and is an optional argument to the draw command.

draw(curve(cos(t), sin(t)), t = 0..2*% pi)

If you plan on plotting x = f(t), y = g(t) as t ranges over several intervals, you may want to define
functions f and g first, so that they need not be recompiled every time you create a new graph. Here’s
an example: As before, you can first define the functions you wish to draw.
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f(t:DFLOAT ):DFLOAT == sin (3*t/4)

Function declaration f : DoubleFloat -> DoubleFloat has been added

to workspace .

FriCAS compiles them to map DoubleFloat values to DoubleFloat values.

g(t:DFLOAT ):DFLOAT == sin(t)

Function declaration g : DoubleFloat -> DoubleFloat has been added

to workspace .

Give to curve the names of the functions, then write the range without the name of the independent
variable.

draw(curve(f,g) ,0..% pi)

Here is another look at the same curve but over a different range. Notice that f and g are not
recompiled. Also note that FriCAS provides a default title based on the first function specified in
curve.

draw(curve(f,g) ,-4*% pi..4*% pi)
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7.1.3 Plotting Plane Algebraic Curves

A third kind of two-dimensional graph is a non-singular “solution curve” in a rectangular region of the
plane. A solution curve is a curve defined by a polynomial equation p(x,y) = 0. Non-singular means
that the curve is “smooth” in that it does not cross itself or come to a point (cusp). Algebraically,
this means that for any point (x,y) on the curve, that is, a point such that p(x,y)= 0, the partial
derivatives ∂p

∂x (x, y) and
∂p
∂y (x, y) are not both zero.

The general format for drawing a non-singular solution curve given by a polynomial of the form
p(x,y) = 0 is:

draw(p(x,y) = 0, x, y, range == [a..b, c..d], options)

where the second and third arguments name the first and second independent variables of p. A
range option is always given to designate a bounding rectangular region of the plane a ≤ x ≤
b, c ≤ y ≤ d. Zero or more additional options as described in Section 7.1.4 on page 233 may be
given.

We require that the polynomial has rational or integral coefficients. Here is an algebraic curve example
(“Cartesian ovals”):

p := ((x^2 + y^2 + 1) - 8*x)^2 - (8*(x^2 + y^2 + 1) -4*x-1)

(1)y
4 +

(

2x2 − 16x− 6
)

y
2 + x

4 − 16 x3 + 58x2 − 12 x− 6

Polynomial( Integer )

The first argument is always expressed as an equation of the form p = 0 where p is a polynomial.

draw(p = 0, x, y, range == [-1..11, -7..7])
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7.1.4 Two-Dimensional Options

The draw commands take an optional list of options, such as title shown above. Each option is given
by the syntax: name == value. Here is a list of the available options in the order that they are described
below.

adaptive clip unit
clip curveColor range
toScale pointColor coordinates

The adaptive option turns adaptive plotting on or off. Adaptive plotting uses an algorithm that
traverses a graph and computes more points for those parts of the graph with high curvature. The
higher the curvature of a region is, the more points the algorithm computes. The adaptive option
is normally on. Here we turn it off.

draw(sin (1/x),x=-2*% pi..2*% pi, adaptive == false)

The clip option turns clipping on or off. If on, large values are cut off according to clipPointsDefault.

draw(tan(x),x=-2*% pi ..2*%pi , clip == true)

Option toScale does plotting to scale if true or uses the entire viewport if false. The default can be
determined using drawToScale.

draw(sin(x),x=-%pi..% pi, toScale == true , unit == [1.0 ,1.0])
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Option clip with a range sets point clipping of a graph within the ranges specified in the list [x

range,y range]. If only one range is specified, clipping applies to the y-axis.

draw(sec(x),x=-2*% pi ..2*%pi , clip == [-2*% pi ..2*%pi ,-%pi..% pi], unit == [1.0 ,1.0])

Option curveColor sets the color of the graph curves or lines to be the indicated palette color (see
Section 7.1.5 on page 237 and Section 7.1.6 on page 238).

draw(sin(x),x=-%pi..% pi, curveColor == bright red ())
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Option pointColor sets the color of the graph points to the indicated palette color (see Section 7.1.5
on page 237 and Section 7.1.6 on page 238).

draw(sin(x),x=-%pi..% pi, pointColor == pastel yellow ())

Option unit sets the intervals at which the axis units are plotted according to the indicated steps [x
interval, y interval].

draw(curve (9* sin (3*t/4) ,8* sin(t)), t = -4*%pi ..4*% pi, unit == [2.0 ,1.0])

Option range sets the range of variables in a graph to be within the ranges for solving plane algebraic
curve plots.

draw(y^2 + y - (x^3 - x) = 0, x, y, range == [-2..2,-2..1] , unit ==[1.0 ,1.0])
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A second example of a solution plot.

draw(x^2 + y^2 = 1, x, y, range == [ -3/2..3/2 , -3/2..3/2] , unit ==[0.5 ,0.5])

Option coordinates indicates the coordinate system in which the graph is plotted. The default is to
use the Cartesian coordinate system. For more details, see Section 7.2.7 on page 271.

draw(curve(sin (5*t),t),t=0..2*% pi , coordinates == polar)
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7.1.5 Color

The domain Color provides operations for manipulating colors in two-dimensional graphs. Colors are
objects of Color. Each color has a hue and a weight. Hues are represented by integers that range from
1 to the numberOfHues(), normally 27. Weights are floats and have the value 1.0 by default.

color (integer)

creates a color of hue integer and weight 1.0.

hue (color)

returns the hue of color as an integer.

red (), blue() green(), and yellow()
create colors of that hue with weight 1.0.

color1 + color2 returns the color that results from additively combining the indicated color1 and color2.
Color addition is not commutative: changing the order of the arguments produces different
results.

integer * color changes the weight of color by integer without affecting its hue. For example, red() +
3*yellow() produces a color closer to yellow than to red. Color multiplication is not associative:
changing the order of grouping produces different results.

These functions can be used to change the point and curve colors for two- and three-dimensional
graphs. Use the pointColor option for points.

draw(x^2,x=-1..1, pointColor == green ())

Use the curveColor option for curves.

draw(x^2,x=-1..1, curveColor == color (13) + 2* blue())
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7.1.6 Palette

Domain Palette is the domain of shades of colors: dark, dim, bright, pastel, and light, designated by
the integers 1 through 5, respectively. Colors are normally “bright.”

shade red ()

(1)3

PositiveInteger

To change the shade of a color, apply the name of a shade to it.

myFavoriteColor := dark blue()

(2)[Hue: 22 Weight: 1.0] from the Dark palette

Palette

The expression shade(color) returns the value of a shade of color.

shade myFavoriteColor

(3)1

PositiveInteger

The expression hue(color) returns its hue.

hue myFavoriteColor
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(4)Hue: 22 Weight: 1.0

Color

Palettes can be used in specifying colors in two-dimensional graphs.

draw(x^2,x=-1..1, curveColor == dark blue())

7.1.7 Two-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your left mouse
button to display a control-panel. The panel is displayed on the side of the viewport closest to where
you clicked. Each of the buttons which toggle on and off show the current state of the graph.

Transformations

Object transformations are executed from the control-panel by mouse-activated potentiometer win-
dows.

Scale: To scale a graph, click on a mouse button within the Scale window in the upper left corner
of the control-panel. The axes along which the scaling is to occur are indicated by setting the
toggles above the arrow. With X On and Y On appearing, both axes are selected and scaling is
uniform. If either is not selected, for example, if X Off appears, scaling is non-uniform.

Translate: To translate a graph, click the mouse in the Translate window in the direction you wish
the graph to move. This window is located in the upper right corner of the control-panel. Along
the top of the Translate window are two buttons for selecting the direction of translation.
Translation along both coordinate axes results when X On and Y On appear or along one axis
when one is on, for example, X On and Y Off appear.
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Figure 7.2: Two-dimensional control-panel.

Messages

The window directly below the transformation potentiometer windows is used to display system mes-
sages relating to the viewport and the control-panel. The following format is displayed:

[scaleX, scaleY] >graph< [translateX, translateY]

The two values to the left show the scale factor along the X and Y coordinate axes. The two values to
the right show the distance of translation from the center in the X and Y directions. The number in the
center shows which graph in the viewport this data pertains to. When multiple graphs exist in the same
viewport, the graph must be selected (see “Multiple Graphs,” below) in order for its transformation
data to be shown, otherwise the number is 1.

Multiple Graphs

The Graphs window contains buttons that allow the placement of two-dimensional graphs into one of
nine available slots in any other two-dimensional viewport. In the center of the window are numeral
buttons from one to nine that show whether a graph is displayed in the viewport. Below each number
button is a button showing whether a graph that is present is selected for application of some transfor-
mation. When the caret symbol is displayed, then the graph in that slot will be manipulated. Initially,
the graph for which the viewport is created occupies the first slot, is displayed, and is selected.
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Clear: The Clear button deselects every viewport graph slot. A graph slot is reselected by selecting
the button below its number.

Query: The Query button is used to display the scale and translate data for the indicated graph.
When this button is selected the message “Click on the graph to query” appears. Select a slot
number button from the Graphs window. The scaling factor and translation offset of the graph
are then displayed in the message window.

Pick: The Pick button is used to select a graph to be placed or dropped into the indicated viewport.
When this button is selected, the message “Click on the graph to pick” appears. Click on the
slot with the graph number of the desired graph. The graph information is held waiting for you
to execute a Drop in some other graph.

Drop: Once a graph has been picked up using the Pick button, the Drop button places it into a
new viewport slot. The message “Click on the graph to drop” appears in the message window
when the Drop button is selected. By selecting one of the slot number buttons in the Graphs
window, the graph currently being held is dropped into this slot and displayed.

Buttons

Axes turns the coordinate axes on or off.

Units turns the units along the x and y axis on or off.

Box encloses the area of the viewport graph in a bounding box, or removes the box if already enclosed.

Pts turns on or off the display of points.

Lines turns on or off the display of lines connecting points.

PS writes the current viewport contents to a file fricas2D.ps. The file is placed in the directory from
which FriCAS or the viewAlone program was invoked.

Reset resets the object transformation characteristics and attributes back to their initial states.

Hide makes the control-panel disappear.

Quit queries whether the current viewport session should be terminated.

7.1.8 Operations for Two-Dimensional Graphics

Here is a summary of useful FriCAS operations for two-dimensional graphics. Each operation name is
followed by a list of arguments. Each argument is written as a variable informally named according
to the type of the argument (for example, integer). If appropriate, a default value for an argument is
given in parentheses immediately following the name.

adaptive ([boolean(true)])

sets or indicates whether graphs are plotted according to the adaptive refinement algorithm.

axesColorDefault ([color(dark blue())])

sets or indicates the default color of the axes in a two-dimensional graph viewport.
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clipPointsDefault ([boolean(false)])

sets or indicates whether point clipping is to be applied as the default for graph plots.

drawToScale ([boolean(false)])

sets or indicates whether the plot of a graph is “to scale” or uses the entire viewport space as
the default.

lineColorDefault ([color(pastel yellow())])

sets or indicates the default color of the lines or curves in a two-dimensional graph viewport.

maxPoints ([integer(500)])

sets or indicates the default maximum number of possible points to be used when constructing a
two-dimensional graph.

minPoints ([integer(21)])

sets or indicates the default minimum number of possible points to be used when constructing a
two-dimensional graph.

pointColorDefault ([color(bright red())])

sets or indicates the default color of the points in a two-dimensional graph viewport.

pointSizeDefault ([integer(5)])

sets or indicates the default size of the dot used to plot points in a two-dimensional graph.

screenResolution ([integer(600)])

sets or indicates the default screen resolution constant used in setting the computation limit of
adaptively generated curve plots.

unitsColorDefault ([color(dim green())])

sets or indicates the default color of the unit labels in a two-dimensional graph viewport.

viewDefaults ()

resets the default settings for the following attributes: point color, line color, axes color, units
color, point size, viewport upper left-hand corner position, and the viewport size.

viewPosDefault ([list([100,100])])

sets or indicates the default position of the upper left-hand corner of a two-dimensional viewport,
relative to the display root window. The upper left-hand corner of the display is considered to
be at the (0, 0) position.

viewSizeDefault ([list([200,200])])

sets or indicates the default size in which two dimensional viewport windows are shown. It is
defined by a width and then a height.

viewWriteAvailable ([list(["pixmap", "bitmap", "postscript", ı̈mage")])

indicates the possible file types that can be created with the ‘write‘ function.

viewWriteDefault ([list([])])

sets or indicates the default types of files, in addition to the data file, that are created when a
write function is executed on a viewport.

units (viewport, integer(1), string("off"))

turns the units on or off for the graph with index integer.
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axes (viewport, integer(1), string("on"))

turns the axes on or off for the graph with index integer.

close (viewport)

closes viewport.

connect (viewport, integer(1), string("on"))

declares whether lines connecting the points are displayed or not.

controlPanel (viewport, string("off"))

declares whether the two-dimensional control-panel is automatically displayed or not.

graphs (viewport)

returns a list describing the state of each graph. If the graph state is not being used this is shown
by "undefined", otherwise a description of the graph’s contents is shown.

graphStates (viewport)

displays a list of all the graph states available for viewport, giving the values for every property.

key (viewport)

returns the process ID number for viewport.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))

moves viewport on the screen so that the upper left-hand corner of viewport is at the position
(x,y).

options (viewport)

returns a list of all the DrawOptions used by viewport.

points (viewport, integer(1), string("on"))

specifies whether the graph points for graph integer are to be displayed or not.

region (viewport, integer(1), string("off"))

declares whether graph integer is or is not to be displayed with a bounding rectangle.

reset (viewport)

resets all the properties of viewport.

resize (viewport, integerwidth, integerheight)

resizes viewport with a new width and height.

scale (viewport, integern(1), integerx(0.9), integery(0.9))

scales values for the x and y coordinates of graph n.

show (viewport, integern(1), string("on"))

indicates if graph n is shown or not.

title (viewport, string("FriCAS 2D"))

designates the title for viewport.

translate (viewport, integern(1), floatx(0.0), floaty(0.0))

causes graph n to be moved x and y units in the respective directions.

write (viewport, stringdirectory, [strings])

if no third argument is given, writes the data file onto the directory with extension data. The
third argument can be a single string or a list of strings with some or all the entries "pixmap",
"bitmap", "postscript", and "image".
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7.1.9 Addendum: Building Two-Dimensional Graphs

In this section we demonstrate how to create two-dimensional graphs from lists of points and give an
example showing how to read the lists of points from a file.

Creating a Two-Dimensional Viewport from a List of Points

FriCAS creates lists of points in a two-dimensional viewport by utilizing the GraphImage and
TwoDimensionalViewport domains. In this example, the makeGraphImage function takes a list
of lists of points parameter, a list of colors for each point in the graph, a list of colors for each line in
the graph, and a list of sizes for each point in the graph. The following expressions create a list of
lists of points which will be read by FriCAS and made into a two-dimensional viewport.

p1 := point [1,1]$(Point DFLOAT )

(1)[1.0, 1.0]

Point(DoubleFloat)

p2 := point [0,1]$(Point DFLOAT )

(2)[0.0, 1.0]

Point(DoubleFloat)

p3 := point [0,0]$(Point DFLOAT )

(3)[0.0, 0.0]

Point(DoubleFloat)

p4 := point [1,0]$(Point DFLOAT )

(4)[1.0, 0.0]

Point(DoubleFloat)

p5 := point [1 ,.5] $(Point DFLOAT )
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(5)[1.0, 0.5]

Point(DoubleFloat)

p6 := point [.5 ,0] $(Point DFLOAT )

(6)[0.5, 0.0]

Point(DoubleFloat)

p7 := point [0 ,0.5] $(Point DFLOAT )

(7)[0.0, 0.5]

Point(DoubleFloat)

p8 := point [.5 ,1] $(Point DFLOAT )

(8)[0.5, 1.0]

Point(DoubleFloat)

p9 := point [.25 ,.25]$(Point DFLOAT )

(9)[0.25, 0.25]

Point(DoubleFloat)

p10 := point [.25 ,.75]$(Point DFLOAT )

(10)[0.25, 0.75]
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Point(DoubleFloat)

p11 := point [.75 ,.75]$(Point DFLOAT )

(11)[0.75, 0.75]

Point(DoubleFloat)

p12 := point [.75 ,.25]$(Point DFLOAT )

(12)[0.75, 0.25]

Point(DoubleFloat)

Finally, here is the list.

llp := [[p1,p2], [p2,p3], [p3,p4], [p4 ,p1], [p5 ,p6], [p6 ,p7], [p7 ,p8], [p8 ,p5],

[p9 ,p10], [p10 ,p11 ], [p11 ,p12], [p12 ,p9]]

(13)
[[[1.0, 1.0] , [0.0, 1.0]] , [[0.0, 1.0] , [0.0, 0.0]] , [[0.0, 0.0] , [1.0, 0.0]] , [[1.0, 0.0] , [1.0, 1.0]] , [[1.0,

0.5] , [0.5, 0.0]] , [[0.5, 0.0] , [0.0, 0.5]] , [[0.0, 0.5] , [0.5, 1.0]] , [[0.5, 1.0] , [1.0, 0.5]] , [[0.25, 0.25] ,

[0.25, 0.75]] , [[0.25, 0.75] , [0.75, 0.75]] , [[0.75, 0.75] , [0.75, 0.25]] , [[0.75, 0.25] , [0.25, 0.25]]]

List ( List (Point(DoubleFloat)))

Now we set the point sizes for all components of the graph.

size1 := 6:: PositiveInteger

(14)6

PositiveInteger

size2 := 8:: PositiveInteger

(15)8
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PositiveInteger

size3 := 10:: PositiveInteger

(16)10

PositiveInteger

lsize := [size1 , size1 , size1 , size1 , size2 , size2 , size2 , size2 , size3 , size3 ,

size3 , size3 ]

(17)[6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10]

List ( PositiveInteger )

Here are the colors for the points.

pc1 := pastel red ()

(18)[Hue: 1 Weight: 1.0] from the Pastel palette

Palette

pc2 := dim green ()

(19)[Hue: 14 Weight: 1.0] from the Dim palette

Palette

pc3 := pastel yellow ()

(20)[Hue: 11 Weight: 1.0] from the Pastel palette

Palette

lpc := [pc1 , pc1 , pc1 , pc1 , pc2 , pc2 , pc2 , pc2 , pc3 , pc3 , pc3 , pc3]
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(21)

[[Hue: 1 Weight: 1.0] from the Pastel palette,

[Hue: 1 Weight: 1.0] from the Pastel palette,

[Hue: 1 Weight: 1.0] from the Pastel palette,

[Hue: 1 Weight: 1.0] from the Pastel palette,

[Hue: 14 Weight: 1.0] from the Dim palette,

[Hue: 14 Weight: 1.0] from the Dim palette,

[Hue: 14 Weight: 1.0] from the Dim palette,

[Hue: 14 Weight: 1.0] from the Dim palette,

[Hue: 11 Weight: 1.0] from the Pastel palette,

[Hue: 11 Weight: 1.0] from the Pastel palette,

[Hue: 11 Weight: 1.0] from the Pastel palette,

[Hue: 11 Weight: 1.0] from the Pastel palette]

List (Palette )

Here are the colors for the lines.

lc := [pastel blue (), light yellow (), dim green (), bright red (), light green (), dim

yellow (), bright blue(), dark red (), pastel red (), light blue (), dim green (),

light yellow ()]

(22)

[[Hue: 22 Weight: 1.0] from the Pastel palette,

[Hue: 11 Weight: 1.0] from the Light palette,

[Hue: 14 Weight: 1.0] from the Dim palette,

[Hue: 1 Weight: 1.0] from the Bright palette,

[Hue: 14 Weight: 1.0] from the Light palette,

[Hue: 11 Weight: 1.0] from the Dim palette,

[Hue: 22 Weight: 1.0] from the Bright palette,

[Hue: 1 Weight: 1.0] from the Dark palette,

[Hue: 1 Weight: 1.0] from the Pastel palette,

[Hue: 22 Weight: 1.0] from the Light palette,

[Hue: 14 Weight: 1.0] from the Dim palette,

[Hue: 11 Weight: 1.0] from the Light palette]

List (Palette )

Now the GraphImage is created according to the component specifications indicated above.

g := makeGraphImage(llp ,lpc ,lc ,lsize )$GRIMAGE
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(23)Graph with 12 point lists

GraphImage

The makeViewport2D function now creates a TwoDimensionalViewport for this graph according to
the list of options specified within the brackets.

makeViewport2D(g,[ title ("Lines ")]) $VIEW2D

This example demonstrates the use of the GraphImage functions component and appendPoint in
adding points to an empty GraphImage.

)clear all

All user variables and function definitions have been cleared .

g := graphImage () $GRIMAGE

(1)Graph with 0 point lists

GraphImage

p1 := point [0,0]$(Point DFLOAT )

(2)[0.0, 0.0]

Point(DoubleFloat)

p2 := point [.25 ,.25]$(Point DFLOAT )

(3)[0.25, 0.25]

Point(DoubleFloat)

p3 := point [.5 ,.5] $(Point DFLOAT )

(4)[0.5, 0.5]
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Point(DoubleFloat)

p4 := point [.75 ,.75]$(Point DFLOAT )

(5)[0.75, 0.75]

Point(DoubleFloat)

p5 := point [1,1]$(Point DFLOAT )

(6)[1.0, 1.0]

Point(DoubleFloat)

component (g,p1)$GRIMAGE

component (g,p2)$GRIMAGE

appendPoint (g,p3)$GRIMAGE

appendPoint (g,p4)$GRIMAGE

appendPoint (g,p5)$GRIMAGE

Here is the graph.

makeViewport2D(g,[ title ("Graph Points ")]) $VIEW2D

A list of points can also be made into a GraphImage by using the operation coerce. It is equivalent
to adding each point to g2 using component.

g2 := coerce ([[ p1],[ p2],[p3],[ p4],[ p5]]) $GRIMAGE

(12)Graph with 5 point lists

GraphImage

Now, create an empty TwoDimensionalViewport.

v := viewport2D () $VIEW2D
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(13)Closed or Undefined TwoDimensionalViewport: "FriCAS2D"

TwoDimensionalViewport

options (v,[ title (" Just Points ")]) $VIEW2D

(14)Closed or Undefined TwoDimensionalViewport: "FriCAS2D"

TwoDimensionalViewport

Place the graph into the viewport.

putGraph (v,g2 ,1) $VIEW2D

Take a look.

makeViewport2D(v)$VIEW2D

Creating a Two-Dimensional Viewport of a List of Points from a File

The following three functions read a list of points from a file and then draw the points and the con-
necting lines. The points are stored in the file in readable form as floating point numbers (specifically,
DoubleFloat values) as an alternating stream of x- and y-values. For example,

0.0 0.0 1.0 1.0 2.0 4.0

3.0 9.0 4.0 16.0 5.0 25.0

1 drawPoints (lp:List Point DoubleFloat ): VIEW2D ==

2 g := graphImage () $GRIMAGE
3 for p in lp repeat

4 component (g,p, pointColorDefault(), lineColorDefault(),

5 pointSizeDefault ())

6 makeViewport2D(g,[ title (" Points ")]) $VIEW2D
7
8 drawLines (lp:List Point DoubleFloat ): VIEW2D ==

9 g := graphImage () $GRIMAGE
10 component (g, lp, pointColorDefault (), lineColorDefault(),

11 pointSizeDefault ()) $GRIMAGE
12 makeViewport2D(g,[ title (" Points ")]) $VIEW2D
13
14 plotData2D (name , title) ==

15 f:File(DFLOAT ) := open(name ,"input ")

16 lp:LIST(Point DFLOAT ) := empty ()

17 while ((x := readIfCan !(f)) case DFLOAT ) repeat

18 y : DFLOAT := read!(f)

19 lp := cons(point [x,y]$(Point DFLOAT ), lp)

20 lp

21 close !(f)

22 drawPoints (lp)

23 drawLines (lp)
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This command will actually create the viewport and the graph if the point data is in the file "file.

data".

1 plotData2D (" file.data", "2D Data Plot")

7.1.10 Addendum: Appending a Graph to a Viewport Window Containing
a Graph

This section demonstrates how to append a two-dimensional graph to a viewport already containing
other graphs. The default draw command places a graph into the first GraphImage slot position of
the TwoDimensionalViewport.

This graph is in the first slot in its viewport.

v1 := draw(sin(x),x=0..2*% pi)

Compiling function %C with type DoubleFloat -> DoubleFloat

(1)TwoDimensionalViewport: "sin(x)"

TwoDimensionalViewport

So is this graph.

v2 := draw(cos(x),x=0..2*% pi , curveColor == light red ())

Compiling function %E with type DoubleFloat -> DoubleFloat

(2)TwoDimensionalViewport: "cos(x)"

TwoDimensionalViewport

The operation getGraph retrieves the GraphImage g1 from the first slot position in the viewport v1.

g1 := getGraph (v1 ,1)

(3)Graph with 1 point list

GraphImage

Now putGraph places g1 into the the second slot position of v2.

putGraph (v2,g1 ,2)
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Display the new TwoDimensionalViewport containing both graphs.

makeViewport2D(v2)

Instead of using draw to draw a graph and then extract graph data we can use makeObject. First
graph.

g3 := makeObject (sin(x),x= -1..% pi ,[])

Compiling function %G with type DoubleFloat -> DoubleFloat

(5)Graph with 1 point list

GraphImage

This graph is in the first slot in its viewport.

v3 := draw(cos(x),x= -1..% pi , curveColor == light red ())

Compiling function %I with type DoubleFloat -> DoubleFloat

(6)TwoDimensionalViewport: "cos(x)"

TwoDimensionalViewport

Now putGraph places g3 into the the second slot position of v3.

putGraph (v3,g3 ,2)

Display the new TwoDimensionalViewport containing both graphs.

makeViewport2D(v3)

The viewports v1, v2 and v3 are no longer needed so we close them.

close(v1); close(v2); close (v3)

7.2 Three-Dimensional Graphics

The FriCAS three-dimensional graphics package provides the ability to

• generate surfaces defined by a function of two real variables

• generate space curves and tubes defined by parametric equations

• generate surfaces defined by parametric equations

These graphs can be modified by using various options, such as calculating points in the spherical
coordinate system or changing the polygon grid size of a surface.
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7.2.1 Plotting Three-Dimensional Functions of Two Variables

The simplest three-dimensional graph is that of a surface defined by a function of two variables, z =

f(x,y).

The general format for drawing a surface defined by a formula f(x,y) of two variables x and y is:

draw(f(x,y), x = a..b, y = c..d, options)

where a..b and c..d define the range of x and y, and where options prescribes zero or more
options as described in Section 7.2.4 on page 258. An example of an option is title == "Title

of Graph". An alternative format involving a function f is also available.

The simplest way to plot a function of two variables is to use a formula. With formulas you always
precede the range specifications with the variable name and an “=” sign. Notice that FriCAS uses the
text of your function as a default title.

draw(cos(x*y),x=-3..3,y= -3..3)

If you intend to use a function more than once, or it is long and complex, then first give its definition
to FriCAS.

f(x,y) == sin(x)*cos(y)

To draw the function, just give its name and drop the variables from the range specifications. FriCAS
compiles your function for efficient computation of data for the graph.

draw(f,-% pi..%pi ,-%pi..% pi)
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7.2.2 Plotting Three-Dimensional Parametric Space Curves

A second kind of three-dimensional graph is a three-dimensional space curve defined by the parametric
equations for x(t), y(t), and z(t) as a function of an independent variable t.

The general format for drawing a three-dimensional space curve defined by parametric formulas
x = f(t), y = g(t), and z = h(t) is:

draw(curve(f(t),g(t),h(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where options prescribes zero or
more options as described in Section 7.2.4 on page 258. An example of an option is title == "

Title of Graph". An alternative format involving functions f, g and h is also available.

If you use explicit formulas to draw a space curve, always precede the range specification with the
variable name and an “=” sign.

draw(curve (5* cos(t), 5*sin(t),t), t= -12..12)

Alternatively, you can draw space curves by referring to functions.

i1(t:DFLOAT ):DFLOAT == sin(t)*cos (3*t/5)
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Function declaration i1 : DoubleFloat -> DoubleFloat has been added

to workspace .

This is useful if the functions are to be used more than once . . .

i2(t:DFLOAT ):DFLOAT == cos(t)*cos (3*t/5)

Function declaration i2 : DoubleFloat -> DoubleFloat has been added

to workspace .

or if the functions are long and complex.

i3(t:DFLOAT ):DFLOAT == cos(t)*sin (3*t/5)

Function declaration i3 : DoubleFloat -> DoubleFloat has been added

to workspace .

Give the names of the functions and drop the variable name specification in the second argument.
Again, FriCAS supplies a default title.

draw(curve(i1 ,i2 ,i3) ,0..15*%pi)

7.2.3 Plotting Three-Dimensional Parametric Surfaces

A third kind of three-dimensional graph is a surface defined by parametric equations for x(u,v),
y(u,v), and z(u,v) of two independent variables u and v.

The general format for drawing a three-dimensional graph defined by parametric formulas x = f

(u,v), y = g(u,v), and z = h(u,v) is:

draw(surface(f(u,v),g(u,v),h(u,v)), u = a..b, v = c..d, options)

where a..b and c..d define the range of the independent variables u and v, and where options
prescribes zero or more options as described in Section 7.2.4 on page 258. An example of an
option is title == "Title of Graph". An alternative format involving functions f, g and h is
also available.
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This example draws a graph of a surface plotted using the parabolic cylindrical coordinate system
option. The values of the functions supplied to surface are interpreted in coordinates as given by a
coordinates option, here as parabolic cylindrical coordinates (see Section 7.2.7 on page 271).

draw(surface (u*cos (v), u*sin(v), v*cos (u)), u=-4..4, v=0..% pi, coordinates ==

parabolicCylindrical)

Again, you can graph these parametric surfaces using functions, if the functions are long and complex.
Here we declare the types of arguments and values to be of type DoubleFloat.

n1(u:DFLOAT ,v:DFLOAT ):DFLOAT == u*cos(v)

Function declaration n1 : (DoubleFloat , DoubleFloat ) -> DoubleFloat

has been added to workspace .

As shown by previous examples, these declarations are necessary.

n2(u:DFLOAT ,v:DFLOAT ):DFLOAT == u*sin(v)

Function declaration n2 : (DoubleFloat , DoubleFloat ) -> DoubleFloat

has been added to workspace .

In either case, FriCAS compiles the functions when needed to graph a result.

n3(u:DFLOAT ,v:DFLOAT ):DFLOAT == u

Function declaration n3 : (DoubleFloat , DoubleFloat ) -> DoubleFloat

has been added to workspace .

Without these declarations, you have to suffix floats with @DFLOAT to get a DoubleFloat result.
However, a call here with an unadorned float produces a DoubleFloat.

n3(0.5 ,1.0)

Compiling function n3 with type (DoubleFloat , DoubleFloat ) ->

DoubleFloat

(4)0.5
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DoubleFloat

Draw the surface by referencing the function names, this time choosing the toroidal coordinate system.

draw(surface (n1 ,n2 ,n3), 1..4, 1..2*% pi , coordinates == toroidal (1 $DFLOAT ))

7.2.4 Three-Dimensional Options

The draw commands optionally take an optional list of options such as coordinates as shown in the
last example. Each option is given by the syntax: name == value. Here is a list of the available options
in the order that they are described below:

title coordinates var1Steps
style tubeRadius var2Steps
colorFunction tubePoints space

The option title gives your graph a title.

draw(cos(x*y),x=0..2*% pi ,y=0..%pi ,title == "Title of Graph ")

The style determines which of four rendering algorithms is used for the graph. The choices are
"wireMesh", "solid", "shade", and "smooth".
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draw(cos(x*y),x=-3..3,y=-3..3, style ==" smooth ", title ==" Smooth Option ")

In all but the wire-mesh style, polygons in a surface or tube plot are normally colored in a graph
according to their z-coordinate value. Space curves are colored according to their parametric variable
value. To change this, you can give a coloring function. The coloring function is sampled across the
range of its arguments, then normalized onto the standard FriCAS colormap.

A function of one variable makes the color depend on the value of the parametric variable specified for
a tube plot.

color1 (t) == t

draw(curve(sin(t), cos(t) ,0), t=0..2*% pi, tubeRadius == .3, colorFunction == color1 )

A function of two variables makes the color depend on the values of the independent variables.

color2 (u,v) == u^2 - v^2

Use the option colorFunction for special coloring.

draw(cos(u*v), u=-3..3, v=-3..3, colorFunction == color2 )
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With a three variable function, the color also depends on the value of the function.

color3 (x,y,fxy) == sin(x*fxy) + cos (y*fxy )

draw(cos(x*y), x=-3..3, y=-3..3, colorFunction == color3 )

Normally the Cartesian coordinate system is used. To change this, use the coordinates option. For
details, see Section 7.2.7 on page 271.

m(u:DFLOAT ,v:DFLOAT ):DFLOAT == 1

Function declaration m : (DoubleFloat , DoubleFloat ) -> DoubleFloat

has been added to workspace .

Use the spherical coordinate system.

draw(m, 0..2*% pi ,0..% pi, coordinates == spherical , style ==" shade ")



7.2. THREE-DIMENSIONAL GRAPHICS 261

Space curves may be displayed as tubes with polygonal cross sections. Two options, tubeRadius and
tubePoints, control the size and shape of this cross section. The tubeRadius option specifies the
radius of the tube that encircles the specified space curve.

draw(curve(sin(t),cos (t) ,0),t=0..2*% pi , style ==" shade ", tubeRadius == .3)

The tubePoints option specifies the number of vertices defining the polygon that is used to create
a tube around the specified space curve. The larger this number is, the more cylindrical the tube
becomes.

draw(curve(sin(t), cos(t), 0), t=0..2*% pi , style ==" shade ", tubeRadius == .25,

tubePoints == 3)
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Options var1Steps and var2Steps specify the number of intervals into which the grid defining a surface
plot is subdivided with respect to the first and second parameters of the surface function(s).

draw(cos(x*y),x=-3..3,y=-3..3, style ==" shade ", var1Steps == 30, var2Steps == 30)

The space option of a draw command lets you build multiple graphs in three space. To use this option,
first create an empty three-space object, then use the space option thereafter. There is no restriction
as to the number or kinds of graphs that can be combined this way. Create an empty three-space
object.

s := create3Space()$( ThreeSpace DFLOAT )

(5)3-Space with 0 components

ThreeSpace(DoubleFloat)

m(u:DFLOAT ,v:DFLOAT ):DFLOAT == 1

Function declaration m : (DoubleFloat , DoubleFloat ) -> DoubleFloat

has been added to workspace .
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1 old definition (s) deleted for function or rule m

Add a graph to this three-space object. The new graph destructively inserts the graph into s.

draw(m ,0..%pi ,0..2*% pi , coordinates == spherical , space == s)

Add a second graph to s.

v := draw(curve (1.5* sin(t), 1.5* cos (t) ,0) , t=0..2*% pi , tubeRadius == .25, space == s)

A three-space object can also be obtained from an existing three-dimensional viewport using the
subspace command. You can then use makeViewport3D to create a viewport window. Assign to
subsp the three-space object in viewport v.

subsp := subspace v

Reset the space component of v to the value of subsp.

subspace (v, subsp)

Create a viewport window from a three-space object.

makeViewport3D(subsp ," Graphs ")
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7.2.5 The makeObject Command

An alternate way to create multiple graphs is to use makeObject. The makeObject command is similar
to the draw command, except that it returns a three-space object rather than a ThreeDimension-
alViewport. In fact, makeObject is called by the draw command to create the ThreeSpace then
makeViewport3D to create a viewport window.

m(u:DFLOAT ,v:DFLOAT ):DFLOAT == 1

Function declaration m : (DoubleFloat , DoubleFloat ) -> DoubleFloat

has been added to workspace .

Do the last example a new way. First use makeObject to create a three-space object sph.

sph := makeObject (m, 0..%pi , 0..2*% pi, coordinates == spherical )

Compiling function m with type (DoubleFloat , DoubleFloat ) ->

DoubleFloat

(2)3-Space with 1 component

ThreeSpace(DoubleFloat)

Add a second object to sph.

makeObject (curve (1.5* sin (t), 1.5* cos(t), 0), t=0..2*% pi, space == sph , tubeRadius ==

.25)

Compiling function %M with type DoubleFloat -> DoubleFloat

Compiling function %O with type DoubleFloat -> DoubleFloat

Compiling function %Q with type DoubleFloat -> DoubleFloat

(3)3-Space with 2 components

ThreeSpace(DoubleFloat)

Create and display a viewport containing sph.

makeViewport3D(sph ," Multiple Objects ")

(4)ThreeDimensionalViewport: "Multiple Objects"
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ThreeDimensionalViewport

Note that an undefined ThreeSpace parameter declared in a makeObject or draw command results in
an error. Use the create3Space function to define a ThreeSpace, or obtain a ThreeSpace that has
been previously generated before including it in a command line.

7.2.6 Building Three-Dimensional Objects From Primitives

Rather than using the draw and makeObject commands, you can create three-dimensional graphs from
primitives. Operation create3Space creates a three-space object to which points, curves and polygons
can be added using the operations from the ThreeSpace domain. The resulting object can then be
displayed in a viewport using makeViewport3D.

Create the empty three-space object space.

space := create3Space()$(ThreeSpace DFLOAT )

(1)3-Space with 0 components

ThreeSpace(DoubleFloat)

Objects can be sent to this space using the operations exported by the ThreeSpace domain. The
following examples place curves into space.

Add these eight curves to the space.

closedCurve (space ,[[0 ,30 ,20] , [0,30,30], [0,40,30], [0,40,100],

[0 ,30 ,100] ,[0 ,30 ,110] , [0,60,110], [0,60,100], [0,50,100], [0,50,30], [0,60,30],

[0 ,60 ,20]])

(2)3-Space with 1 component

ThreeSpace(DoubleFloat)

closedCurve (space ,[[80 ,0 ,30] , [80,0,100], [70,0,110], [40,0,110], [30,0,100],

[30,0,90], [40,0,90], [40,0,95], [45,0,100], [65,0,100], [70,0,95], [70 ,0 ,35]])

(3)3-Space with 2 components

ThreeSpace(DoubleFloat)

closedCurve (space ,[[70 ,0 ,35] , [65,0,30], [45,0,30], [40,0,35], [40,0,60], [50,0,60],

[50,0,70], [30,0,70], [30,0,30], [40,0,20], [70,0,20], [80 ,0 ,30]])
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(4)3-Space with 3 components

ThreeSpace(DoubleFloat)

closedCurve (space ,[[0 ,70 ,20] , [0,70,110], [0 ,110 ,110] , [0 ,120 ,100] , [0,120,70],

[0,115,65], [0,120,60], [0,120,30], [0,110,20], [0,80,20], [0,80,30], [0 ,80 ,20]])

(5)3-Space with 4 components

ThreeSpace(DoubleFloat)

closedCurve (space ,[[0 ,105 ,30] , [0,110,35], [0,110,55], [0,105,60], [0,80,60],

[0,80,70], [0,105,70], [0,110,75], [0,110,95], [0 ,105 ,100] , [0,80,100],

[0,80,20], [0 ,80 ,30]])

(6)3-Space with 5 components

ThreeSpace(DoubleFloat)

closedCurve (space ,[[140 ,0 ,20] , [140 ,0 ,110] , [130 ,0 ,110] , [90,0,20],

[101 ,0 ,20] ,[114 ,0 ,50] , [130,0,50], [130,0,60], [119,0,60], [130,0,85], [130 ,0 ,20]])

(7)3-Space with 6 components

ThreeSpace(DoubleFloat)

closedCurve (space ,[[0 ,140 ,20] , [0 ,140 ,110] , [0 ,150 ,110] , [0,170,50], [0 ,190 ,110] ,

[0 ,200 ,110] , [0,200,20], [0,190,20], [0,190,75], [0,175,35],

[0 ,165 ,35] ,[0 ,150 ,75] , [0 ,150 ,20]])

(8)3-Space with 7 components

ThreeSpace(DoubleFloat)

closedCurve (space ,[[200 ,0 ,20] , [200 ,0 ,110] , [189 ,0 ,110] , [160,0,45], [160 ,0 ,110] ,

[150 ,0 ,110] , [150,0,20], [161,0,20], [190,0,85], [190 ,0 ,20]])
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(9)3-Space with 8 components

ThreeSpace(DoubleFloat)

Create and display the viewport using makeViewport3D. Options may also be given but here are dis-
played as a list with values enclosed in parentheses.

makeViewport3D(space , title == "Letters ")

Cube Example

As a second example of the use of primitives, we generate a cube using a polygon mesh. It is important
to use a consistent orientation of the polygons for correct generation of three-dimensional objects.

Again start with an empty three-space object.

spaceC := create3Space()$(ThreeSpace DFLOAT )

(10)3-Space with 0 components

ThreeSpace(DoubleFloat)

For convenience, give DoubleFloat values +1 and -1 names.

x: DFLOAT := 1

(11)1.0
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DoubleFloat

y: DFLOAT := -1

(12)− 1.0

DoubleFloat

Define the vertices of the cube.

a := point [x,x,y,1:: DFLOAT ]$(Point DFLOAT )

(13)[1.0, 1.0, −1.0, 1.0]

Point(DoubleFloat)

b := point [y,x,y,4:: DFLOAT ]$(Point DFLOAT )

(14)[−1.0, 1.0, −1.0, 4.0]

Point(DoubleFloat)

c := point [y,x,x,8:: DFLOAT ]$(Point DFLOAT )

(15)[−1.0, 1.0, 1.0, 8.0]

Point(DoubleFloat)

d := point [x,x,x ,12:: DFLOAT ]$(Point DFLOAT )

(16)[1.0, 1.0, 1.0, 12.0]

Point(DoubleFloat)

e := point [x,y,y ,16:: DFLOAT ]$(Point DFLOAT )
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(17)[1.0, −1.0, −1.0, 16.0]

Point(DoubleFloat)

f := point [y,y,y ,20:: DFLOAT ]$(Point DFLOAT )

(18)[−1.0, −1.0, −1.0, 20.0]

Point(DoubleFloat)

g := point [y,y,x ,24:: DFLOAT ]$(Point DFLOAT )

(19)[−1.0, −1.0, 1.0, 24.0]

Point(DoubleFloat)

h := point [x,y,x ,27:: DFLOAT ]$(Point DFLOAT )

(20)[1.0, −1.0, 1.0, 27.0]

Point(DoubleFloat)

Add the faces of the cube as polygons to the space using a consistent orientation.

polygon (spaceC ,[d,c,g,h])

(21)3-Space with 1 component

ThreeSpace(DoubleFloat)

polygon (spaceC ,[d,h,e,a])

(22)3-Space with 2 components
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ThreeSpace(DoubleFloat)

polygon (spaceC ,[c,d,a,b])

(23)3-Space with 3 components

ThreeSpace(DoubleFloat)

polygon (spaceC ,[g,c,b,f])

(24)3-Space with 4 components

ThreeSpace(DoubleFloat)

polygon (spaceC ,[h,g,f,e])

(25)3-Space with 5 components

ThreeSpace(DoubleFloat)

polygon (spaceC ,[e,f,b,a])

(26)3-Space with 6 components

ThreeSpace(DoubleFloat)

Create and display the viewport.

makeViewport3D(spaceC , title == "Cube")
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7.2.7 Coordinate System Transformations

The CoordinateSystems package provides coordinate transformation functions that map a given
data point from the coordinate system specified into the Cartesian coordinate system. The default
coordinate system, given a triplet (f(u,v), u, v), assumes that z = f(u, v), x = u and y = v,
that is, reads the coordinates in (z, x, y) order.

m(u:DFLOAT ,v:DFLOAT ):DFLOAT == u^2

Function declaration m : (DoubleFloat , DoubleFloat ) -> DoubleFloat

has been added to workspace .

Graph plotted in default coordinate system.

draw(m ,0..3 ,0..5)

The z coordinate comes first since the first argument of the draw command gives its values. In general,
the coordinate systems FriCAS provides, or any that you make up, must provide a map to an (x, y, z)

triplet in order to be compatible with the coordinates DrawOption. Here is an example.

Define the identity function.

cartesian (point :Point DFLOAT ):Point DFLOAT == point

Function declaration cartesian : Point (DoubleFloat ) -> Point(

DoubleFloat ) has been added to workspace .

Pass cartesian as the coordinates parameter to the draw command.

draw(m ,0..3,0..5 , coordinates == cartesian )
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What happened? The option coordinates == cartesian directs FriCAS to treat the dependent
variable m defined by m = u2 as the x coordinate. Thus the triplet of values (m, u, v) is transformed
to coordinates (x, y, z) and so we get the graph of x = y2.

Here is another example. The cylindrical transform takes input of the form (w,u,v), interprets it in
the order (r,θ,z) and maps it to the Cartesian coordinates x = r cos(θ), y = r sin(θ), z = z in which r
is the radius, θ is the angle and z is the z-coordinate. An example using the cylindrical coordinates
for the constant r = 3.

f(u:DFLOAT ,v:DFLOAT ):DFLOAT == 3

Function declaration f : (DoubleFloat , DoubleFloat ) -> DoubleFloat

has been added to workspace .

Graph plotted in cylindrical coordinates.

draw(f ,0..%pi ,0..6 , coordinates == cylindrical )

Suppose you would like to specify z as a function of r and θ instead of just r? Well, you still can
use the cylindrical FriCAS transformation but we have to reorder the triplet before passing it to the
transformation.

First, let’s create a point to work with and call it pt with some color col.

col := 5
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(4)5

PositiveInteger

pt := point [1,2,3, col ]$(Point DFLOAT )

(5)[1.0, 2.0, 3.0, 5.0]

Point(DoubleFloat)

The reordering you want is (z, r, θ) to (r, θ, z) so that the first element is moved to the third element,
while the second and third elements move forward and the color element does not change. Define a
function reorder to reorder the point elements.

reorder (p:Point DFLOAT ):Point DFLOAT == point[p.2, p.3, p.1, p.4]

Function declaration reorder : Point(DoubleFloat ) -> Point(

DoubleFloat ) has been added to workspace .

The function moves the second and third elements forward but the color does not change.

reorder pt

Compiling function reorder with type Point(DoubleFloat ) -> Point(

DoubleFloat )

(7)[2.0, 3.0, 1.0, 5.0]

Point(DoubleFloat)

The function newmap converts our reordered version of the cylindrical coordinate system to the
standard (x, y, z) Cartesian system.

newmap (pt:Point DFLOAT ):Point DFLOAT == cylindrical (reorder pt)

Function declaration newmap : Point (DoubleFloat ) -> Point(

DoubleFloat ) has been added to workspace .

newmap pt

Compiling function newmap with type Point (DoubleFloat ) -> Point(

DoubleFloat )
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(9)[−1.9799849932008908, 0.2822400161197344, 1.0, 5.0]

Point(DoubleFloat)

Graph the same function f using the coordinate mapping of the function newmap, so it is now interpreted
as z = 3:

draw(f ,0..3 ,0..2*% pi, coordinates == newmap )

The CoordinateSystems package exports the following operations: bipolar, bipolarCylindrical, carte-
sian, conical, cylindrical, elliptic, ellipticCylindrical, oblateSpheroidal, parabolic, parabolicCylindrical,
paraboloidal, polar, prolateSpheroidal, spherical, and toroidal. Use Browse or the )show system com-
mand to get more information.

7.2.8 Three-Dimensional Clipping

A three-dimensional graph can be explicitly clipped within the draw command by indicating a minimum
and maximum threshold for the given function definition. These thresholds can be defined using the
FriCAS min and max functions.

gamma(x,y) ==

g := Gamma complex (x,y)

point [x, y, max ( min(real g, 4), -4), argument g]

Here is an example that clips the gamma function in order to eliminate the extreme divergence it
creates.

draw(gamma ,-%pi..% pi ,-% pi..%pi ,var1Steps ==50, var2Steps ==50)
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7.2.9 Three-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your left mouse
button. This displays a control-panel on the side of the viewport that is closest to where you clicked.

Figure 7.3: Three-dimensional control-panel.

Transformations

We recommend you first select the Bounds button while executing transformations since the bounding
box displayed indicates the object’s position as it changes.

Rotate: A rotation transformation occurs by clicking the mouse within the Rotate window in the
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upper left corner of the control-panel. The rotation is computed in spherical coordinates, using
the horizontal mouse position to increment or decrement the value of the longitudinal angle θ
within the range of 0 to 2π and the vertical mouse position to increment or decrement the value
of the latitudinal angle ϕ within the range of -π to π. The active mode of rotation is displayed in
green on a color monitor or in clear text on a black and white monitor, while the inactive mode
is displayed in red for color display or a mottled pattern for black and white.

origin: The origin button indicates that the rotation is to occur with respect to the origin of
the viewing space, that is indicated by the axes.

object: The object button indicates that the rotation is to occur with respect to the center of
volume of the object, independent of the axes’ origin position.

Scale: A scaling transformation occurs by clicking the mouse within the Scale window in the upper
center of the control-panel, containing a zoom arrow. The axes along which the scaling is to occur
are indicated by selecting the appropriate button above the zoom arrow window. The selected
axes are displayed in green on a color monitor or in clear text on a black and white monitor,
while the unselected axes are displayed in red for a color display or a mottled pattern for black
and white.

uniform: Uniform scaling along the x, y and z axes occurs when all the axes buttons are selected.

non-uniform: If any of the axes buttons are not selected, non-uniform scaling occurs, that is,
scaling occurs only in the direction of the axes that are selected.

Translate: Translation occurs by indicating with the mouse in the Translate window the direction
you want the graph to move. This window is located in the upper right corner of the control-panel
and contains a potentiometer with crossed arrows pointing up, down, left and right. Along the top
of the Translate window are three buttons (XY, XZ, and YZ) indicating the three orthographic
projection planes. Each orientates the group as a view into that plane. Any translation of the
graph occurs only along this plane.

Messages

The window directly below the potentiometer windows for transformations is used to display system
messages relating to the viewport, the control-panel and the current graph displaying status.

Colormap

Directly below the message window is the colormap range indicator window. The FriCAS Colormap
shows a sampling of the spectrum from which hues can be drawn to represent the colors of a surface.
The Colormap is composed of five shades for each of the hues along this spectrum. By moving the
markers above and below the Colormap, the range of hues that are used to color the existing surface
are set. The bottom marker shows the hue for the low end of the color range and the top marker shows
the hue for the upper end of the range. Setting the bottom and top markers at the same hue results
in monochromatic smooth shading of the graph when Smooth mode is selected. At each end of the
Colormap are + and - buttons. When clicked on, these increment or decrement the top or bottom
marker.
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Buttons

Below the Colormap window and to the left are located various buttons that determine the character-
istics of a graph. The buttons along the bottom and right hand side all have special meanings; the
remaining buttons in the first row indicate the mode or style used to display the graph. The second
row are toggles that turn on or off a property of the graph. On a color monitor, the property is on
if green (clear text, on a monochrome monitor) and off if red (mottled pattern, on a monochrome
monitor). Here is a list of their functions.

Wire displays surface and tube plots as a wireframe image in a single color (blue) with no hidden
surfaces removed, or displays space curve plots in colors based upon their parametric variables.
This is the fastest mode for displaying a graph. This is very useful when you want to find a good
orientation of your graph.

Solid displays the graph with hidden surfaces removed, drawing each polygon beginning with the
furthest from the viewer. The edges of the polygons are displayed in the hues specified by the
range in the Colormap window.

Shade displays the graph with hidden surfaces removed and with the polygons shaded, drawing each
polygon beginning with the furthest from the viewer. Polygons are shaded in the hues specified
by the range in the Colormap window using the Phong illumination model.

Smooth displays the graph using a renderer that computes the graph one line at a time. The location
and color of the graph at each visible point on the screen are determined and displayed using the
Phong illumination model. Smooth shading is done in one of two ways, depending on the range
selected in the colormap window and the number of colors available from the hardware and/or
window manager. When the top and bottom markers of the colormap range are set to different
hues, the graph is rendered by dithering between the transitions in color hue. When the top and
bottom markers of the colormap range are set to the same hue, the graph is rendered using the
Phong smooth shading model. However, if enough colors cannot be allocated for this purpose,
the renderer reverts to the color dithering method until a sufficient color supply is available. For
this reason, it may not be possible to render multiple Phong smooth shaded graphs at the same
time on some systems.

Bounds encloses the entire volume of the viewgraph within a bounding box, or removes the box if
previously selected. The region that encloses the entire volume of the viewport graph is displayed.

Axes displays Cartesian coordinate axes of the space, or turns them off if previously selected.

Outline causes quadrilateral polygons forming the graph surface to be outlined in black when the
graph is displayed in Shade mode.

BW converts a color viewport to black and white, or vice-versa. When this button is selected the
control-panel and viewport switch to an immutable colormap composed of a range of grey scale
patterns or tiles that are used wherever shading is necessary.

Light takes you to a control-panel described below.

ViewVolume takes you to another control-panel as described below.

Save creates a menu of the possible file types that can be written using the control-panel. The Exit
button leaves the save menu. The Pixmap button writes an FriCAS pixmap of the current
viewport contents. The file is called fricas3D.pixmap and is located in the directory from



278 CHAPTER 7. GRAPHICS

which FriCAS or viewAlone was started. The PS button writes the current viewport contents to
PostScript output rather than to the viewport window. By default the file is called fricas3D.ps;
however, if a file name is specified in the user’s .Xdefaults file it is used. The file is placed in the
directory from which the FriCAS or viewAlone session was begun. See also the ‘write‘ function.

Reset returns the object transformation characteristics back to their initial states.

Hide causes the control-panel for the corresponding viewport to disappear from the screen.

Quit queries whether the current viewport session should be terminated.

Light

The Light button changes the control-panel into the Lighting Control-Panel. At the top of this
panel, the three axes are shown with the same orientation as the object. A light vector from the origin
of the axes shows the current position of the light source relative to the object. At the bottom of the
panel is an Abort button that cancels any changes to the lighting that were made, and a Return
button that carries out the current set of lighting changes on the graph.

XY: The XY lighting axes window is below the Lighting Control-Panel title and to the left. This
changes the light vector within the XY view plane.

Z: The Z lighting axis window is below the Lighting Control-Panel title and in the center. This
changes the Z location of the light vector.

Intensity: Below the Lighting Control-Panel title and to the right is the light intensity meter.
Moving the intensity indicator down decreases the amount of light emitted from the light source.
When the indicator is at the top of the meter the light source is emitting at 100% intensity. At
the bottom of the meter the light source is emitting at a level slightly above ambient lighting.

View Volume

The View Volume button changes the control-panel into the Viewing Volume Panel. At the
bottom of the viewing panel is an Abort button that cancels any changes to the viewing volume that
were made and a Return button that carries out the current set of viewing changes to the graph.

Eye Reference: At the top of this panel is the Eye Reference window. It shows a planar projection
of the viewing pyramid from the eye of the viewer relative to the location of the object. This
has a bounding region represented by the rectangle on the left. Below the object rectangle is the
Hither window. By moving the slider in this window the hither clipping plane sets the front of
the view volume. As a result of this depth clipping all points of the object closer to the eye than
this hither plane are not shown. The Eye Distance slider to the right of the Hither slider is
used to change the degree of perspective in the image.

Clip Volume: The Clip Volume window is at the bottom of the Viewing Volume Panel. On
the right is a Settings menu. In this menu are buttons to select viewing attributes. Selecting
the Perspective button computes the image using perspective projection. The Show Region
button indicates whether the clipping region of the volume is to be drawn in the viewport and
the Clipping On button shows whether the view volume clipping is to be in effect when the
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image is drawn. The left side of the Clip Volume window shows the clipping boundary of the
graph. Moving the knobs along the X, Y, and Z sliders adjusts the volume of the clipping region
accordingly.

7.2.10 Operations for Three-Dimensional Graphics

Here is a summary of useful FriCAS operations for three-dimensional graphics. Each operation name
is followed by a list of arguments. Each argument is written as a variable informally named according
to the type of the argument (for example, integer). If appropriate, a default value for an argument is
given in parentheses immediately following the name.

adaptive3D? ()

tests whether space curves are to be plotted according to the adaptive refinement algorithm.

axes (viewport, string("on"))

turns the axes on and off.

close (viewport)

closes the viewport.

colorDef (viewport, color1(1), color2(27))

sets the colormap range to be from color1 to color2.

controlPanel (viewport, string("off"))

declares whether the control-panel for the viewport is to be displayed or not.

diagonals (viewport, string("off"))

declares whether the polygon outline includes the diagonals or not.

drawStyle (viewport, style)

selects which of four drawing styles are used: "wireMesh", "solid", "shade", or "smooth".

eyeDistance (viewport,float(500))

sets the distance of the eye from the origin of the object for use in the ‘perspective‘.

key (viewport)

returns the operating system process ID number for the viewport.

lighting (viewport, floatx(-0.5), floaty(0.5), floatz(0.5))

sets the Cartesian coordinates of the light source.

modifyPointData (viewport,integer,point)

replaces the coordinates of the point with the index integer with point.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))

moves the upper left-hand corner of the viewport to screen position (integerx, integery).

options (viewport)

returns a list of all current draw options.

outlineRender (viewport, string("off"))

turns polygon outlining off or on when drawing in "shade" mode.
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perspective (viewport, string("on"))

turns perspective viewing on and off.

reset (viewport)

resets the attributes of a viewport to their initial settings.

resize (viewport, integerwidth (viewSizeDefault), integerheight (viewSizeDefault))

resets the width and height values for a viewport.

rotate (viewport, numberθ(viewThetaDefault), numberϕ(viewPhiDefault))

rotates the viewport by rotation angles for longitude (θ) and latitude (ϕ). Angles designate
radians if given as floats, or degrees if given as integers.

setAdaptive3D (boolean(true))

sets whether space curves are to be plotted according to the adaptive refinement algorithm.

setMaxPoints3D (integer(1000))

sets the default maximum number of possible points to be used when constructing a three-di-
mensional space curve.

setMinPoints3D (integer(49))

sets the default minimum number of possible points to be used when constructing a three-dimen-
sional space curve.

setScreenResolution3D (integer(500))

sets the default screen resolution constant used in setting the computation limit of adaptively
generated three-dimensional space curve plots.

showRegion (viewport, string("off"))

declares whether the bounding box of a graph is shown or not.

subspace (viewport)

returns the space component.

subspace (viewport, subspace)

resets the space component to subspace.

title (viewport, string)

gives the viewport the title string.

translate (viewport, floatx(viewDeltaXDefault), floaty(viewDeltaYDefault))

translates the object horizontally and vertically relative to the center of the viewport.

intensity (viewport,float(1.0))

resets the intensity I of the light source, 0 ≤ I ≤ 1.

tubePointsDefault ([integer(6)])

sets or indicates the default number of vertices defining the polygon that is used to create a tube
around a space curve.

tubeRadiusDefault ([float(0.5)])

sets or indicates the default radius of the tube that encircles a space curve.

var1StepsDefault ([integer(27)])

sets or indicates the default number of increments into which the grid defining a surface plot is
subdivided with respect to the first parameter declared in the surface function.
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var2StepsDefault ([integer(27)])

sets or indicates the default number of increments into which the grid defining a surface plot is
subdivided with respect to the second parameter declared in the surface function.

viewDefaults ([integerpoint, integerline, integeraxes, integerunits, floatpoint, listposition, listsize])

resets the default settings for the point color, line color, axes color, units color, point size, viewport
upper left-hand corner position, and the viewport size.

viewDeltaXDefault ([float(0)])

resets the default horizontal offset from the center of the viewport, or returns the current default
offset if no argument is given.

viewDeltaYDefault ([float(0)])

resets the default vertical offset from the center of the viewport, or returns the current default
offset if no argument is given.

viewPhiDefault ([float(-π/4)])

resets the default latitudinal view angle, or returns the current default angle if no argument is
given. ϕ is set to this value.

viewpoint (viewport, floatx, floaty, floatz)

sets the viewing position in Cartesian coordinates.

viewpoint (viewport, floatθ, Floatϕ)

sets the viewing position in spherical coordinates.

viewpoint (viewport, Floatθ, Floatϕ, FloatscaleFactor, FloatxOffset, FloatyOffset)

sets the viewing position in spherical coordinates, the scale factor, and offsets. θ (longitude) and
ϕ (latitude) are in radians.

viewPosDefault ([list([0,0])])

sets or indicates the position of the upper left-hand corner of a two-dimensional viewport, relative
to the display root window (the upper left-hand corner of the display is [0, 0]).

viewSizeDefault ([list([400,400])])

sets or indicates the width and height dimensions of a viewport.

viewThetaDefault ([float(π/4)])

resets the default longitudinal view angle, or returns the current default angle if no argument is
given. When a parameter is specified, the default longitudinal view angle θ is set to this value.

viewWriteAvailable ([list(["pixmap", "bitmap", "postscript", "image")])

indicates the possible file types that can be created with the ‘write‘ function.

viewWriteDefault ([list([])])

sets or indicates the default types of files that are created in addition to the data file when a
‘write‘ command is executed on a viewport.

write (viewport, directory, [option])

writes the file data for viewport in the directory directory. An optional third argument specifies
a file type (one of pixmap, bitmap, postscript, or image), or a list of file types. An additional
file is written for each file type listed.

zoom (viewport, float(2.5))

specifies the scaling factor.
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7.2.11 Customization using .Xdefaults

Both the two-dimensional and three-dimensional drawing facilities consult the .Xdefaults file for
various defaults. The list of defaults that are recognized by the graphing routines is discussed in
this section. These defaults are preceded by FriCAS.3D. for three-dimensional viewport defaults,
FriCAS.2D. for two-dimensional viewport defaults, or FriCAS* (no dot) for those defaults that are
acceptable to either viewport type.

FriCAS*buttonFont: font
This indicates which font type is used for the button text on the control-panel. The default value
is "Rom11".

FriCAS.2D.graphFont: font (2D only)
This indicates which font type is used for displaying the graph numbers and slots in the Graphs
section of the two-dimensional control-panel. The default value is "Rom22".

FriCAS.3D.headerFont: font
This indicates which font type is used for the axes labels and potentiometer header names on
three-dimensional viewport windows. This is also used for two-dimensional control-panels for
indicating which font type is used for potentionmeter header names and multiple graph title
headers. The default value is "Itl14".

FriCAS*inverse: switch
This indicates whether the background color is to be inverted from white to black. If on, the
graph viewports use black as the background color. If off or no declaration is made, the graph
viewports use a white background. The default value is "off".

FriCAS.3D.lightingFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the two lighting axes po-
tentiometers, and for the Intensity title on the lighting control-panel. The default value is
"Rom10".

FriCAS.2D.messageFont, FriCAS.3D.messageFont: font
These indicate the font type to be used for the text in the control-panel message window. The
default value is "Rom14".

FriCAS*monochrome: switch
This indicates whether the graph viewports are to be displayed as if the monitor is black and
white, that is, a 1 bit plane. If on is specified, the viewport display is black and white. If off
is specified, or no declaration for this default is given, the viewports are displayed in the normal
fashion for the monitor in use. The default value is "off".

FriCAS*titleFont font
This indicates which font type is used for the title text and, for three-dimensional graphs, in the
lighting and viewing-volume control-panel windows. The default value is "Rom14".

FriCAS.2D.unitFont: font (2D only)
This indicates which font type is used for displaying the unit labels on two-dimensional viewport
graphs. The default value is "6x10".

FriCAS.3D.volumeFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the clipping region sliders;
for the Perspective, Show Region, and Clipping On buttons under Settings, and above
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the windows for the Hither and Eye Distance sliders in the Viewing Volume Panel of the
three-dimensional control-panel. The default value is "Rom8".
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Chapter 8

Advanced Problem Solving

In this chapter we describe techniques useful in solving advanced problems with FriCAS.

8.1 Numeric Functions

FriCAS provides two basic floating-point types: Float and DoubleFloat. This section describes how
to use numerical operations defined on these types and the related complex types. As we mentioned
in Chapter 1, the Float type is a software implementation of floating-point numbers in which the
exponent and the significand may have any number of digits. See ‘Float’ on page 509 for detailed
information about this domain. The DoubleFloat (see ‘DoubleFloat’ on page 477) is usually a
hardware implementation of floating point numbers, corresponding to machine double precision. The
types Complex Float and Complex DoubleFloat are the corresponding software implementations
of complex floating-point numbers. In this section the term floating-point type means any of these four
types. The floating-point types implement the basic elementary functions. These include (where “%”
means DoubleFloat, Float, Complex DoubleFloat, or Complex Float):

exp, log: % → %

sin, cos, tan, cot, sec, csc: % → %

asin, acos, atan, acot, asec, acsc: % → %

sinh, cosh, tanh, coth, sech, csch: % → %

asinh, acosh, atanh, acoth, asech, acsch: % → %

pi: () → %

sqrt: % → %

nthRoot: (%, Integer)→ %

^: (%, Fraction Integer)→%

^: (%, %)→ %

The handling of roots depends on whether the floating-point type is real or complex: for the real
floating-point types, DoubleFloat and Float, if a real root exists the one with the same sign as the
radicand is returned; for the complex floating-point types, the principal value is returned. Also, for
real floating-point types the inverse functions produce errors if the results are not real. This includes
cases such as asin(1.2), log(-3.2), sqrt(-1.1). The default floating-point type is Float so to
evaluate functions using Float or Complex Float, just use normal decimal notation.

287
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exp (3.1)

(1)22.197951281441633405

Float

exp (3.1 + 4.5 * %i)

(2)− 4.6792348860969899118 − 21.699165928071731864 i

Complex(Float)

To evaluate functions using DoubleFloat or Complex DoubleFloat, a declaration or conversion is
required.

r: DFLOAT := 3.1; t: DFLOAT := 4.5; exp(r + t*%i)

(3)− 4.679234886096988 − 21.69916592807172 i

Complex(DoubleFloat)

exp (3.1:: DFLOAT + 4.5:: DFLOAT * %i)

(4)− 4.679234886096988 − 21.69916592807172 i

Complex(DoubleFloat)

A number of special functions are provided by the package DoubleFloatSpecialFunctions for the
machine-precision floating-point types. The special functions provided are listed below, where F stands
for the types DoubleFloat and Complex DoubleFloat. The real versions of the functions yield an
error if the result is not real.

Gamma: F → F

Gamma(z) is the Euler gamma function, Γ(z), defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt.

Beta: F → F

Beta(u, v) is the Euler Beta function, B(u, v), defined by

B(u, v) =

∫ 1

0

tu−1(1− t)v−1dt.
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This is related to Γ(z) by

B(u, v) =
Γ(u)Γ(v)

Γ(u + v)
.

logGamma: F → F

logGamma(z) is the natural logarithm of Γ(z). This can often be computed even if Γ(z) cannot.

digamma: F → F

digamma(z), also called psi(z), is the function ψ(z), defined by

ψ(z) = Γ′(z)/Γ(z).

polygamma: (NonNegativeInteger, F)→F

polygamma(n, z) is the nth derivative of ψ(z), written ψ(n)(z).

besselJ: (F,F)→ F

besselJ(v,z) is the Bessel function of the first kind, Jν(z). This function satisfies the differential
equation

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = 0.

besselY: (F,F)→ F

besselY(v,z) is the Bessel function of the second kind, Yν(z). This function satisfies the same
differential equation as besselJ. The implementation simply uses the relation

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

besselI: (F,F)→ F

besselI(v,z) is the modified Bessel function of the first kind, Iν(z). This function satisfies the
differential equation

z2w′′(z) + zw′(z)− (z2 + ν2)w(z) = 0.

besselK: (F,F)→ F

besselK(v,z) is the modified Bessel function of the second kind, Kν(z). This function satisfies the
same differential equation as besselI. The implementation simply uses the relation

Kν(z) = π
I−ν(z)− Iν(z)

2 sin(νπ)
.

airyAi: F → F

airyAi(z) is the Airy function Ai(z). This function satisfies the differential equation w′′(z)−zw(z) =
0. The implementation simply uses the relation

Ai(−z) = 1

3

√
z(J−1/3(

2

3
z3/2) + J1/3(

2

3
z3/2)).

airyBi: F → F

airyBi(z) is the Airy function Bi(z). This function satisfies the same differential equation as airyAi.
The implementation simply uses the relation

Bi(−z) = 1

3

√
3z(J−1/3(

2

3
z3/2)− J1/3(

2

3
z3/2)).
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hypergeometric0F1: (F,F)→ F

hypergeometric0F1(c,z) is the hypergeometric function 0F1(; c; z).

The package FloatSpecialFunctions provides the implementation of some special functions for Float
or Complex Float arguments, including Gamma, Beta, logGamma, digamma. If you give Float or
Complex Float arguments to a special function that has not yet defined to accept Float arguments,
these are respectively converted to DoubleFloat or Complex DoubleFloat arguments.

Gamma (0.5) ^2

(5)3.1415926535897932385

Float

a := 2.1; b := 1.1; besselI (a + %i*b, b*a + 1)

(6)2.4894824175473698 − 2.365846038146814 i

Complex(DoubleFloat)

A number of additional operations may be used to compute numerical values. These are special poly-
nomial functions that can be evaluated for values in any commutative ring R, and in particular for
values in any floating-point type. The following operations are provided by the package Orthogo-
nalPolynomialFunctions:

chebyshevT: (NonNegativeInteger, R)→R

chebyshevT(n,z) is the nth Chebyshev polynomial of the first kind, Tn(z). These are defined by

1− tz
1− 2tz + t2

=

∞∑

n=0

Tn(z)t
n.

chebyshevU: (NonNegativeInteger, R)→R

chebyshevU(n,z) is the nth Chebyshev polynomial of the second kind, Un(z). These are defined by

1

1− 2tz + t2
=

∞∑

n=0

Un(z)t
n.

hermiteH: (NonNegativeInteger, R)→R

hermiteH(n,z) is the nth Hermite polynomial, Hn(z). These are defined by

e2tz−t2 =

∞∑

n=0

Hn(z)
tn

n!
.

laguerreL: (NonNegativeInteger, R)→R

laguerreL(n,z) is the nth Laguerre polynomial, Ln(z). These are defined by

e−
tz

1−t

1− t =

∞∑

n=0

Ln(z)
tn

n!
.
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laguerreL: (NonNegativeInteger, NonNegativeInteger, R)→R

laguerreL(m,n,z) is the associated Laguerre polynomial, Lm
n (z). This is the mth derivative of Ln(z).

legendreP: (NonNegativeInteger, R)→R

legendreP(n,z) is the nth Legendre polynomial, Pn(z). These are defined by

1√
1− 2tz + t2

=

∞∑

n=0

Pn(z)t
n.

These operations require non-negative integers for the indices, but otherwise the argument can be given
as desired.

[chebyshevT (i, z) for i in 0..5]

(7)
[

1, z, 2 z2 − 1, 4 z3 − 3 z, 8 z4 − 8 z2 + 1, 16 z5 − 20 z3 + 5 z
]

List (Polynomial( Integer ))

The expression chebyshevT(n,z) evaluates to the nth Chebyshev polynomial of the first kind.

chebyshevT (3, 5.0 + 6.0*%i)

(8)− 1675.0 + 918.0 i

Complex(Float)

chebyshevT (3, 5.0:: DoubleFloat )

(9)485.0

DoubleFloat

The expression chebyshevU(n,z) evaluates to the nth Chebyshev polynomial of the second kind.

[chebyshevU (i, z) for i in 0..5]

(10)
[

1, 2 z, 4 z2 − 1, 8 z3 − 4 z, 16 z4 − 12 z2 + 1, 32 z5 − 32 z3 + 6 z
]
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List (Polynomial( Integer ))

chebyshevU (3, 0.2)

(11)− 0.736

Float

The expression hermiteH(n,z) evaluates to the nth Hermite polynomial.

[hermiteH (i, z) for i in 0..5]

(12)
[

1, 2 z, 4 z2 − 2, 8 z3 − 12 z, 16 z4 − 48 z2 + 12, 32 z5 − 160 z3 + 120 z
]

List (Polynomial( Integer ))

hermiteH (100, 1.0)

(13)− 0.1448706729337934088E93

Float

The expression laguerreL(n,z) evaluates to the nth Laguerre polynomial.

[laguerreL (i, z) for i in 0..4]

(14)
[

1, −z + 1, z2 − 4 z + 2, −z
3 + 9 z2 − 18 z + 6, z4 − 16 z3 + 72 z2 − 96 z + 24

]

List (Polynomial( Integer ))

laguerreL (4, 1.2)

(15)− 13.0944
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Float

[laguerreL (j, 3, z) for j in 0..4]

(16)
[

−z
3 + 9 z2 − 18 z + 6, −3 z2 + 18 z − 18, −6 z + 18, −6, 0

]

List (Polynomial( Integer ))

laguerreL (1, 3, 2.1)

(17)6.57

Float

The expression legendreP(n,z) evaluates to the nth Legendre polynomial,

[legendreP (i,z) for i in 0..5]

(18)

[

1, z,
3

2
z
2 − 1

2
,
5

2
z
3 − 3

2
z,

35

8
z
4 − 15

4
z
2 +

3

8
,
63

8
z
5 − 35

4
z
3 +

15

8
z

]

List (Polynomial(Fraction ( Integer )))

legendreP (3, 3.0*% i)

(19)− 72.0 i

Complex(Float)

Finally, three number-theoretic polynomial operations may be evaluated. The following operations are
provided by the package NumberTheoreticPolynomialFunctions. .

bernoulliB: (NonNegativeInteger, R)→R

bernoulliB(n,z) is the nth Bernoulli polynomial, Bn(z). These are defined by

tezt

et − 1
=

∞∑

n=0

Bn(z)
tn

n!
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eulerE: (NonNegativeInteger, R)→R

eulerE(n,z) is the nth Euler polynomial, En(z). These are defined by

2ezt

et + 1
=

∞∑

n=0

En(z)
tn

n!
.

cyclotomic: (NonNegativeInteger, R)→R

cyclotomic(n,z) is the nth cyclotomic polynomial Φn(z). This is the polynomial whose roots are

precisely the primitive nth roots of unity. This polynomial has degree given by the Euler totient
function ϕ(n).

The expression bernoulliB(n,z) evaluates to the nth Bernoulli polynomial.

bernoulliB (3, z)

(20)z
3 − 3

2
z
2 +

1

2
z

Polynomial(Fraction ( Integer ))

bernoulliB (3, 0.7 + 0.4 * %i)

(21)− 0.138 − 0.116 i

Complex(Float)

The expression eulerE(n,z) evaluates to the nth Euler polynomial.

eulerE (3, z)

(22)z
3 − 3

2
z
2 +

1

4

Polynomial(Fraction ( Integer ))

eulerE (3, 0.7 + 0.4 * %i)

(23)− 0.238 − 0.316 i
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Complex(Float)

The expression cyclotomic(n,z) evaluates to the nth cyclotomic polynomial.

cyclotomic (3, z)

(24)z
2 + z + 1

Polynomial( Integer )

cyclotomic (3, (-1.0 + 0.0 * %i)^(2/3) )

(25)0.0

Complex(Float)

Drawing complex functions in FriCAS is presently somewhat awkward compared to drawing real func-
tions. It is necessary to use the draw operations that operate on functions rather than expressions.

This is the complex exponential function (rotated interactively). When this is displayed in color, the
height is the value of the real part of the function and the color is the imaginary part. Red indicates
large negative imaginary values, green indicates imaginary values near zero and blue/violet indicates
large positive imaginary values.

draw((x,y)+-> real exp complex (x,y), -2..2, -2*%pi ..2*%pi , colorFunction == (x, y)

+-> imag exp complex (x,y), title ==" exp(x+%i*y)", style ==" smooth ")

This is the complex arctangent function. Again, the height is the real part of the function value but
here the color indicates the function value’s phase. The position of the branch cuts are clearly visible
and one can see that the function is real only for a real argument.
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vp := draw((x,y) +-> real atan complex (x,y), -%pi..%pi , -%pi..%pi ,

colorFunction==(x,y) +-> argument atan complex (x,y), title ==" atan(x+%i*y)",

style ==" shade "); rotate (vp ,-160,-45) ; vp

This is the complex Gamma function.

draw((x,y) +-> max (min(real Gamma complex (x,y) ,4) ,-4), -%pi..% pi, -%pi..% pi,

style ==" shade", colorFunction == (x,y) +-> argument Gamma complex (x,y), title ==

"Gamma (x+%i*y)", var1Steps == 50, var2Steps == 50)

This shows the real Beta function near the origin.

draw(Beta(x,y)/100, x= -1.6..1.7, y = -1.6..1.7 , style ==" shade", title ==" Beta(x,y)",

var1Steps ==40, var2Steps ==40)
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This is the Bessel function Jα(x) for index α in the range -6..4 and argument x in the range 2..14.

draw((alpha ,x) +-> min(max(besselJ (alpha , x+8) , -6), 6), -6..4, -6..6,

title ==" besselJ (alpha ,x)", style ==" shade", var1Steps ==40, var2Steps ==40)

This is the modified Bessel function Iα(x) evaluated for various real values of the index α and fixed
argument x = 5.

draw(besselI (alpha , 5), alpha = -12..12, unit ==[5 ,20])
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This is similar to the last example except the index α takes on complex values in a 6 x 6 rectangle
centered on the origin.

draw((x,y) +-> real besselI (complex (x/20, y/20) ,5), -60..60, -60..60, colorFunction

== (x,y)+-> argument besselI (complex (x/20,y/20) ,5), title ==" besselI (x+i*y,5) ",

style ==" shade ")

8.2 Polynomial Factorization

The FriCAS polynomial factorization facilities are available for all polynomial types and a wide variety
of coefficient domains. Here are some examples.

8.2.1 Integer and Rational Number Coefficients

Polynomials with integer coefficients can be be factored.

v := (4*x^3+2*y^2+1) *(12*x^5-x^3*y+12)

(1)− 2x3
y
3 +

(

24x5 + 24
)

y
2 +

(

−4x6 − x
3)

y + 48x8 + 12 x5 + 48 x3 + 12

Polynomial( Integer )

factor v

(2)−
(

x
3
y − 12 x5 − 12

) (

2 y2 + 4x3 + 1
)

Factored(Polynomial( Integer ))

Also, FriCAS can factor polynomials with rational number coefficients.
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w := (4*x^3+(2/3) *x^2+1) *(12*x^5 -(1/2)*x^3+12)

(3)48 x8 + 8x7 − 2x6 +
35

3
x
5 +

95

2
x
3 + 8x2 + 12

Polynomial(Fraction ( Integer ))

factor w

(4)48

(

x
3 +

1

6
x
2 +

1

4

)(

x
5 − 1

24
x
3 + 1

)

Factored(Polynomial(Fraction ( Integer )))

8.2.2 Finite Field Coefficients

Polynomials with coefficients in a finite field can be also be factored.

u : POLY(PF(19)) :=3*x^4+2* x^2+15* x+18

(1)3 x4 + 2x2 + 15x+ 18

Polynomial(PrimeField(19))

These include the integers mod p, where p is prime, and extensions of these fields.

factor u

(2)3 (x+ 18)
(

x
3 + x

2 + 8x+ 13
)

Factored(Polynomial(PrimeField(19)))

Convert this to have coefficients in the finite field with 193 elements. See Section 8.11 on page 354 for
more information about finite fields.

factor (u :: POLY FFX(PF 19,3))
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(3)3 (x+ 18)
(

x+ 5%A
2 + 3%A+ 13

) (

x+ 16%A
2 + 14%A+ 13

) (

x+ 17%A
2 + 2%A+ 13

)

Factored(Polynomial( FiniteFieldExtension (PrimeField(19) , 3)))

8.2.3 Simple Algebraic Extension Field Coefficients

Polynomials with coefficients in simple algebraic extensions of the rational numbers can be factored.

Here, aa and bb are symbolic roots of polynomials.

aa := rootOf (aa^2+ aa+1)

(1)aa

AlgebraicNumber

p:=(x^3+ aa ^2*x+y)*(aa*x^2+ aa*x+aa*y^2) ^2

(2)

(−aa− 1) y5 +
(

(−aa− 1) x3 + aax
)

y
4 +

(

(−2 aa− 2) x2 + (−2 aa− 2) x
)

y
3

+
(

(−2aa− 2) x5 + (−2 aa− 2) x4 + 2 aax3 + 2 aa x2)
y
2

+
(

(−aa− 1) x4 + (−2 aa− 2) x3 + (−aa− 1) x2)
y

+ (−aa− 1) x7 + (−2 aa− 2) x6 − x
5 + 2 aax4 + aax

3

Polynomial(AlgebraicNumber)

Note that the second argument to factor can be a list of algebraic extensions to factor over.

factor (p,[aa])

(3)(−aa− 1)
(

y + x
3 + (−aa− 1) x

) (

y
2 + x

2 + x
)2

Factored(Polynomial(AlgebraicNumber))

This factors x^2+3 over the integers.

factor (x^2+3)



8.2. POLYNOMIAL FACTORIZATION 301

(4)x
2 + 3

Factored(Polynomial( Integer ))

Factor the same polynomial over the field obtained by adjoining aa to the rational numbers.

factor (x^2+3 ,[ aa])

(5)(x− 2 aa− 1) (x+ 2 aa+ 1)

Factored(Polynomial(AlgebraicNumber))

Factor x^6+108 over the same field.

factor (x^6+108 ,[aa])

(6)
(

x
3 − 12 aa− 6

) (

x
3 + 12 aa+ 6

)

Factored(Polynomial(AlgebraicNumber))

bb:= rootOf (bb^3-2)

(7)bb

AlgebraicNumber

factor (x^6+108 ,[bb])

(8)
(

x
2 − 3 bb x+ 3 bb2

) (

x
2 + 3 bb2

) (

x
2 + 3 bb x+ 3 bb2

)

Factored(Polynomial(AlgebraicNumber))

Factor again over the field obtained by adjoining both aa and bb to the rational numbers.

factor (x^6+108 ,[aa ,bb])



302 CHAPTER 8. ADVANCED PROBLEM SOLVING

(x+ (−2 aa− 1) bb) (x+ (−aa− 2) bb) (x+ (−aa+ 1) bb) (x+ (aa− 1) bb) (x+ (aa+ 2) bb) (x+ (2 aa+ 1) bb)

(9)

Factored(Polynomial(AlgebraicNumber))

8.2.4 Factoring Rational Functions

Since fractions of polynomials form a field, every element (other than zero) divides any other, so there
is no useful notion of irreducible factors. Thus the factor operation is not very useful for fractions of
polynomials.

There is, instead, a specific operation factorFraction that separately factors the numerator and denom-
inator and returns a fraction of the factored results.

factorFraction((x^2-4) /(y^2-4))

(1)
(x− 2) (x+ 2)

(y − 2) (y + 2)

Fraction (Factored(Polynomial( Integer )))

You can also use map. This expression applies the factor operation to the numerator and denominator.

map (factor ,(x^2-4) /(y^2-4))

(2)
(x− 2) (x+ 2)

(y − 2) (y + 2)

Fraction (Factored(Polynomial( Integer )))

8.3 Manipulating Symbolic Roots of a Polynomial

In this section we show you how to work with one root or all roots of a polynomial. These roots are
represented symbolically (as opposed to being numeric approximations). See Section 8.5.2 on page 313
and Section 8.5.3 on page 315 for information about solving for the roots of one or more polynomials.

8.3.1 Using a Single Root of a Polynomial

Use rootOf to get a symbolic root of a polynomial: rootOf(p, x) returns a root of p(x).

This creates an algebraic number a.
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a := rootOf (a^4+1, a)

(1)a

Expression( Integer )

To find the algebraic relation that defines a, use definingPolynomial.

definingPolynomial a

(2)a
4 + 1

Expression( Integer )

You can use a in any further expression, including a nested rootOf.

b := rootOf (b^2-a-1,b)

(3)b

Expression( Integer )

Higher powers of the roots are automatically reduced during calculations.

a + b

(4)b+ a

Expression( Integer )

% ^ 5

(5)
(

10 a3 + 11 a2 + 2 a− 4
)

b+ 15 a3 + 10 a2 + 4 a− 10

Expression( Integer )

The operation zeroOf is similar to rootOf, except that it may express the root using radicals in some
cases.

rootOf (c^2+c+1,c)
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(6)c

Expression( Integer )

zeroOf (d^2+d+1,d)

(7)

√
−3− 1

2

Expression( Integer )

rootOf (e^5-2,e)

(8)e

Expression( Integer )

zeroOf (f^5-2,f)

(9)
5
√
2

Expression( Integer )

8.3.2 Using All Roots of a Polynomial

Use rootsOf to get all symbolic roots of a polynomial: rootsOf(p, x) returns a list of all the roots of
p(x). If p(x) has a multiple root of order n, then that root appears n times in the list.

Compute all the roots of x^4 + x + 1.

l := rootsOf (x^4 + x + 1,x)

(1)[%x0, %x1, %x2, −%x2−%x1−%x0]

List (Expression( Integer ))

As a side effect, the variables %x0, %x1 and %x2 are bound to the first three roots of x^4 + x + 1.

%x0^5
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(2)−%x02 −%x0

Expression( Integer )

Although they all satisfy x^4 + x + 1 = 0, %x0, %x1, and %x2 are different algebraic numbers. To
find the algebraic relation that defines each of them, use definingPolynomial.

definingPolynomial %x0

(3)%x04 +%x0 + 1

Expression( Integer )

definingPolynomial %x1

(4)%x03 +%x1%x02 +%x12 %x0 +%x13 + 1

Expression( Integer )

definingPolynomial %x2

(5)%x12 + (%x0 + %x2)%x1 + %x02 +%x2%x0 + %x22

Expression( Integer )

We can check that the sum and product of the roots of x^4 + x + 1 are its trace and norm.

x3 := last l

(6)−%x2−%x1−%x0

Expression( Integer )

%x0 + %x1 + %x2 + x3
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(7)0

Expression( Integer )

%x0 * %x1 * %x2 * x3

(8)1

Expression( Integer )

Note, that in general roots are expressions in new symbols. For example for x^4 + 1 the second root
is a product.

rootsOf (x^4 + 1, x)

(9)[%x4, %x4%x5, −%x4, −%x4%x5]

List (Expression( Integer ))

Corresponding to the pair of operations rootOf/zeroOf in Section 8.5.2 on page 313, there is an operation
zerosOf that, like rootsOf, computes all the roots of a given polynomial, but which expresses some of
them in terms of radicals.

zerosOf (y^4 + y + 1, y)

(10)

[

%x0, %x1,

√

−3%x12 − 2%x0%x1− 3%x02 −%x1−%x0

2
,

−
√

−3%x12 − 2%x0%x1− 3%x02 −%x1−%x0

2

]

List (Expression( Integer ))

As you see, only two implicit algebraic numbers were created (%y0,%y1), and its defining equations are
below. The other two roots are expressed in radicals.

definingPolynomial %y0
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(11)%x04 +%x0 + 1

Expression( Integer )

definingPolynomial %y1

(12)%x03 +%x1%x02 +%x12 %x0 +%x13 + 1

Expression( Integer )

For x^4 + 1 all roots can be expressied in radicals.

zerosOf (x^4 + 1)

(13)

[√
−1 + 1√

2
,

√
−1− 1√

2
,
−
√
−1− 1√
2

,
−
√
−1 + 1√
2

]

List (AlgebraicNumber)

8.4 Computation of Eigenvalues and Eigenvectors

In this section we show you some of FriCAS’s facilities for computing and manipulating eigenvalues
and eigenvectors, also called characteristic values and characteristic vectors, respectively.

Let’s first create a matrix with integer entries.

m1 := matrix [[1,2,1],[2,1,-2],[1 ,-2,4]]

(1)





1 2 1
2 1 −2
1 −2 4





Matrix( Integer )

To get a list of the rational eigenvalues, use the operation eigenvalues.

leig := eigenvalues (m1)
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(2)
[

5, %P | %P
2 −%P − 5

]

List (Union(Fraction(Polynomial( Integer )) , SuchThat(Symbol, Polynomial(Integer))))

Given an explicit eigenvalue, eigenvector computes the eigenvectors corresponding to it.

eigenvector (first(leig),m1)

(3)









0
− 1

2

1









List (Matrix(Fraction (Polynomial(Fraction( Integer )))))

The operation eigenvectors returns a list of pairs of values and vectors. When an eigenvalue is rational,
FriCAS gives you the value explicitly; otherwise, its minimal polynomial is given, (the polynomial of
lowest degree with the eigenvalues as roots), together with a parametric representation of the eigen-
vector using the eigenvalue. This means that if you ask FriCAS to solve the minimal polynomial, then
you can substitute these roots into the parametric form of the corresponding eigenvectors.

You must be aware that unless an exact eigenvalue has been computed, the eigenvector may be badly
in error.

eigenvectors(m1)

(4)







eigval = 5, eigmult = 1, eigvec =









0
− 1

2

1











 ,



eigval =
(

%R | %R
2 −%R− 5

)

, eigmult = 1, eigvec =









%R

2
1

















List (Record(eigval : Union(Fraction(Polynomial( Integer )) , SuchThat(Symbol, Polynomial(Integer))), eigmult :

NonNegativeInteger, eigvec : List (Matrix(Fraction (Polynomial( Integer ))))))

Another possibility is to use the operation radicalEigenvectors tries to compute explicitly the eigenvec-
tors in terms of radicals.

radicalEigenvectors(m1)
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(5)







radval =

√
21 + 1

2
, radmult = 1, radvect =









√
21+1
2

2
1











 ,



radval =
−
√
21 + 1

2
,

radmult = 1, radvect =









−
√

21+1
2

2
1











 ,



radval = 5, radmult = 1, radvect =









0
− 1

2

1

















List (Record(radval : Expression( Integer ) , radmult: Integer , radvect : List (Matrix(Expression( Integer )))))

Alternatively, FriCAS can compute real or complex approximations to the eigenvectors and eigenvalues
using the operations realEigenvectors or complexEigenvectors. They each take an additional argument ǫ
to specify the “precision” required. In the real case, this means that each approximation will be within
±ǫ of the actual result. In the complex case, this means that each approximation will be within ±ǫ of
the actual result in each of the real and imaginary parts.

The precision can be specified as a Float if the results are desired in floating-point notation, or as
Fraction Integer if the results are to be expressed using rational (or complex rational) numbers.

realEigenvectors(m1 ,1/1000)

(6)







outval = 5, outmult = 1, outvect =









0
− 1

2

1











 ,



outval =
5717

2048
, outmult = 1,

outvect =









5717
2048

2
1











 ,



outval = −3669

2048
, outmult = 1, outvect =









− 3669
2048

2
1

















List (Record(outval : Fraction ( Integer ) , outmult: Integer , outvect : List (Matrix(Fraction ( Integer )))))

If an n by n matrix has n distinct eigenvalues (and therefore n eigenvectors) the operation eigenMatrix
gives you a matrix of the eigenvectors.

eigenMatrix (m1)

(7)





√
21+1
2

−
√

21+1
2

0
2 2 − 1

2

1 1 1





Union(Matrix(Expression( Integer )) , ...)

m2 := matrix [[-5,-2],[18,7]]
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(8)

[

−5 −2
18 7

]

Matrix( Integer )

eigenMatrix (m2)

(9)"failed"

Union(” failed ”, ...)

If a symmetric matrix has a basis of orthonormal eigenvectors, then orthonormalBasis computes a list
of these vectors.

m3 := matrix [[1 ,2] ,[2 ,1]]

(10)

[

1 2
2 1

]

Matrix( Integer )

orthonormalBasis(m3)

(11)

[[

− 1√
2

1√
2

]

,

[

1√
2

1√
2

]]

List (Matrix(Expression( Integer )))

8.5 Solution of Linear and Polynomial Equations

In this section we discuss the FriCAS facilities for solving systems of linear equations, finding the
roots of polynomials and solving systems of polynomial equations. For a discussion of the solution of
differential equations, see Section 8.10 on page 343.
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8.5.1 Solution of Systems of Linear Equations

You can use the operation solve to solve systems of linear equations.

The operation solve takes two arguments, the list of equations and the list of the unknowns to be solved
for. A system of linear equations need not have a unique solution.

To solve the linear system:
x + y + z = 8

3x − 2y + z = 0
x + 2y + 2z = 17

evaluate this expression.

solve ([x+y+z=8,3*x-2* y+z=0,x+2*y+2* z=17] ,[x,y,z])

(1)[[x = −1, y = 2, z = 7]]

List ( List (Equation(Fraction(Polynomial( Integer )))))

Parameters are given as new variables starting with a percent sign and “%” and the variables are
expressed in terms of the parameters. If the system has no solutions then the empty list is returned.

When you solve the linear system

x + 2y + 3z = 2
2x + 3y + 4z = 2
3x + 4y + 5z = 2

with this expression you get a solution involving a parameter.

solve ([x+2*y+3* z=2,2*x+3*y+4*z=2,3* x+4*y+5*z=2],[x,y,z])

(2)[[x = %W − 2, y = −2%W + 2, z = %W ]]

List ( List (Equation(Fraction(Polynomial( Integer )))))

The system can also be presented as a matrix and a vector. The matrix contains the coefficients of
the linear equations and the vector contains the numbers appearing on the right-hand sides of the
equations. You may input the matrix as a list of rows and the vector as a list of its elements.

To solve the system:
x + y + z = 8

3x − 2y + z = 0
x + 2y + 2z = 17

in matrix form you would evaluate this expression.

solve ([[1,1,1],[3 , -2 ,1] ,[1,2 ,2]] ,[8 ,0 ,17])
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(3)[particular = [−1, 2, 7] , basis = []]

Record( particular : Union(Vector(Fraction( Integer )) , ” failed ”), basis : List (Vector(Fraction ( Integer ))))

The solutions are presented as a Record with two components: the component particular contains
a particular solution of the given system or the item "failed" if there are no solutions, the compo-
nent basis contains a list of vectors that are a basis for the space of solutions of the corresponding
homogeneous system. If the system of linear equations does not have a unique solution, then the basis
component contains non-trivial vectors.

This happens when you solve the linear system

x + 2y + 3z = 2
2x + 3y + 4z = 2
3x + 4y + 5z = 2

with this command.

solve ([[1 ,2 ,3] ,[2 ,3 ,4] ,[3 ,4 ,5]] ,[2 ,2 ,2])

(4)[particular = [−2, 2, 0] , basis = [[1, −2, 1]]]

Record( particular : Union(Vector(Fraction( Integer )) , ” failed ”), basis : List (Vector(Fraction ( Integer ))))

All solutions of this system are obtained by adding the particular solution with a linear combination
of the basis vectors.

When no solution exists then "failed" is returned as the particular component.

For example:

solve ([[1 ,2 ,3] ,[2 ,3 ,4] ,[3 ,4 ,5]] ,[2 ,3 ,2])

(5)[particular = "failed", basis = [[1, −2, 1]]]

Record( particular : Union(Vector(Fraction( Integer )) , ” failed ”), basis : List (Vector(Fraction ( Integer ))))

When you want to solve a system of homogeneous equations (that is, a system where the numbers on
the right-hand sides of the equations are all zero) in the matrix form you can omit the second argument
and use the nullSpace operation.

This computes the solutions of the following system of equations:

x + 2y + 3z = 0
2x + 3y + 4z = 0
3x + 4y + 5z = 0

The result is given as a list of vectors and these vectors form a basis for the solution space.
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nullSpace ([[1 ,2 ,3] ,[2 ,3 ,4] ,[3 ,4 ,5]])

(6)[[1, −2, 1]]

List (Vector( Integer ))

8.5.2 Solution of a Single Polynomial Equation

FriCAS can solve polynomial equations producing either approximate or exact solutions. Exact solu-
tions are either members of the ground field or can be presented symbolically as roots of irreducible
polynomials.

This returns the one rational root along with an irreducible polynomial describing the other solutions.

solve(x^3 = 8,x)

(1)
[

x = 2, x2 + 2x+ 4 = 0
]

List (Equation(Fraction(Polynomial( Integer ))))

If you want solutions expressed in terms of radicals you would use this instead.

radicalSolve(x^3 = 8,x)

(2)
[

x = −
√
−3− 1, x =

√
−3− 1, x = 2

]

List (Equation(Expression( Integer )))

The solve command always returns a value but radicalSolve returns only the solutions that it is able to
express in terms of radicals.

If the polynomial equation has rational coefficients you can ask for approximations to its real roots by
calling solve with a second argument that specifies the “precision” ǫ. This means that each approxi-
mation will be within ±ǫ of the actual result.

Notice that the type of second argument controls the type of the result.

solve(x^4 - 10* x^3 + 35* x^2 - 50*x + 25 ,.0001)

(3)[x = 3.618011474609375, x = 1.381988525390625]
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List (Equation(Polynomial(Float)))

If you give a floating-point precision you get a floating-point result; if you give the precision as a
rational number you get a rational result.

solve(x^3 -2 ,1/1000)

(4)

[

x =
2581

2048

]

List (Equation(Polynomial(Fraction( Integer ))))

If you want approximate complex results you should use the command complexSolve that takes the
same precision argument ǫ.

complexSolve(x^3 -2 ,.0001)

(5)
[x = 1.259921049815602600574493408203125,

x = −0.62996052473711410282 − 1.0911236358806490898 i,

x = −0.62996052473711410282 + 1.091123635880649089813232421875 i]

List (Equation(Polynomial(Complex(Float))))

Each approximation will be within ±ǫ of the actual result in each of the real and imaginary parts.

complexSolve(x^2 -2*% i+1 ,1/100)

(6)

[

x = −294134286731975036665549444025970722793320109632199

374144419156711147060143317175368453031918731001856
− 10670475

8388608
i,

x =
294134286731975036665549444025970722793320109632199

374144419156711147060143317175368453031918731001856
+

10670475

8388608
i

]

List (Equation(Polynomial(Complex(Fraction(Integer)))))

Note that if you omit the = from the first argument FriCAS generates an equation by equating the first
argument to zero. Also, when only one variable is present in the equation, you do not need to specify
the variable to be solved for, that is, you can omit the second argument.

FriCAS can also solve equations involving rational functions. Solutions where the denominator vanishes
are discarded.

radicalSolve(1/ x^3 + 1/x^2 + 1/x = 0,x)
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(7)

[

x =
−
√
−3− 1

2
, x =

√
−3− 1

2

]

List (Equation(Expression( Integer )))

8.5.3 Solution of Systems of Polynomial Equations

Given a system of equations of rational functions with exact coefficients:

p1(x1, . . . , xn)
...

pm(x1, . . . , xn)

FriCAS can find numeric or symbolic solutions. The system is first split into irreducible components,
then for each component, a triangular system of equations is found that reduces the problem to
sequential solution of univariate polynomials resulting from substitution of partial solutions from the
previous stage.

q1(x1, . . . , xn)
...

qm(xn)

Symbolic solutions can be presented using “implicit” algebraic numbers defined as roots of irreducible
polynomials or in terms of radicals. FriCAS can also find approximations to the real or complex roots
of a system of polynomial equations to any user-specified accuracy.

The operation solve for systems is used in a way similar to solve for single equations. Instead of a
polynomial equation, one has to give a list of equations and instead of a single variable to solve for, a
list of variables. For solutions of single equations see Section 8.5.2 on page 313.

Use the operation solve if you want implicitly presented solutions.

solve ([3*x^3 + y + 1,y^2 -4],[x,y])

(1)
[

[x = −1, y = 2] ,
[

x
2 − x+ 1 = 0, y = 2

]

,
[

3x3 − 1 = 0, y = −2
]]

List ( List (Equation(Fraction(Polynomial( Integer )))))

solve ([x = y^2-19,y = z^2+x+3,z = 3*x],[x,y,z])

(2)

[[

x =
z

3
, y =

3 z2 + z + 9

3
, 9 z4 + 6 z3 + 55 z2 + 15 z − 90 = 0

]]
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List ( List (Equation(Fraction(Polynomial( Integer )))))

Use radicalSolve if you want your solutions expressed in terms of radicals.

radicalSolve([3*x^3 + y + 1,y^2 -4],[x,y])

(3)

[[

x =

√
−3 + 1

2
, y = 2

]

,

[

x =
−
√
−3 + 1

2
, y = 2

]

,

[

x =
−
√
−1

√
3− 1

2
3
√
3

,

y = −2

]

,

[

x =

√
−1

√
3− 1

2
3
√
3

, y = −2

]

,

[

x =
1
3
√
3
, y = −2

]

, [x = −1, y = 2]

]

List ( List (Equation(Expression( Integer ))))

To get numeric solutions you only need to give the list of equations and the precision desired. The list
of variables would be redundant information since there can be no parameters for the numerical solver.

If the precision is expressed as a floating-point number you get results expressed as floats.

solve ([x^2*y - 1,x*y^2 - 2] ,.01)

(4)[[y = 1.5874011516571044921875, x = 0.79370057582855224609375]]

List ( List (Equation(Polynomial(Float))))

To get complex numeric solutions, use the operation complexSolve, which takes the same arguments as
in the real case.

complexSolve([x^2* y - 1,x*y^2 - 2] ,1/1000)

(5)

[[

y =
27925854633327

17592186044416
, x =

27925854633327

35184372088832

]

,

[

y = − 9279956946215592179803150679423538973037814343717

11692013098647223345629478661730264157247460343808
− 3023062441857

2199023255552
i,

x = − 9279956946215592179803150679423538973037814343717

23384026197294446691258957323460528314494920687616
− 3023062441857

4398046511104
i

]

,

[

y = − 9279956946215592179803150679423538973037814343717

11692013098647223345629478661730264157247460343808
+

3023062441857

2199023255552
i,

x = − 9279956946215592179803150679423538973037814343717

23384026197294446691258957323460528314494920687616
+

3023062441857

4398046511104
i

]]
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List ( List (Equation(Polynomial(Complex(Fraction(Integer))))))

It is also possible to solve systems of equations in rational functions over the rational numbers. Note
that [x = 0.0, a = 0.0] is not returned as a solution since the denominator vanishes there.

solve ([x^2/a = a,a = a*x] ,.001)

(6)[[x = 1.0, a = −1.0] , [x = 1.0, a = 1.0]]

List ( List (Equation(Polynomial(Float))))

When solving equations with denominators, all solutions where the denominator vanishes are dis-
carded.

radicalSolve([x^2/ a + a + y^3 - 1,a*y + a + 1],[x,y])

(7)

[[

x=−
√

−a4 + 2 a3 + 3 a2 + 3 a+ 1

a2
, y =

−a− 1

a

]

,

[

x=

√

−a4 + 2 a3 + 3 a2 + 3 a+ 1

a2
, y =

−a− 1

a

]]

List ( List (Equation(Expression( Integer ))))

8.6 Limits

To compute a limit, you must specify a functional expression, a variable, and a limiting value for that
variable. If you do not specify a direction, FriCAS attempts to compute a two-sided limit.

Issue this to compute the limit

lim
x→1

x2 − 3x+ 2

x2 − 1
.

limit ((x^2 - 3*x + 2)/(x^2 - 1),x = 1)

(1)− 1

2

Union(OrderedCompletion(Fraction(Polynomial(Integer))) , ...)

Sometimes the limit when approached from the left is different from the limit from the right and, in
this case, you may wish to ask for a one-sided limit. Also, if you have a function that is only defined
on one side of a particular value, you can compute a one-sided limit.

The function log(x) is real only to the right of zero, that is, for x > 0. Thus, when computing limits
of functions involving log(x), you probably want a “right-hand” limit.
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limit(x * log(x),x = 0," right ")

(2)0

Union(OrderedCompletion(Expression(Integer)) , ...)

When you do not specify "right" or "left" as the optional fourth argument, limit tries to compute a
two-sided limit. Here the limit from the left does not exist, as FriCAS indicates when you try to take
a two-sided limit.

limit(sin (1/ x)*exp (1/ x), x=0)

(3)[leftHandLimit = 0, rightHandLimit = "failed"]

Union(Record(leftHandLimit: Union(OrderedCompletion(Expression(Integer)) , ” failed ”) , rightHandLimit: Union(

OrderedCompletion(Expression(Integer)) , ” failed ”)) , ...)

A function can be defined on both sides of a particular value, but tend to different limits as its variable
approaches that value from the left and from the right. We can construct an example of this as follows:
Since

√

y2 is simply the absolute value of y, the function
√

y2/y is simply the sign (+1 or -1) of the

nonzero real number y. Therefore,
√

y2/y = −1 for y < 0 and
√

y2/y = +1 for y > 0. This is what
happens when we take the limit at y = 0. The answer returned by FriCAS gives both a “left-hand”
and a “right-hand” limit.

limit(sqrt(y^2) /y,y = 0)

(4)[leftHandLimit = −1, rightHandLimit = 1]

Union(Record(leftHandLimit: Union(OrderedCompletion(Expression(Integer)) , ” failed ”) , rightHandLimit: Union(

OrderedCompletion(Expression(Integer)) , ” failed ”)) , ...)

Here is another example, this time using a more complicated function.

limit(sqrt(1 - cos (t))/t,t = 0)

(5)

[

leftHandLimit = − 1√
2
, rightHandLimit =

1√
2

]
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Union(Record(leftHandLimit: Union(OrderedCompletion(Expression(Integer)) , ” failed ”) , rightHandLimit: Union(

OrderedCompletion(Expression(Integer)) , ” failed ”)) , ...)

You can compute limits at infinity by passing either +∞ or −∞ as the third argument of limit. To
do this, use the constants %plusInfinity and %minusInfinity.

limit(sqrt (3*x^2 + 1) /(5*x),x = % plusInfinity)

(6)

√
3

5

Union(OrderedCompletion(Expression(Integer)) , ...)

limit(sqrt (3*x^2 + 1) /(5*x),x = % minusInfinity)

(7)−
√
3

5

Union(OrderedCompletion(Expression(Integer)) , ...)

You can take limits of functions with parameters. As you can see, the limit is expressed in terms of
the parameters.

limit(sinh(a*x)/tan(b*x),x = 0)

(8)
a

b

Union(OrderedCompletion(Expression(Integer)) , ...)

When you use limit, you are taking the limit of a real function of a real variable. When you compute
this, FriCAS returns 0 because, as a function of a real variable, sin(1/z) is always between -1 and 1,
so z * sin(1/z) tends to 0 as z tends to 0.

limit(z * sin (1/z),z = 0)

(9)0
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Union(OrderedCompletion(Expression(Integer)) , ...)

However, as a function of a complex variable, sin(1/z) is badly behaved near 0 (one says that sin

(1/z) has an essential singularity at z = 0). When viewed as a function of a complex variable,
z * sin(1/z) does not approach any limit as z tends to 0 in the complex plane. FriCAS indicates
this when we call complexLimit.

complexLimit(z * sin (1/z),z = 0)

(10)"failed"

Union(” failed ”, ...)

You can also take complex limits at infinity, that is, limits of a function of z as z approaches infinity
on the Riemann sphere. Use the symbol %infinity to denote “complex infinity.” As above, to
compute complex limits rather than real limits, use complexLimit.

complexLimit((2 + z)/(1 - z),z = %infinity )

(11)− 1

OnePointCompletion(Fraction(Polynomial(Integer)))

In many cases, a limit of a real function of a real variable exists when the corresponding complex limit
does not. This limit exists.

limit(sin (x)/x,x = %plusInfinity)

(12)0

Union(OrderedCompletion(Expression(Integer)) , ...)

But this limit does not.

complexLimit(sin(x)/x,x = % infinity )

(13)"failed"
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Union(” failed ”, ...)

8.7 Laplace Transforms

FriCAS can compute some forward Laplace transforms, mostly of elementary functions not involving
logarithms, although some cases of special functions are handled. To compute the forward Laplace
transform of F(t) with respect to t and express the result as f(s), issue the command laplace(F(t

), t, s).

laplace (sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t), t, s)

(1)
4 a3

s4 + 4 a4

Expression( Integer )

Here are some other non-trivial examples.

laplace ((exp (a*t) - exp(b*t))/t, t, s)

(2)− log(s− a) + log(s− b)

Expression( Integer )

laplace (2/t * (1 - cos(a*t)), t, s)

(3)log
(

s
2 + a

2
)

− 2 log(s)

Expression( Integer )

laplace (exp(-a*t) * sin(b*t) / b^2, t, s)

(4)
1

b s2 + 2 a b s+ b3 + a2 b

Expression( Integer )

laplace ((cos (a*t) - cos(b*t))/t, t, s)
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(5)
log
(

s2 + b2
)

− log
(

s2 + a2
)

2

Expression( Integer )

FriCAS also knows about a few special functions.

laplace (exp(a*t+b)*Ei(c*t), t, s)

(6)
eb log

(

s+c−a
c

)

s− a

Expression( Integer )

laplace (a*Ci(b*t) + c*Si(d*t), t, s)

(7)
a log

(

s2+b2

b2

)

+ 2 c arctan
(

d
s

)

2 s

Expression( Integer )

When FriCAS does not know about a particular transform, it keeps it as a formal transform in the
answer.

laplace (sin(a*t) - a*t*cos(a*t) + exp(t^2) , t, s)

(8)

(

s4 + 2 a2 s2 + a4
)

laplace
(

et
2

, t, s
)

+ 2 a3

s4 + 2 a2 s2 + a4

Expression( Integer )

8.8 Integration

Integration is the reverse process of differentiation, that is, an integral of a function f with respect to a
variable x is any function g such that D(g,x) is equal to f. The package FunctionSpaceIntegration
provides the top-level integration operation, integrate, for integrating real-valued elementary functions.

integrate (cosh(a*x)*sinh(a*x), x)
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(1)
(sinh(ax))2 + (cosh(a x))2

4 a

Union(Expression( Integer ) , ...)

Unfortunately, antiderivatives of most functions cannot be expressed in terms of elementary functions.

integrate (log (1 + sqrt(a * x + b)) / x, x)

(2)

∫ x log
(√

b+%BH a+ 1
)

%BH
d%BH

Union(Expression( Integer ) , ...)

Given an elementary function to integrate, FriCAS returns a formal integral as above only when it can
prove that the integral is not elementary and not when it cannot determine the integral. In this rare
case it prints a message that it cannot determine if an elementary integral exists. Similar functions
may have antiderivatives that look quite different because the form of the antiderivative depends on
the sign of a constant that appears in the function.

integrate (1/(x^2 - 2),x)

(3)

log

(

(x2+2)
√

2−4 x

x2−2

)

2
√
2

Union(Expression( Integer ) , ...)

integrate (1/(x^2 + 2),x)

(4)
arctan

(

x
√

2
2

)

√
2

Union(Expression( Integer ) , ...)

If the integrand contains parameters, then there may be several possible antiderivatives, depending on
the signs of expressions of the parameters. In this case FriCAS returns a list of answers that cover
all the possible cases. Here you use the answer involving the square root of a when a > 0 and the
answer involving the square root of -a when a < 0.

integrate (x^2 / (x^4 - a^2) , x)
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(5)









log

(

(x2+a)
√
a−2 a x

x2−a

)

+ 2 arctan
(

x
√

a

a

)

4
√
a

,

log

(

(x2−a)
√

−a+2a x

x2+a

)

− 2 arctan
(

x
√

−a

a

)

4
√
−a









Union(List(Expression( Integer )) , ...)

If the parameters and the variables of integration can be complex numbers rather than real, then the
notion of sign is not defined. In this case all the possible answers can be expressed as one complex
function. To get that function, rather than a list of real functions, use complexIntegrate, which is
provided by the package FunctionSpaceComplexIntegration.

This operation is used for integrating complex-valued elementary functions.

complexIntegrate(x^2 / (x^4 - a^2) , x)

(6)
−
√

1
4 a

log
(

2 a
√

1
4 a

+ x
)

+
√

− 1
4 a

log
(

2 a
√

− 1
4 a

+ x
)

−
√

− 1
4 a

log
(

−2 a
√

− 1
4 a

+ x
)

+
√

1
4 a

log
(

−2 a
√

1
4 a

+ x
)

2

Expression( Integer )

As with the real case, antiderivatives for most complex-valued functions cannot be expressed in terms
of elementary functions.

complexIntegrate(log (1 + sqrt(a * x + b)) / x, x)

(7)

∫ x log
(√

b+%BH a+ 1
)

%BH
d%BH

Expression( Integer )

Sometimes integrate can involve symbolic algebraic numbers such as those returned by rootOf. To see
how to work with these strange generated symbols (such as %%a0), see Section 8.3.2 on page 304.

Definite integration is the process of computing the area between the x-axis and the curve of a function
f(x). The fundamental theorem of calculus states that if f is continuous on an interval a..b and if
there exists a function g that is differentiable on a..b and such that D(g, x) is equal to f, then the
definite integral of f for x in the interval a..b is equal to g(b) - g(a).

The package RationalFunctionDefiniteIntegration provides the top-level definite integration op-
eration, integrate, for integrating real-valued rational functions.

integrate ((x^4 - 3*x^2 + 6)/(x^6-5* x^4+5* x^2+4) , x = 1..2)



8.8. INTEGRATION 325

(8)
2 arctan(8) + 2 arctan(5) + 2 arctan(2) + 2 arctan

(

1
2

)

− π

2

Union(f1: OrderedCompletion(Expression(Integer)) , ...)

FriCAS checks beforehand that the function you are integrating is defined on the interval a..b, and
prints an error message if it finds that this is not case, as in the following example:

integrate(1/(x^2-2), x = 1..2)

>> Error detected within library code:

Pole in path of integration

You are being returned to the top level

of the interpreter.

When parameters are present in the function, the function may or may not be defined on the interval
of integration.

If this is the case, FriCAS issues a warning that a pole might lie in the path of integration, and does
not compute the integral.

integrate (1/(x^2-a), x = 1..2)

(9)"potentialPole"

Union(pole: potentialPole , ...)

If you know that you are using values of the parameter for which the function has no pole in the
interval of integration, use the string "noPole" as a third argument to integrate:

The value here is, of course, incorrect if sqrt(a) is between 1 and 2.

integrate (1/(x^2-a), x = 1..2, "noPole ")









− log

(

(−4 a2−4 a)
√

a+a3+6 a2+a

a2−2 a+1

)

+ log

(

(−8 a2−32 a)
√

a+a3+24 a2+16 a

a2−8 a+16

)

4
√
a

,
− arctan

(

2
√
−a

a

)

+ arctan
(√

−a

a

)

√−a









(10)

Union(f2: List (OrderedCompletion(Expression(Integer))) , ...)



326 CHAPTER 8. ADVANCED PROBLEM SOLVING

8.9 Working with Power Series

FriCAS has very sophisticated facilities for working with power series. Infinite series are represented
by a list of the coefficients that have already been determined, together with a function for computing
the additional coefficients if needed. The system command that determines how many terms of a series
is displayed is )set streams calculate. For the purposes of this book, we have used this system
command to display fewer than ten terms. Series can be created from expressions, from functions for
the series coefficients, and from applications of operations on existing series. The most general function
for creating a series is called series, although you can also use taylor, laurent and puiseux in situations
where you know what kind of exponents are involved.

For information about solving differential equations in terms of power series, see Section 8.10.3 on page
351.

8.9.1 Creation of Power Series

This is the easiest way to create a power series. This tells FriCAS that x is to be treated as a power
series, so functions of x are again power series.

x := series ’x

(1)x

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

We didn’t say anything about the coefficients of the power series, so the coefficients are general ex-
pressions over the integers. This allows us to introduce denominators, symbolic constants, and other
variables as needed. Here the coefficients are integers (note that the coefficients are the Fibonacci
numbers).

1/(1 - x - x^2)

(2)1 + x+ 2x2 + 3x3 + 5x4 + 8 x5 + 13x6 + 21 x7 +O
(

x
8)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

This series has coefficients that are rational numbers.

sin (x)

(3)x− 1

6
x
3 +

1

120
x
5 − 1

5040
x
7 +O

(

x
9
)
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UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

When you enter this expression you introduce the symbolic constants sin(1) and cos(1).

sin (1 + x)

(4)sin(1) + cos(1) x− sin(1)

2
x
2 − cos(1)

6
x
3 +

sin(1)

24
x
4 +

cos(1)

120
x
5 − sin(1)

720
x
6 − cos(1)

5040
x
7 +O

(

x
8)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

When you enter the expression the variable a appears in the resulting series expansion.

sin (a * x)

(5)a x− a3

6
x
3 +

a5

120
x
5 − a7

5040
x
7 +O

(

x
9)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

You can also convert an expression into a series expansion. This expression creates the series expansion
of 1/log(y) about y = 1. For details and more examples, see Section 8.9.5 on page 334.

series (1/ log (y),y = 1)

(6)(y − 1)−1 +
1

2
− 1

12
(y − 1) +

1

24
(y − 1)2 − 19

720
(y − 1)3

+
3

160
(y − 1)4 − 863

60480
(y − 1)5 +

275

24192
(y − 1)6 +O

(

(y − 1)7
)

UnivariatePuiseuxSeries (Expression( Integer ) , y, 1)

You can create power series with more general coefficients. You normally accomplish this via a type
declaration (see Section 2.3 on page 86). See Section 8.9.4 on page 331 for some warnings about
working with declared series.

We declare that y is a one-variable Taylor series (UTS is the abbreviation for UnivariateTay-
lorSeries) in the variable z with FLOAT (that is, floating-point) coefficients, centered about 0.

Then, by assignment, we obtain the Taylor expansion of exp(z) with floating-point coefficients.

y : UTS(FLOAT ,’z ,0) := exp(z)
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(7)
1.0 + z + 0.5 z2 + 0.16666666666666666667 z

3

+ 0.041666666666666666667 z
4 + 0.0083333333333333333334 z

5

+ 0.0013888888888888888889 z
6 + 0.0001984126984126984127 z

7 +O
(

z
8
)

UnivariateTaylorSeries (Float , z , 0.0)

You can also create a power series by giving an explicit formula for its nth coefficient. For details and
more examples, see Section 8.9.6 on page 337.

To create a series about w = 0 whose nth Taylor coefficient is 1/n!, you can evaluate this expression.
This is the Taylor expansion of exp(w) at w = 0.

series (1/ factorial (n),n,w = 0)

(8)1 +w +
1

2
w

2 +
1

6
w

3 +
1

24
w

4 +
1

120
w

5 +
1

720
w

6 +
1

5040
w

7 +O
(

w
8)

UnivariatePuiseuxSeries (Expression( Integer ) , w, 0)

8.9.2 Coefficients of Power Series

You can extract any coefficient from a power series—even one that hasn’t been computed yet. This is
possible because in FriCAS, infinite series are represented by a list of the coefficients that have already
been determined, together with a function for computing the additional coefficients. (This is known
as lazy evaluation.) When you ask for a coefficient that hasn’t yet been computed, FriCAS computes
whatever additional coefficients it needs and then stores them in the representation of the power series.

Here’s an example of how to extract the coefficients of a power series.

x := series (x)

(1)x

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

y := exp(x) * sin(x)

(2)x+ x
2 +

1

3
x
3 − 1

30
x
5 − 1

90
x
6 − 1

630
x
7 +O

(

x
9)
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UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

This coefficient is readily available.

coefficient (y ,6)

(3)− 1

90

Expression( Integer )

But let’s get the fifteenth coefficient of y.

coefficient (y ,15)

(4)− 1

10216206000

Expression( Integer )

If you look at y then you see that the coefficients up to order 15 have all been computed.

)set stream showall on

y

(5)x+ x
2 +

1

3
x
3 − 1

30
x
5 − 1

90
x
6 − 1

630
x
7 +

1

22680
x
9 +

1

113400
x
10

+
1

1247400
x
11 − 1

97297200
x
13 − 1

681080400
x
14 − 1

10216206000
x
15 +O

(

x
16)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

)set stream showall off

8.9.3 Power Series Arithmetic

You can manipulate power series using the usual arithmetic operations +, -, *, and /.

The results of these operations are also power series.

x := series x
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(1)x

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

(3 + x) / (1 + 7*x)

(2)3− 20x+ 140 x2 − 980 x3 + 6860 x4 − 48020 x5 + 336140 x6 − 2352980 x7 +O
(

x
8)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

You can also compute f(x) ^ g(x), where f(x) and g(x) are two power series.

base := 1 / (1 - x)

(3)1 + x+ x
2 + x

3 + x
4 + x

5 + x
6 + x

7 +O
(

x
8)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

expon := x * base

(4)x+ x
2 + x

3 + x
4 + x

5 + x
6 + x

7 + x
8 +O

(

x
9
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

base ^ expon

(5)1 + x
2 +

3

2
x
3 +

7

3
x
4 +

43

12
x
5 +

649

120
x
6 +

241

30
x
7 +O

(

x
8)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)
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8.9.4 Functions on Power Series

Once you have created a power series, you can apply transcendental functions (for example, exp, log,
sin, tan, cosh, etc.) to it.

To demonstrate this, we first create the power series expansion of the rational function x2

1− 6x+ x2

about x = 0.

x := series ’x

(1)x

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

rat := x^2 / (1 - 6*x + x^2)

(2)x
2 + 6x3 + 35 x4 + 204 x5 + 1189 x6 + 6930 x7 + 40391 x8 + 235416 x9 +O

(

x
10
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

If you want to compute the series expansion of sin

(

x2

1− 6x+ x2

)

you simply compute the sine of rat.

sin (rat)

(3)x
2 + 6x3 + 35 x4 + 204 x5 +

7133

6
x
6 + 6927 x7 +

80711

2
x
8 + 235068 x9 +O

(

x
10)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

Warning: the type of the coefficients of a power series may affect the kind of computations that
you can do with that series. This can only happen when you have made a declaration to specify
a series domain with a certain type of coefficient.

If you evaluate then you have declared that y is a one variable Taylor series (UTS is the abbreviation for
UnivariateTaylorSeries) in the variable y with FRAC INT (that is, fractions of integer) coefficients,
centered about 0.

y : UTS(FRAC INT ,y,0) := y
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(4)y

UnivariateTaylorSeries (Fraction ( Integer ) , y, 0)

You can now compute certain power series in y, provided that these series have rational coefficients.

exp (y)

(5)1 + y +
1

2
y
2 +

1

6
y
3 +

1

24
y
4 +

1

120
y
5 +

1

720
y
6 +

1

5040
y
7 +O

(

y
8
)

UnivariateTaylorSeries (Fraction ( Integer ) , y, 0)

You can get examples of such series by applying transcendental functions to series in y that have no
constant terms.

tan (y^2)

(6)y
2 +

1

3
y
6 +O

(

y
8
)

UnivariateTaylorSeries (Fraction ( Integer ) , y, 0)

cos (y + y^5)

(7)1− 1

2
y
2 +

1

24
y
4 − 721

720
y
6 +O

(

y
8
)

UnivariateTaylorSeries (Fraction ( Integer ) , y, 0)

Similarly, you can compute the logarithm of a power series with rational coefficients if the constant
coefficient is 1.

log (1 + sin(y))

(8)y − 1

2
y
2 +

1

6
y
3 − 1

12
y
4 +

1

24
y
5 − 1

45
y
6 +

61

5040
y
7 +O

(

y
8)
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UnivariateTaylorSeries (Fraction ( Integer ) , y, 0)

If you wanted to apply, say, the operation exp to a power series with a nonzero constant coefficient a0,
then the constant coefficient of the result would be ea0 , which is not a rational number. Therefore,
evaluating exp(2 + tan(y)) would generate an error message.

If you want to compute the Taylor expansion of exp(2 + tan(y)), you must ensure that the coefficient
domain has an operation exp defined for it. An example of such a domain is Expression Integer, the
type of formal functional expressions over the integers. When working with coefficients of this type,

z : UTS(EXPR INT ,z,0) := z

(9)z

UnivariateTaylorSeries (Expression( Integer ) , z, 0)

this presents no problems.

exp (2 + tan(z))

(10)e
2 + e

2
z +

e2

2
z
2 +

e2

2
z
3 +

3 e2

8
z
4 +

37 e2

120
z
5 +

59 e2

240
z
6 +

137 e2

720
z
7 +O

(

z
8
)

UnivariateTaylorSeries (Expression( Integer ) , z, 0)

Another way to create Taylor series whose coefficients are expressions over the integers is to use taylor
which works similarly to series. This is equivalent to the previous computation, except that now we
are using the variable w instead of z.

w := taylor ’w

(11)w

UnivariateTaylorSeries (Expression( Integer ) , w, 0)

exp (2 + tan(w))

(12)e
2 + e

2
w +

e2

2
w

2 +
e2

2
w

3 +
3 e2

8
w

4 +
37 e2

120
w

5 +
59 e2

240
w

6 +
137 e2

720
w

7 +O
(

w
8)
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UnivariateTaylorSeries (Expression( Integer ) , w, 0)

8.9.5 Converting to Power Series

The ExpressionToUnivariatePowerSeries package provides operations for computing series expan-
sions of functions.

Evaluate this to compute the Taylor expansion of sin x about x = 0. The first argument, sin(x)
, specifies the function whose series expansion is to be computed and the second argument, x = 0,
specifies that the series is to be expanded in power of (x - 0), that is, in power of x.

taylor (sin(x),x = 0)

(1)x− 1

6
x
3 +

1

120
x
5 − 1

5040
x
7 +O

(

x
8
)

UnivariateTaylorSeries (Expression( Integer ) , x, 0)

Here is the Taylor expansion of sin x about x = π
6 :

taylor (sin(x),x = %pi/6)

(2)
1

2
+

√
3

2

(

x− π

6

)

− 1

4

(

x− π

6

)2

−
√
3

12

(

x− π

6

)3

+
1

48

(

x− π

6

)4

+

√
3

240

(

x− π

6

)5

− 1

1440

(

x− π

6

)6

−
√
3

10080

(

x− π

6

)7

+O

(

(

x− π

6

)8
)

UnivariateTaylorSeries (Expression( Integer ) , x, %pi/6)

The function to be expanded into a series may have variables other than the series variable. For
example, we may expand tan(x*y) as a Taylor series in x

taylor (tan(x*y),x = 0)

(3)y x+
y3

3
x
3 +

2 y5

15
x
5 +

17 y7

315
x
7 +O

(

x
8)

UnivariateTaylorSeries (Expression( Integer ) , x, 0)

or as a Taylor series in y.

taylor (tan(x*y),y = 0)
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(4)x y +
x3

3
y
3 +

2 x5

15
y
5 +

17 x7

315
y
7 +O

(

y
8
)

UnivariateTaylorSeries (Expression( Integer ) , y, 0)

A more interesting function is
text

et − 1
.

When we expand this function as a Taylor series in t the nth order coefficient is the nth Bernoulli
polynomial divided by n!.

bern := taylor (t*exp(x*t)/( exp(t) - 1),t = 0)

(5)

1 +
2 x− 1

2
t+

6x2 − 6x+ 1

12
t
2 +

2x3 − 3x2 + x

12
t
3

+
30 x4 − 60x3 + 30 x2 − 1

720
t
4 +

6x5 − 15 x4 + 10 x3 − x

720
t
5

+
42 x6 − 126 x5 + 105 x4 − 21x2 + 1

30240
t
6 +

6x7 − 21x6 + 21 x5 − 7x3 + x

30240
t
7 +O

(

t
8
)

UnivariateTaylorSeries (Expression( Integer ) , t , 0)

Therefore, this and the next expression produce the same result.

factorial (6) * coefficient (bern ,6)

(6)
42x6 − 126 x5 + 105 x4 − 21 x2 + 1

42

Expression( Integer )

bernoulliB (6,x)

(7)x
6 − 3 x5 +

5

2
x
4 − 1

2
x
2 +

1

42

Polynomial(Fraction ( Integer ))

Technically, a series with terms of negative degree is not considered to be a Taylor series, but, rather,
a Laurent series. If you try to compute a Taylor series expansion of x

log x at x = 1 via taylor(x/log

(x),x = 1) you get an error message. The reason is that the function has a pole at x = 1, meaning
that its series expansion about this point has terms of negative degree. A series with finitely many
terms of negative degree is called a Laurent series. You get the desired series expansion by issuing
this.
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laurent (x/log(x),x = 1)

(8)(x− 1)−1 +
3

2
+

5

12
(x− 1)− 1

24
(x− 1)2 +

11

720
(x− 1)3

− 11

1440
(x− 1)4 +

271

60480
(x− 1)5 − 13

4480
(x− 1)6 +O

(

(x− 1)7
)

UnivariateLaurentSeries (Expression( Integer ) , x, 1)

Similarly, a series with terms of fractional degree is neither a Taylor series nor a Laurent series. Such a
series is called a Puiseux series. The expression laurent(sqrt(sec(x)),x = 3 * %pi/2) results in an
error message because the series expansion about this point has terms of fractional degree. However,
this command produces what you want.

puiseux (sqrt(sec(x)),x = 3 * %pi/2)

(9)

(

x− 3π

2

)− 1

2

+
1

12

(

x− 3π

2

) 3

2

+O

(

(

x− 3π

2

) 7

2

)

UnivariatePuiseuxSeries (Expression( Integer ) , x, (3∗%pi)/2)

Finally, consider the case of functions that do not have Puiseux expansions about certain points. An
example of this is xx about x = 0. puiseux(x^x,x=0) produces an error message because of the
type of singularity of the function at x = 0. The general function series can be used in this case.
Notice that the series returned is not, strictly speaking, a power series because of the log(x) in the
expansion.

series (x^x,x=0)

1 + log(x)x+
(log(x))2

2
x
2 +

(log(x))3

6
x
3 +

(log(x))4

24
x
4 +

(log(x))5

120
x
5 +

(log(x))6

720
x
6 +

(log(x))7

5040
x
7 +O

(

x
8
)

(10)

GeneralUnivariatePowerSeries (Expression( Integer ) , x, 0)

The operation series returns the most general type of infinite series. The user who is not interested
in distinguishing between various types of infinite series may wish to use this operation exclusively.
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8.9.6 Power Series from Formulas

The GenerateUnivariatePowerSeries package enables you to create power series from explicit for-
mulas for their nth coefficients. In what follows, we construct series expansions for certain transcen-
dental functions by giving formulas for their coefficients. You can also compute such series expansions
directly simply by specifying the function and the point about which the series is to be expanded. See
Section 8.9.5 on page 334 for more information.

Consider the Taylor expansion of ex about x = 0:

ex = 1 + x+
x2

2
+
x3

6
+ · · ·

=
∞∑

n=0

xn

n!

The nth Taylor coefficient is 1/n!. This is how you create this series in FriCAS.

series (n +-> 1/ factorial (n),x = 0)

(1)1 + x+
1

2
x
2 +

1

6
x
3 +

1

24
x
4 +

1

120
x
5 +

1

720
x
6 +

1

5040
x
7 +O

(

x
8
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

The first argument specifies a formula for the nth coefficient by giving a function that maps n to 1/n!.
The second argument specifies that the series is to be expanded in powers of (x - 0), that is, in powers
of x. Since we did not specify an initial degree, the first term in the series was the term of degree 0
(the constant term). Note that the formula was given as an anonymous function. These are discussed
in Section 6.17 on page 208.

Consider the Taylor expansion of log x about x = 1:

log(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·

=
∞∑

n=1

(−1)n−1 (x− 1)n

n

If you were to evaluate the expression series(n 7→ (-1)^(n-1)/ n, x = 1) you would get an error
message because FriCAS would try to calculate a term of degree 0 and therefore divide by 0.

Instead, evaluate this. The third argument, 1.., indicates that only terms of degree n = 1, ... are
to be computed.

series (n +-> (-1) ^(n-1)/n,x = 1 ,1..)

(x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3− 1

4
(x− 1)4 +

1

5
(x− 1)5− 1

6
(x− 1)6 +

1

7
(x− 1)7− 1

8
(x− 1)8 +O

(

(x− 1)9
)

(2)



338 CHAPTER 8. ADVANCED PROBLEM SOLVING

UnivariatePuiseuxSeries (Expression( Integer ) , x, 1)

Next consider the Taylor expansion of an odd function, say, sin(x):

sin(x) = x− x3

3!
+
x5

5!
− · · ·

Here every other coefficient is zero and we would like to give an explicit formula only for the odd Taylor
coefficients. This is one way to do it. The third argument, 1.., specifies that the first term to be
computed is the term of degree 1. The fourth argument, 2, specifies that we increment by 2 to find the
degrees of subsequent terms, that is, the next term is of degree 1 + 2, the next of degree 1 + 2 + 2,
etc.

series (n +-> (-1) ^((n-1) /2)/factorial (n),x = 0,1..,2)

(3)x− 1

6
x
3 +

1

120
x
5 − 1

5040
x
7 +O

(

x
9
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

The initial degree and the increment do not have to be integers. For example, this expression produces
a series expansion of sin(x

1

3 ).

series (n +-> (-1) ^((3*n-1) /2)/ factorial (3*n),x = 0 ,1/3.. ,2/3)

(4)x
1

3 − 1

6
x+

1

120
x

5

3 − 1

5040
x

7

3 +O
(

x
3
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

While the increment must be positive, the initial degree may be negative. This yields the Laurent
expansion of csc(x) at x = 0.

cscx := series (n +-> (-1) ^((n-1) /2) * 2 * (2^n-1) * bernoulli (numer(n+1)) /

factorial (n+1) , x=0, -1..,2)

(5)x
−1 +

1

6
x+

7

360
x
3 +

31

15120
x
5 +O

(

x
7)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

Of course, the reciprocal of this power series is the Taylor expansion of sin(x).

1/cscx
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(6)x− 1

6
x
3 +

1

120
x
5 − 1

5040
x
7 +O

(

x
9)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

As a final example, here is the Taylor expansion of asin(x) about x = 0.

asinx := series (n +-> binomial (n-1,(n-1) /2) /(n*2^(n -1)),x=0 ,1.. ,2)

(7)x+
1

6
x
3 +

3

40
x
5 +

5

112
x
7 +O

(

x
9)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

When we compute the sin of this series, we get x (in the sense that all higher terms computed so far
are zero).

sin (asinx )

(8)x+O
(

x
9
)

UnivariatePuiseuxSeries (Expression( Integer ) , x, 0)

As we discussed in Section 8.9.5 on page 334, you can also use the operations taylor, laurent and puiseux
instead of series if you know ahead of time what kind of exponents a series has. You can’t go wrong
using series, though.

8.9.7 Substituting Numerical Values in Power Series

Use eval to substitute a numerical value for a variable in a power series. For example, here’s a way to
obtain numerical approximations of %e from the Taylor series expansion of exp(x).

First you create the desired Taylor expansion.

f := taylor (exp (x))

(1)1 + x+
1

2
x
2 +

1

6
x
3 +

1

24
x
4 +

1

120
x
5 +

1

720
x
6 +

1

5040
x
7 +O

(

x
8)
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UnivariateTaylorSeries (Expression( Integer ) , x, 0)

Then you evaluate the series at the value 1.0. The result is a sequence of the partial sums.

eval(f ,1.0)

(2)[1.0, 2.0, 2.5, 2.6666666666666666667, 2.7083333333333333333,

2.7166666666666666667, 2.7180555555555555556, . . .]

Stream(Expression(Float))

8.9.8 Example: Bernoulli Polynomials and Sums of Powers

FriCAS provides operations for computing definite and indefinite sums.

You can compute the sum of the first ten fourth powers by evaluating this. This creates a list whose
entries are m4 as m ranges from 1 to 10, and then computes the sum of the entries of that list.

reduce (+,[m^4 for m in 1..10])

(1)25333

PositiveInteger

You can also compute a formula for the sum of the first k fourth powers, where k is an unspecified
positive integer.

sum4 := sum(m^4, m = 1.. k)

(2)
6 k5 + 15 k4 + 10 k3 − k

30

Fraction (Polynomial( Integer ))

This formula is valid for any positive integer k. For instance, if we replace k by 10, we obtain the
number we computed earlier.

eval(sum4 , k = 10)

(3)25333
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Fraction (Polynomial( Integer ))

You can compute a formula for the sum of the first k nth powers in a similar fashion. Just replace the
4 in the definition of sum4 by any expression not involving k. FriCAS computes these formulas using
Bernoulli polynomials; we use the rest of this section to describe this method.

First consider this function of t and x.

f := t*exp(x*t) / (exp(t) - 1)

(4)
t et x

et − 1

Expression( Integer )

Since the expressions involved get quite large, we tell FriCAS to show us only terms of degree up to
5.

)set streams calculate 5

If we look at the Taylor expansion of f(x, t) about t = 0, we see that the coefficients of the powers
of t are polynomials in x.

ff := taylor (f,t = 0)

(5)1 +
2x− 1

2
t+

6 x2 − 6x+ 1

12
t
2 +

2 x3 − 3x2 + x

12
t
3

+
30 x4 − 60x3 + 30 x2 − 1

720
t
4 +

6x5 − 15 x4 + 10x3 − x

720
t
5 +O

(

t
6
)

UnivariateTaylorSeries (Expression( Integer ) , t , 0)

In fact, the nth coefficient in this series is essentially the nth Bernoulli polynomial: the nth coefficient of
the series is 1

n!Bn(x), where Bn(x) is the n
th Bernoulli polynomial. Thus, to obtain the nth Bernoulli

polynomial, we multiply the nth coefficient of the series ff by n!. For example, the sixth Bernoulli
polynomial is this.

factorial (6) * coefficient (ff ,6)

(6)
42x6 − 126 x5 + 105 x4 − 21 x2 + 1

42
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Expression( Integer )

We derive some properties of the function f(x,t). First we compute f(x + 1,t)- f(x,t).

g := eval(f, x = x + 1) - f

(7)
t et x+t − t et x

et − 1

Expression( Integer )

If we normalize g, we see that it has a particularly simple form.

normalize (g)

(8)t e
t x

Expression( Integer )

From this it follows that the nth coefficient in the Taylor expansion of g(x,t) at t = 0 is 1
(n−1)! x

n−1.

If you want to check this, evaluate the next expression.

taylor (g,t = 0)

(9)t+ x t
2 +

x2

2
t
3 +

x3

6
t
4 +

x4

24
t
5 +O

(

t
6
)

UnivariateTaylorSeries (Expression( Integer ) , t , 0)

However, since g(x,t) = f(x+1,t)-f(x,t), it follows that the nth coefficient is 1
n! (Bn(x+1)−Bn(x)).

Equating coefficients, we see that 1
(n−1) ! x

n−1 = 1
n! (Bn(x + 1) − Bn(x)) and, therefore, xn−1 =

1
n (Bn(x+1)−Bn(x)). Let’s apply this formula repeatedly, letting x vary between two integers a and
b, with a < b:

an−1 = 1
n (Bn(a+ 1)−Bn(a))

(a+ 1)n−1 = 1
n (Bn(a+ 2)−Bn(a+ 1))

(a+ 2)n−1 = 1
n (Bn(a+ 3)−Bn(a+ 2))

...
(b − 1)n−1 = 1

n (Bn(b)−Bn(b− 1))
bn−1 = 1

n (Bn(b+ 1)−Bn(b))

When we add these equations we find that the sum of the left-hand sides is
∑b

m=am
n−1,the sum of

the (n − 1)st powers from a to b. The sum of the right-hand sides is a “telescoping series.” After
cancellation, the sum is simply 1

n (Bn(b + 1)−Bn(a)).
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Replacing n by n + 1, we have shown that

b∑

m=a

mn =
1

n+ 1
(Bn+1(b + 1)−Bn+1(a)).

Let’s use this to obtain the formula for the sum of fourth powers. First we obtain the Bernoulli
polynomial B5.

B5 := factorial (5) * coefficient (ff ,5)

(10)
6x5 − 15x4 + 10 x3 − x

6

Expression( Integer )

To find the sum of the first k 4th powers, we multiply 1/5 by B5(k + 1)−B5(1).

1/5 * (eval(B5, x = k + 1) - eval(B5 , x = 1))

(11)
6 k5 + 15 k4 + 10 k3 − k

30

Expression( Integer )

This is the same formula that we obtained via sum(m^4, m = 1..k).

sum4

(12)
6 k5 + 15 k4 + 10 k3 − k

30

Fraction (Polynomial( Integer ))

At this point you may want to do the same computation, but with an exponent other than 4. For
example, you might try to find a formula for the sum of the first k 20th powers.

8.10 Solution of Differential Equations

In this section we discuss FriCAS’s facilities for solving differential equations in closed-form and in
series.

FriCAS provides facilities for closed-form solution of single differential equations of the following kinds:
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• linear ordinary differential equations, and

• non-linear first order ordinary differential equations when integrating factors can be found just
by integration.

For a discussion of the solution of systems of linear and polynomial equations, see Section 8.5 on page
310.

8.10.1 Closed-Form Solutions of Linear Differential Equations

A differential equation is an equation involving an unknown function and one or more of its derivatives.
The equation is called ordinary if derivatives with respect to only one dependent variable appear in
the equation (it is called partial otherwise). The package ElementaryFunctionODESolver provides
the top-level operation solve for finding closed-form solutions of ordinary differential equations.

To solve a differential equation, you must first create an operator for the unknown function. We let
y be the unknown function in terms of x.

y := operator ’y

(1)y

BasicOperator

You then type the equation using D to create the derivatives of the unknown function y(x) where x

is any symbol you choose (the so-called dependent variable). This is how you enter the equation
y’’ + y’ + y = 0.

deq := D(y x, x, 2) + D(y x, x) + y x = 0

(2)y
′′(x) + y

′(x) + y(x) = 0

Equation(Expression( Integer ))

The simplest way to invoke the solve command is with three arguments.

• the differential equation,

• the operator representing the unknown function,

• the dependent variable.

So, to solve the above equation, we enter this.

solve(deq , y, x)
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(3)

[

particular = 0, basis =

[

cos

(

x
√
3

2

)

e
− x

2 , e
−x

2 sin

(

x
√
3

2

)]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

Since linear ordinary differential equations have infinitely many solutions, solve returns a particular
solution fp and a basis f1, . . . , fn for the solutions of the corresponding homogenuous equation. Any
expression of the form fp + c1f1 + . . . cnfn where the ci do not involve the dependent variable is also
a solution. This is similar to what you get when you solve systems of linear algebraic equations.

A way to select a unique solution is to specify initial conditions: choose a value a for the dependent
variable and specify the values of the unknown function and its derivatives at a. If the number of initial
conditions is equal to the order of the equation, then the solution is unique (if it exists in closed form!)
and solve tries to find it. To specify initial conditions to solve, use an Equation of the form x = a for
the third parameter instead of the dependent variable, and add a fourth parameter consisting of the
list of values y(a), y’(a), ....

To find the solution of y’’ + y = 0 satisfying y(0) = y’(0)= 1, do this.

deq := D(y x, x, 2) + y x

(4)y
′′(x) + y(x)

Expression( Integer )

You can omit the = 0 when you enter the equation to be solved.

solve(deq , y, x = 0, [1, 1])

(5)sin(x) + cos(x)

Union(Expression( Integer ) , ...)

FriCAS is not limited to linear differential equations with constant coefficients. It can also find solutions
when the coefficients are rational or algebraic functions of the dependent variable. Furthermore, FriCAS
is not limited by the order of the equation. FriCAS can solve the following third order equations
with polynomial coefficients.

deq := x^3 * D(y x, x, 3) + x^2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y x = 2 * x^4

(6)x
3
y
′′′(x) + x

2
y
′′(x)− 2x y′(x) + 2 y(x) = 2x4
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Equation(Expression( Integer ))

solve(deq , y, x)

(7)

[

particular =
x5 − 10 x3 + 20 x2 + 4

15x
, basis =

[

2 x3 − 3x2 + 1

x
,
x3 − 1

x
,
x3 − 3x2 − 1

x

]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

Here we are solving a homogeneous equation.

deq := (x^9+ x^3) * D(y x, x, 3) + 18 * x^8 * D(y x, x, 2) - 90 * x * D(y x, x) - 30 *

(11 * x^6 - 3) * y x

(8)
(

x
9 + x

3
)

y
′′′(x) + 18 x8

y
′′(x)− 90 x y′(x) +

(

−330 x6 + 90
)

y(x)

Expression( Integer )

solve(deq , y, x)

(9)

[

particular = 0, basis =

[

x

x6 + 1
,
x e−

√
91 log(x)

x6 + 1
,
x e

√
91 log(x)

x6 + 1

]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

On the other hand, and in contrast with the operation integrate, it can happen that FriCAS finds no
solution and that some closed-form solution still exists. While it is mathematically complicated to
describe exactly when the solutions are guaranteed to be found, the following statements are correct
and form good guidelines for linear ordinary differential equations:

• If the coefficients are constants, FriCAS finds a complete basis of solutions (i,e, all solutions).

• If the coefficients are rational functions in the dependent variable, FriCAS at least finds all
solutions that do not involve algebraic functions.

Note that this last statement does not mean that FriCAS does not find the solutions that are algebraic
functions. It means that it is not guaranteed that the algebraic function solutions will be found. This
is an example where all the algebraic solutions are found.

deq := (x^2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0
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(10)
(

x
2 + 1

)

y
′′(x) + 3 x y′(x) + y(x) = 0

Equation(Expression( Integer ))

solve(deq , y, x)

(11)

[

particular = 0, basis =

[

1√
x2 + 1

,
log
(√

x2 + 1− x
)

√
x2 + 1

]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

8.10.2 Closed-Form Solutions of Non-Linear Differential Equations

This is an example that shows how to solve a non-linear first order ordinary differential equation
manually when an integrating factor can be found just by integration. At the end, we show you how
to solve it directly.

Let’s solve the differential equation y’ = y / (x + y log y). Using the notation m(x, y)+ n(x,

y)y’ = 0, we have m = -y and n = x + y log y.

m := -y

(1)− y

Polynomial( Integer )

n := x + y * log y

(2)y log(y) + x

Expression( Integer )

We first check for exactness, that is, does dm/dy = dn/dx?

D(m, y) - D(n, x)
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(3)− 2

Expression( Integer )

This is not zero, so the equation is not exact. Therefore we must look for an integrating factor: a
function µ(x,y) such that d(µ m)/dy = d(µ n)/dx. Normally, we first search for µ(x,y) depending
only on x or only on y. Let’s search for such a µ(x) first.

mu := operator ’mu

(4)mu

BasicOperator

a := D(mu(x) * m, y) - D(mu(x) * n, x)

(5)(−y log(y)− x)mu
′(x)− 2mu(x)

Expression( Integer )

If the above is zero for a function µ that does not depend on y, then µ(x) is an integrating factor.

solve(a = 0, mu , x)

(6)

[

particular = 0, basis =

[

1

y2 (log(y))2 + 2x y log(y) + x2

]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

The solution depends on y, so there is no integrating factor that depends on x only. Let’s look for
one that depends on y only.

b := D(mu(y) * m, y) - D(mu(y) * n, x)

(7)− ymu
′(y)− 2mu(y)
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Expression( Integer )

sb := solve(b = 0, mu , y)

(8)

[

particular = 0, basis =

[

1

y2

]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

We’ve found one! The above µ(y) is an integrating factor. We must multiply our initial equation
(that is, m and n) by the integrating factor.

intFactor := sb.basis .1

(9)
1

y2

Expression( Integer )

m := intFactor * m

(10)− 1

y

Expression( Integer )

n := intFactor * n

(11)
y log(y) + x

y2

Expression( Integer )

Let’s check for exactness.

D(m, y) - D(n, x)
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(12)0

Expression( Integer )

We must solve the exact equation, that is, find a function s(x,y) such that ds/dx = m and ds/dy =

n. We start by writing s(x, y)= h(y) + integrate(m, x) where h(y) is an unknown function of
y. This guarantees that ds/dx = m.

h := operator ’h

(13)h

BasicOperator

sol := h y + integrate (m, x)

(14)
y h(y)− x

y

Expression( Integer )

All we want is to find h(y) such that ds/dy = n.

dsol := D(sol , y)

(15)
y2 h′(y) + x

y2

Expression( Integer )

nsol := solve(dsol = n, h, y)

(16)

[

particular =
(log(y))2

2
, basis = [1]

]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

The above particular solution is the h(y) we want, so we just replace h(y) by it in the implicit solution.

eval(sol , h y = nsol. particular )
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(17)
y (log(y))2 − 2x

2 y

Expression( Integer )

A first integral of the initial equation is obtained by setting this result equal to an arbitrary constant.

Now that we’ve seen how to solve the equation “by hand,” we show you how to do it with the solve
operation. First define y to be an operator.

y := operator ’y

(18)y

BasicOperator

Next we create the differential equation.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

(19)y
′(x) =

y(x)

y(x) log(y(x)) + x

Equation(Expression( Integer ))

Finally, we solve it.

solve(deq , y, x)

(20)
y(x) (log(y(x)))2 − 2x

2 y(x)

Union(Expression( Integer ) , ...)

8.10.3 Power Series Solutions of Differential Equations

The command to solve differential equations in power series around a particular initial point with
specific initial conditions is called seriesSolve. It can take a variety of parameters, so we illustrate its
use with some examples.

Since the coefficients of some solutions are quite large, we reset the default to compute only seven
terms.
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)set streams calculate 7

You can solve a single nonlinear equation of any order. For example, we solve y’’’ = sin(y’’)* exp

(y)+ cos(x) subject to y(0) = 1, y’(0)= 0, y’’(0)= 0.

We first tell FriCAS that the symbol ’y denotes a new operator.

y := operator ’y

(1)y

BasicOperator

Enter the differential equation using y like any system function.

eq := D(y(x), x, 3) - sin(D(y(x), x, 2))*exp (y(x)) = cos (x)

(2)y
′′′(x)− e

y(x) sin
(

y
′′(x)

)

= cos(x)

Equation(Expression( Integer ))

Solve it around x = 0 with the initial conditions y(0) = 1, y’(0)= y’’(0)= 0.

seriesSolve (eq, y, x = 0, [1, 0, 0])

Compiling function %JJ with type List( UnivariateTaylorSeries (

Expression (Integer ),x ,0)) -> UnivariateTaylorSeries (Expression (

Integer ),x ,0)

(3)1 +
1

6
x
3 +

e

24
x
4 +

e2 − 1

120
x
5 +

e3 − 2 e

720
x
6 +

e4 − 8 e2 + 4 e+ 1

5040
x
7 +O

(

x
8)

UnivariateTaylorSeries (Expression( Integer ) , x, 0)

You can also solve a system of nonlinear first order equations. For example, we solve a system that
has tan(t) and sec(t) as solutions.

We tell FriCAS that x is also an operator.

x := operator ’x

Compiled code for %JJ has been cleared .
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(4)x

BasicOperator

Enter the two equations forming our system.

eq1 := D(x(t), t) = 1 + x(t)^2

(5)x
′(t) = x(t)2 + 1

Equation(Expression( Integer ))

eq2 := D(y(t), t) = x(t) * y(t)

(6)y
′(t) = x(t) y(t)

Equation(Expression( Integer ))

Solve the system around t = 0 with the initial conditions x(0) = 0 and y(0) = 1. Notice that since
we give the unknowns in the order [x, y], the answer is a list of two series in the order [series for

x(t), series for y(t)].

seriesSolve ([eq2 , eq1 ], [x, y], t = 0, [y(0) = 1, x(0) = 0])

Compiling function %JP with type List( UnivariateTaylorSeries (

Expression (Integer ),t ,0)) -> UnivariateTaylorSeries (Expression (

Integer ),t ,0)

Compiling function %JQ with type List( UnivariateTaylorSeries (

Expression (Integer ),t ,0)) -> UnivariateTaylorSeries (Expression (

Integer ),t ,0)

(7)

[

t+
1

3
t
3 +

2

15
t
5 +

17

315
t
7 +O

(

t
8)
, 1 +

1

2
t
2 +

5

24
t
4 +

61

720
t
6 +O

(

t
8)
]

List ( UnivariateTaylorSeries (Expression( Integer ) , t , 0))

The order in which we give the equations and the initial conditions has no effect on the order of the
solution.



354 CHAPTER 8. ADVANCED PROBLEM SOLVING

8.11 Finite Fields

A finite field (also called a Galois field) is a finite algebraic structure where one can add, multiply
and divide under the same laws (for example, commutativity, associativity or distributivity) as apply
to the rational, real or complex numbers. Unlike those three fields, for any finite field there exists a
positive prime integer p, called the characteristic, such that px = 0 for any element x in the finite field.
In fact, the number of elements in a finite field is a power of the characteristic and for each prime p
and positive integer n there exists exactly one finite field with pn elements, up to isomorphism.1

When n = 1, the field has p elements and is called a prime field, discussed in the next section. There
are several ways of implementing extensions of finite fields, and FriCAS provides quite a bit of freedom
to allow you to choose the one that is best for your application. Moreover, we provide operations for
converting among the different representations of extensions and different extensions of a single field.
Finally, note that you usually need to package-call operations from finite fields if the operations do
not take as an argument an object of the field. See Section 2.9 on page 105 for more information on
package-calling.

8.11.1 Modular Arithmetic and Prime Fields

Let n be a positive integer. It is well known that you can get the same result if you perform addition,
subtraction or multiplication of integers and then take the remainder on dividing by n as if you had
first done such remaindering on the operands, performed the arithmetic and then (if necessary) done
remaindering again. This allows us to speak of arithmetic modulo n or, more simply mod n. In
FriCAS, you use IntegerMod to do such arithmetic.

(a,b) : IntegerMod 12

(a, b) := (16, 7)

(2)7

IntegerMod(12)

[a - b, a * b]

(3)[9, 4]

List (IntegerMod(12))

If n is not prime, there is only a limited notion of reciprocals and division.

1For more information about the algebraic structure and properties of finite fields, see, for example, S. Lang, Algebra,
Second Edition, New York: Addison-Wesley Publishing Company, Inc., 1984, ISBN 0 201 05487 6; or R. Lidl, H.
Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, Vol. 20, Cambridge: Cambridge Univ.
Press, 1983, ISBN 0 521 30240 4.
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a / b

There are 11 exposed and 15 unexposed library operations named /

having 2 argument (s) but none was determined to be applicable .

Use HyperDoc Browse , or issue

)display op /

to learn more about the available operations . Perhaps

package -calling the operation or using coercions on the arguments

will allow you to apply the operation .

Cannot find a definition or applicable library operation named /

with argument type(s)

IntegerMod (12)

IntegerMod (12)

Perhaps you should use "@" to indicate the required return type ,

or "$" to specify which version of the function you need.

recip a

(4)"failed"

Union(” failed ”, ...)

Here 7 and 12 are relatively prime, so 7 has a multiplicative inverse modulo 12.

recip b

(5)7

Union(IntegerMod(12), ...)

If we take n to be a prime number p, then taking inverses and, therefore, division are generally defined.
Use PrimeField instead of IntegerMod for n prime.

c : PrimeField 11 := 8

(6)8

PrimeField(11)

inv c
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(7)7

PrimeField(11)

You can also use 1/c and c^(-1) for the inverse of c.

9/c

(8)8

PrimeField(11)

PrimeField (abbreviation PF) checks if its argument is prime when you try to use an operation from
it. If you know the argument is prime (particularly if it is large), InnerPrimeField (abbreviation
IPF) assumes the argument has already been verified to be prime. If you do use a number that is not
prime, you will eventually get an error message, most likely a division by zero message. For computer
science applications, the most important finite fields are PrimeField 2 and its extensions.

In the following examples, we work with the finite field with p = 101 elements.

GF101 := PF 101

(9)PrimeField(101)

Type

Like many domains in FriCAS, finite fields provide an operation for returning a random element of the
domain.

x := random () $GF101

(10)9

PrimeField(101)

y : GF101 := 37

(11)37
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PrimeField(101)

z := x/y

(12)33

PrimeField(101)

z * y - x

(13)0

PrimeField(101)

The element 2 is a primitive element of this field,

pe := primitiveElement() $GF101

(14)2

PrimeField(101)

in the sense that its powers enumerate all nonzero elements.

[pe^i for i in 0..99]

(15)

[1, 2, 4, 8, 16, 32, 64, 27, 54, 7, 14, 28, 56, 11, 22, 44, 88, 75, 49, 98, 95, 89, 77, 53, 5, 10,

20, 40, 80, 59, 17, 34, 68, 35, 70, 39, 78, 55, 9, 18, 36, 72, 43, 86, 71, 41, 82, 63, 25, 50, 100,

99, 97, 93, 85, 69, 37, 74, 47, 94, 87, 73, 45, 90, 79, 57, 13, 26, 52, 3, 6, 12, 24, 48, 96, 91,

81, 61, 21, 42, 84, 67, 33, 66, 31, 62, 23, 46, 92, 83, 65, 29, 58, 15, 30, 60, 19, 38, 76, 51]

List (PrimeField(101))

If every nonzero element is a power of a primitive element, how do you determine what the exponent
is? Use discreteLog.

ex := discreteLog (y)
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(16)56

PositiveInteger

pe ^ ex

(17)37

PrimeField(101)

The order of a nonzero element x is the smallest positive integer t such xt = 1.

order y

(18)25

PositiveInteger

The order of a primitive element is the defining p− 1.

order pe

(19)100

PositiveInteger

8.11.2 Extensions of Finite Fields

When you want to work with an extension of a finite field in FriCAS, you have three choices to make:

1. Do you want to generate an extension of the prime field (for example, PrimeField 2) or an
extension of a given field?

2. Do you want to use a representation that is particularly efficient for multiplication, exponentiation
and addition but uses a lot of computer memory (a representation that models the cyclic group
structure of the multiplicative group of the field extension and uses a Zech logarithm table),
one that uses a normal basis for the vector space structure of the field extension, or one that
performs arithmetic modulo an irreducible polynomial? The cyclic group representation is only
usable up to “medium” (relative to your machine’s performance) sized fields. If the field is large
and the normal basis is relatively simple, the normal basis representation is more efficient for
exponentiation than the irreducible polynomial representation.
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3. Do you want to provide a polynomial explicitly, a root of which “generates” the extension in one
of the three senses in (2), or do you wish to have the polynomial generated for you?

This illustrates one of the most important features of FriCAS: you can choose exactly the right data-
type and representation to suit your application best.

We first tell you what domain constructors to use for each case above, and then give some examples.

Constructors that automatically generate extensions of the prime field:
FiniteField
FiniteFieldCyclicGroup
FiniteFieldNormalBasis

Constructors that generate extensions of an arbitrary field:
FiniteFieldExtension
FiniteFieldExtensionByPolynomial
FiniteFieldCyclicGroupExtension
FiniteFieldCyclicGroupExtensionByPolynomial
FiniteFieldNormalBasisExtension
FiniteFieldNormalBasisExtensionByPolynomial

Constructors that use a cyclic group representation:
FiniteFieldCyclicGroup
FiniteFieldCyclicGroupExtension
FiniteFieldCyclicGroupExtensionByPolynomial

Constructors that use a normal basis representation:
FiniteFieldNormalBasis
FiniteFieldNormalBasisExtension
FiniteFieldNormalBasisExtensionByPolynomial

Constructors that use an irreducible modulus polynomial representation:
FiniteField
FiniteFieldExtension
FiniteFieldExtensionByPolynomial

Constructors that generate a polynomial for you:
FiniteField
FiniteFieldExtension
FiniteFieldCyclicGroup
FiniteFieldCyclicGroupExtension
FiniteFieldNormalBasis
FiniteFieldNormalBasisExtension

Constructors for which you provide a polynomial:
FiniteFieldExtensionByPolynomial
FiniteFieldCyclicGroupExtensionByPolynomial
FiniteFieldNormalBasisExtensionByPolynomial

These constructors are discussed in the following sections where we collect together descriptions of
extension fields that have the same underlying representation.2

2For more information on the implementation aspects of finite fields, see J. Grabmeier, A. Scheerhorn, Finite Fields

in AXIOM, Technical Report, IBM Heidelberg Scientific Center, 1992.
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If you don’t really care about all this detail, just use FiniteField. As your knowledge of your applica-
tion and its FriCAS implementation grows, you can come back and choose an alternative constructor
that may improve the efficiency of your code. Note that the exported operations are almost the same
for all constructors of finite field extensions and include the operations exported by PrimeField.

8.11.3 Irreducible Modulus Polynomial Representations

All finite field extension constructors discussed in this section use a representation that performs arith-
metic with univariate (one-variable) polynomials modulo an irreducible polynomial. This polynomial
may be given explicitly by you or automatically generated. The ground field may be the prime field or
one you specify. See Section 8.11.2 on page 358 for general information about finite field extensions.

For FiniteField (abbreviation FF) you provide a prime number p and an extension degree n. This
degree can be 1. FriCAS uses the prime field PrimeField(p), here PrimeField 2, and it chooses
an irreducible polynomial of degree n, here 12, over the ground field.

GF4096 := FF(2 ,12) ;

Type

The objects in the generated field extension are polynomials of degree at most n− 1 with coefficients
in the prime field. The polynomial indeterminate is automatically chosen by FriCAS and is typically
something like %A or %D. These (strange) variables are only for output display; there are several ways
to construct elements of this field.

The operation index enumerates the elements of the field extension and accepts as argument the integers
from 1 to pn. The expression index(p) always gives the indeterminate.

a := index (2) $GF4096

(2)%JR

FiniteField (2, 12)

You can build polynomials in a and calculate in GF4096.

b := a^12 - a^5 + a

(3)%JR
5 +%JR

3 +%JR + 1

FiniteField (2, 12)

b ^ 1000
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(4)%JR
10 +%JR

9 +%JR
7 +%JR

5 +%JR
4 +%JR

3 +%JR

FiniteField (2, 12)

c := a/b

(5)%JR
11 +%JR

8 +%JR
7 +%JR

5 +%JR
4 +%JR

3 +%JR
2

FiniteField (2, 12)

Among the available operations are norm and trace.

norm c

(6)1

PrimeField(2)

trace c

(7)0

PrimeField(2)

Since any nonzero element is a power of a primitive element, how do we discover what the exponent
is? The operation discreteLog calculates the exponent and, if it is called with only one argument,
always refers to the primitive element returned by primitiveElement.

dL := discreteLog a

(8)1729

PositiveInteger

g ^ dL
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(9)g
1729

Polynomial( Integer )

FiniteFieldExtension (abbreviation FFX) is similar to FiniteField except that the ground-field
for FiniteFieldExtension is arbitrary and chosen by you. In case you select the prime field as
ground field, there is essentially no difference between the constructed two finite field extensions.

GF16 := FF(2,4) ;

Type

GF4096 := FFX(GF16 ,3) ;

Type

r := (random () $GF4096 ) ^ 20

(12)
(

%JS
3 + 1

)

%JT
2 +

(

%JS
3 +%JS

2 + 1
)

%JT + 1

FiniteFieldExtension ( FiniteField (2, 4), 3)

norm(r)

(13)%JS
2 +%JS

FiniteField (2, 4)

FiniteFieldExtensionByPolynomial (abbreviation FFP) is similar to FiniteField and Finite-
FieldExtension but is more general.

GF4 := FF(2,2);

Type

f := nextIrreduciblePoly (random (6) $FFPOLY (GF4))$FFPOLY (GF4)
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(15)?
6 +%JU ?

4 + (%JU + 1) ?3 +%JU ?
2 +%JU + 1

Union(SparseUnivariatePolynomial( FiniteField (2, 2)) , ...)

For FFP you choose both the ground field and the irreducible polynomial used in the representation.
The degree of the extension is the degree of the polynomial.

GF4096 := FFP(GF4 ,f);

Type

discreteLog random () $GF4096

(17)3438

PositiveInteger

8.11.4 Cyclic Group Representations

In every finite field there exist elements whose powers are all the nonzero elements of the field. Such
an element is called a primitive element.

In FiniteFieldCyclicGroup (abbreviation FFCG) the nonzero elements are represented by the pow-
ers of a fixed primitive element of the field (that is, a generator of its cyclic multiplicative group). Mul-
tiplication (and hence exponentiation) using this representation is easy. To do addition, we consider
our primitive element as the root of a primitive polynomial (an irreducible polynomial whose roots are
all primitive). See Section 8.11.7 on page 372 for examples of how to compute such a polynomial.

To use FiniteFieldCyclicGroup you provide a prime number and an extension degree.

GF81 := FFCG (3,4);

Type

FriCAS uses the prime field, here PrimeField 3, as the ground field and it chooses a primitive
polynomial of degree n, here 4, over the prime field.

a := primitiveElement () $GF81

(2)%JW
1
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FiniteFieldCyclicGroup (3, 4)

You can calculate in GF81.

b := a^12 - a^5 + a

(3)%JW
72

FiniteFieldCyclicGroup (3, 4)

In this representation of finite fields the discrete logarithm of an element can be seen directly in its
output form.

b

(4)%JW
72

FiniteFieldCyclicGroup (3, 4)

discreteLog b

(5)72

PositiveInteger

FiniteFieldCyclicGroupExtension (abbreviationFFCGX) is similar to FiniteFieldCyclicGroup
except that the ground field for FiniteFieldCyclicGroupExtension is arbitrary and chosen by you.
In case you select the prime field as ground field, there is essentially no difference between the con-
structed two finite field extensions.

GF9 := FF(3,2);

Type

GF729 := FFCGX(GF9 ,3) ;

Type

r := (random () $GF729 ) ^ 20
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(8)%JY
336

FiniteFieldCyclicGroupExtension ( FiniteField (3, 2), 3)

trace(r)

(9)2

FiniteField (3, 2)

FiniteFieldCyclicGroupExtensionByPolynomial (abbreviation FFCGP) is similar to Finite-
FieldCyclicGroup and FiniteFieldCyclicGroupExtension but is more general. For FiniteField-
CyclicGroupExtensionByPolynomial you choose both the ground field and the irreducible poly-
nomial used in the representation. The degree of the extension is the degree of the polynomial.

GF3 := PrimeField 3;

Type

We use a utility operation to generate an irreducible primitive polynomial (see Section 8.11.7 on page
372). The polynomial has one variable that is “anonymous”: it displays as a question mark.

f := createPrimitivePoly (4) $FFPOLY (GF3 )

(11)?
4 + ?+ 2

SparseUnivariatePolynomial (PrimeField(3))

GF81 := FFCGP(GF3 ,f);

Type

Let’s look at a random element from this field.

random () $GF81

(13)%JW
67
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FiniteFieldCyclicGroupExtensionByPolynomial (PrimeField(3) , ?ˆ4+?+2)

8.11.5 Normal Basis Representations

Let K be a finite extension of degree n of the finite field F and let F have q elements. An element x
of K is said to be normal over F if the elements

1, xq, xq
2

, . . . , xq
n−1

form a basis of K as a vector space over F . Such a basis is called a normal basis.3

If x is normal over F , its minimal polynomial is also said to be normal over F . There exist normal
bases for all finite extensions of arbitrary finite fields.

In FiniteFieldNormalBasis (abbreviation FFNB), the elements of the finite field are represented
by coordinate vectors with respect to a normal basis.

You provide a prime p and an extension degree n.

K := FFNB (3,8)

(1)FiniteFieldNormalBasis(3, 8)

Type

FriCAS uses the prime field PrimeField(p), here PrimeField 3, and it chooses a normal polynomial
of degree n, here 8, over the ground field. The remainder class of the indeterminate is used as the
normal element. The polynomial indeterminate is automatically chosen by FriCAS and is typically
something like %A or %D. These (strange) variables are only for output display; there are several ways

to construct elements of this field. The output of the basis elements is something like %Aqi .

a := normalElement()$K

(2)%JZ

FiniteFieldNormalBasis (3, 8)

You can calculate in K using a.

b := a^12 - a^5 + a

3This agrees with the general definition of a normal basis because the n distinct powers of the automorphism x 7→ xq

constitute the Galois group of K/F .
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(3)2%JZ
q7 +%JZ

q5 +%JZ
q

FiniteFieldNormalBasis (3, 8)

FiniteFieldNormalBasisExtension (abbreviation FFNBX) is similar to FiniteFieldNormalBa-
sis except that the groundfield for FiniteFieldNormalBasisExtension is arbitrary and chosen by
you. In case you select the prime field as ground field, there is essentially no difference between the
constructed two finite field extensions.

GF9 := FFNB (3,2);

Type

GF729 := FFNBX(GF9 ,3) ;

Type

r := random () $GF729

(6)%KA%KB
q +%KA

q %KB

FiniteFieldNormalBasisExtension ( FiniteFieldNormalBasis (3, 2), 3)

r + r^3 + r^9 + r^27

(7)2%KA%KB
q2 + (2%KA

q +%KA)%KB
q + (2%KA

q +%KA)%KB

FiniteFieldNormalBasisExtension ( FiniteFieldNormalBasis (3, 2), 3)

FiniteFieldNormalBasisExtensionByPolynomial (abbreviation FFNBP) is similar to Finite-
FieldNormalBasis and FiniteFieldNormalBasisExtension but is more general. For FiniteField-
NormalBasisExtensionByPolynomial you choose both the ground field and the irreducible poly-
nomial used in the representation. The degree of the extension is the degree of the polynomial.

GF3 := PrimeField 3;

Type

We use a utility operation to generate an irreducible normal polynomial (see Section 8.11.7 on page
372). The polynomial has one variable that is “anonymous”: it displays as a question mark.

f := createNormalPoly (4) $FFPOLY (GF3 )
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(9)?
4 + 2 ?3 + 2

SparseUnivariatePolynomial (PrimeField(3))

GF81 := FFNBP(GF3 ,f);

Type

Let’s look at a random element from this field.

r := random () $GF81

(11)2%KC
q2 + 2%KC

q +%KC

FiniteFieldNormalBasisExtensionByPolynomial(PrimeField(3) , ?ˆ4+2∗?ˆ3+2)

r * r^3 * r^9 * r^27

(12)%KC
q3 +%KC

q2 +%KC
q +%KC

FiniteFieldNormalBasisExtensionByPolynomial(PrimeField(3) , ?ˆ4+2∗?ˆ3+2)

norm r

(13)1

PrimeField(3)

8.11.6 Conversion Operations for Finite Fields

Let K be a finite field.

K := PrimeField 3

(1)PrimeField(3)
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Type

An extension field Km of degree m over K is a subfield of an extension field Kn of degree n over K if
and only if m divides n.

Kn

|
Km ⇐⇒ m|n
|
K

FiniteFieldHomomorphisms provides conversion operations between different extensions of one
fixed finite ground field and between different representations of these finite fields. Let’s choose m
and n,

(m,n) := (4,8)

(2)8

PositiveInteger

build the field extensions,

Km := FiniteFieldExtension(K,m)

(3)FiniteFieldExtension(PrimeField(3), 4)

Type

and pick two random elements from the smaller field.

Kn := FiniteFieldExtension(K,n)

(4)FiniteFieldExtension(PrimeField(3), 8)

Type

a1 := random ()$Km

(5)2%KD
2
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FiniteFieldExtension (PrimeField(3) , 4)

b1 := random ()$Km

(6)2%KD
3 +%KD

2

FiniteFieldExtension (PrimeField(3) , 4)

Since m divides n, Km is a subfield of Kn.

a2 := a1 :: Kn

(7)2%KE
4 + 2%KE

2

FiniteFieldExtension (PrimeField(3) , 8)

Therefore we can convert the elements of Km into elements of Kn.

b2 := b1 :: Kn

(8)%KE
4

FiniteFieldExtension (PrimeField(3) , 8)

To check this, let’s do some arithmetic.

a1+b1 - ((a2+b2) :: Km)

(9)0

FiniteFieldExtension (PrimeField(3) , 4)

a1*b1 - ((a2*b2) :: Km)

(10)0
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FiniteFieldExtension (PrimeField(3) , 4)

There are also conversions available for the situation, when Km and Kn are represented in different
ways (see Section 8.11.2 on page 358). For example let’s choose Km where the representation is 0 plus
the cyclic multiplicative group and Kn with a normal basis representation.

Km := FFCGX(K,m)

(11)FiniteFieldCyclicGroupExtension(PrimeField(3), 4)

Type

Kn := FFNBX(K,n)

(12)FiniteFieldNormalBasisExtension(PrimeField(3), 8)

Type

(a1 ,b1) := (random ()$Km ,random ()$Km )

(13)%JW
72

FiniteFieldCyclicGroupExtension (PrimeField(3) , 4)

a2 := a1 :: Kn

(14)%KF
q6 +%KF

q5 + 2%KF
q4 +%KF

q2 +%KF
q + 2%KF

FiniteFieldNormalBasisExtension (PrimeField(3) , 8)

b2 := b1 :: Kn

(15)2%KF
q6 +%KF

q5 +%KF
q4 + 2%KF

q2 +%KF
q +%KF
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FiniteFieldNormalBasisExtension (PrimeField(3) , 8)

Check the arithmetic again.

a1+b1 - ((a2+b2) :: Km)

(16)0

FiniteFieldCyclicGroupExtension (PrimeField(3) , 4)

a1*b1 - ((a2*b2) :: Km)

(17)0

FiniteFieldCyclicGroupExtension (PrimeField(3) , 4)

8.11.7 Utility Operations for Finite Fields

FiniteFieldPolynomialPackage (abbreviationFFPOLY) provides operations for generating, count-
ing and testing polynomials over finite fields. Let’s start with a couple of definitions:

• A polynomial is primitive if its roots are primitive elements in an extension of the coefficient field
of degree equal to the degree of the polynomial.

• A polynomial is normal over its coefficient field if its roots are linearly independent elements in
an extension of the coefficient field of degree equal to the degree of the polynomial.

In what follows, many of the generated polynomials have one “anonymous” variable. This indetermi-
nate is displayed as a question mark (“?”).

To fix ideas, let’s use the field with five elements for the first few examples.

GF5 := PF 5;

Type

You can generate irreducible polynomials of any (positive) degree (within the storage capabilities of
the computer and your ability to wait) by using createIrreduciblePoly.

f := createIrreduciblePoly (8) $FFPOLY (GF5)
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(2)?
8 + ?

4 + 2

SparseUnivariatePolynomial (PrimeField(5))

Does this polynomial have other important properties? Use primitive? to test whether it is a primitive
polynomial.

primitive ?(f)$FFPOLY (GF5 )

(3)false

Boolean

Use normal? to test whether it is a normal polynomial.

normal ?(f)$FFPOLY (GF5 )

(4)false

Boolean

Note that this is actually a trivial case, because a normal polynomial of degree n must have a nonzero
term of degree n− 1. We will refer back to this later.

To get a primitive polynomial of degree 8 just issue this.

p := createPrimitivePoly (8) $FFPOLY (GF5 )

(5)?
8 + ?

3 + ?
2 + ?+ 2

SparseUnivariatePolynomial (PrimeField(5))

primitive ?(p)$FFPOLY (GF5 )

(6)true

Boolean

This polynomial is not normal,

normal ?(p)$FFPOLY (GF5 )
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(7)false

Boolean

but if you want a normal one simply write this.

n := createNormalPoly (8) $FFPOLY (GF5 )

(8)?
8 + 4 ?7 + ?

3 + 1

SparseUnivariatePolynomial (PrimeField(5))

This polynomial is not primitive!

primitive ?(n)$FFPOLY (GF5 )

(9)false

Boolean

This could have been seen directly, as the constant term is 1 here, which is not a primitive element up
to the factor (-1) raised to the degree of the polynomial.4

What about polynomials that are both primitive and normal? The existence of such a polynomial is
by no means obvious. 5 If you really need one use either createPrimitiveNormalPoly or createNormal-
PrimitivePoly.

createPrimitiveNormalPoly (8) $FFPOLY (GF5)

(10)?
8 + 4 ?7 + 2 ?5 + 2

SparseUnivariatePolynomial (PrimeField(5))

If you want to obtain additional polynomials of the various types above as given by the create...
operations above, you can use the next... operations. For instance, nextIrreduciblePoly yields the next
monic irreducible polynomial with the same degree as the input polynomial. By “next” we mean “next
in a natural order using the terms and coefficients.” This will become more clear in the following
examples.

This is the field with five elements.
4Cf. Lidl, R. & Niederreiter, H., Finite Fields, Encycl. of Math. 20, (Addison-Wesley, 1983), p.90, Th. 3.18.
5The existence of such polynomials is proved in Lenstra, H. W. & Schoof, R. J., Primitive Normal Bases for Finite

Fields, Math. Comp. 48, 1987, pp. 217-231.
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GF5 := PF 5;

Type

Our first example irreducible polynomial, say of degree 3, must be “greater” than this.

h := monomial (1,8) $SUP(GF5)

(12)?
8

SparseUnivariatePolynomial (PrimeField(5))

You can generate it by doing this.

nh := nextIrreduciblePoly(h)$FFPOLY (GF5)

(13)?
8 + 2

Union(SparseUnivariatePolynomial(PrimeField(5)) , ...)

Notice that this polynomial is not the same as the one createIrreduciblePoly.

createIrreduciblePoly (3) $FFPOLY (GF5 )

(14)?
3 + ?+ 1

SparseUnivariatePolynomial (PrimeField(5))

You can step through all irreducible polynomials of degree 8 over the field with 5 elements by repeatedly
issuing this.

nh := nextIrreduciblePoly(nh)$FFPOLY (GF5)

(15)?
8 + 3

Union(SparseUnivariatePolynomial(PrimeField(5)) , ...)

You could also ask for the total number of these.

numberOfIrreduciblePoly (5) $FFPOLY (GF5)
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(16)624

PositiveInteger

We hope that “natural order” on polynomials is now clear: first we compare the number of monomials
of two polynomials (“more” is “greater”); then, if necessary, the degrees of these monomials (lexi-
cographically), and lastly their coefficients (also lexicographically, and using the operation lookup if
our field is not a prime field). Also note that we make both polynomials monic before looking at the
coefficients: multiplying either polynomial by a nonzero constant produces the same result.

The package FiniteFieldPolynomialPackage also provides similar operations for primitive and nor-
mal polynomials. With the exception of the number of primitive normal polynomials; we’re not aware
of any known formula for this.

numberOfPrimitivePoly (3) $FFPOLY (GF5 )

(17)20

PositiveInteger

Take these,

m := monomial (1,1) $SUP(GF5)

(18)?

SparseUnivariatePolynomial (PrimeField(5))

f := m^3 + 4*m^2 + m + 2

(19)?
3 + 4 ?2 + ?+ 2

SparseUnivariatePolynomial (PrimeField(5))

and then we have:

f1 := nextPrimitivePoly(f)$FFPOLY (GF5)
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(20)?
3 + 4 ?2 + 4 ?+ 2

Union(SparseUnivariatePolynomial(PrimeField(5)) , ...)

What happened?

nextPrimitivePoly(f1)$FFPOLY (GF5)

(21)?
3 + 3 ?+ 3

Union(SparseUnivariatePolynomial(PrimeField(5)) , ...)

Well, for the ordering used in nextPrimitivePoly we use as first criterion a comparison of the constant
terms of the polynomials. Analogously, in nextNormalPoly we first compare the monomials of degree 1
less than the degree of the polynomials (which is nonzero, by an earlier remark).

f := m^3 + m^2 + 4*m + 1

(22)?
3 + ?

2 + 4 ?+ 1

SparseUnivariatePolynomial (PrimeField(5))

f1 := nextNormalPoly(f)$FFPOLY (GF5)

(23)?
3 + ?

2 + 4 ?+ 3

Union(SparseUnivariatePolynomial(PrimeField(5)) , ...)

nextNormalPoly(f1)$FFPOLY (GF5)

(24)?
3 + 2 ?2 + 1

Union(SparseUnivariatePolynomial(PrimeField(5)) , ...)

We don’t have to restrict ourselves to prime fields. Let’s consider, say, a field with 16 elements.

GF16 := FFX(FFX (PF 2,2) ,2);
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Type

We can apply any of the operations described above.

createIrreduciblePoly (5) $FFPOLY (GF16)

(26)?
5 + ?+%JU

SparseUnivariatePolynomial ( FiniteFieldExtension ( FiniteFieldExtension (PrimeField(2) , 2), 2))

FriCAS also provides operations for producing random polynomials of a given degree

random (5) $FFPOLY (GF16)

(27)?
5 + ((%JU + 1)%KH + 1) ?4 + (%JU + 1)%KH ?

3 +%JU %KH ?
2

+ ((%JU + 1)%KH + 1) ?+ (%JU + 1)%KH +%JU

SparseUnivariatePolynomial ( FiniteFieldExtension ( FiniteFieldExtension (PrimeField(2) , 2), 2))

or with degree between two given bounds.

random (3,9) $FFPOLY (GF16)

(28)?
3 + (%JU + 1) ?2 + ((%JU + 1)%KH +%JU) ?+ (%JU + 1)%KH

SparseUnivariatePolynomial ( FiniteFieldExtension ( FiniteFieldExtension (PrimeField(2) , 2), 2))

FiniteFieldPolynomialPackage2 (abbreviation FFPOLY2) exports an operation rootOfIrreducible-
Poly for finding one root of an irreducible polynomial f in an extension field of the coefficient field. The
degree of the extension has to be a multiple of the degree of f. It is not checked whether f actually is
irreducible.

To illustrate this operation, we fix a ground field GF

GF2 := PrimeField 2;

Type

and then an extension field.

F := FFX(GF2 ,12)
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(30)FiniteFieldExtension(PrimeField(2), 12)

Type

We construct an irreducible polynomial over GF2.

f := createIrreduciblePoly (6) $FFPOLY (GF2)

(31)?
6 + ?+ 1

SparseUnivariatePolynomial (PrimeField(2))

We compute a root of f.

root := rootOfIrreduciblePoly (f)$FFPOLY2 (F,GF2)

(32)%JR
11 +%JR

8 +%JR
7 +%JR

5 +%JR + 1

FiniteFieldExtension (PrimeField(2) , 12)

8.12 Primary Decomposition of Ideals

FriCAS provides a facility for the primary decomposition of polynomial ideals over fields of character-
istic zero. The algorithm works in essentially two steps:

1. the problem is solved for 0-dimensional ideals by “generic” projection on the last coordinate

2. a “reduction process” uses localization and ideal quotients to reduce the general case to the
0-dimensional one.

The FriCAS constructor PolynomialIdeal represents ideals with coefficients in any field and supports
the basic ideal operations, including intersection, sum and quotient. IdealDecompositionPackage
contains the specific operations for the primary decomposition and the computation of the radical of an
ideal with polynomial coefficients in a field of characteristic 0 with an effective algorithm for factoring
polynomials.

The following examples illustrate the capabilities of this facility. First consider the ideal generated by
x2+y2−1 (which defines a circle in the (x,y)-plane) and the ideal generated by x2−y2 (corresponding
to the straight lines x = y and x = -y.

(n,m) : List DMP ([x,y],FRAC INT)

m := [x^2+y^2-1]
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(2)
[

x
2 + y

2 − 1
]

List ( DistributedMultivariatePolynomial ([x, y ], Fraction ( Integer )))

n := [x^2-y^2]

(3)
[

x
2 − y

2
]

List ( DistributedMultivariatePolynomial ([x, y ], Fraction ( Integer )))

We find the equations defining the intersection of the two loci. This correspond to the sum of the
associated ideals.

id := ideal m + ideal n

(4)

[

x
2 − 1

2
, y

2 − 1

2

]

PolynomialIdeal (Fraction ( Integer ) , DirectProduct(2, NonNegativeInteger), OrderedVariableList ([ x, y ]) ,

DistributedMultivariatePolynomial ([x, y ], Fraction ( Integer )))

We can check if the locus contains only a finite number of points, that is, if the ideal is zero-dimensional.

zeroDim ? id

(5)true

Boolean

zeroDim ?( ideal m)

(6)false

Boolean

dimension ideal m
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(7)1

PositiveInteger

We can find polynomial relations among the generators (f and g are the parametric equations of the
knot).

(f,g):DMP ([x,y],FRAC INT )

f := x^2-1

(9)x
2 − 1

DistributedMultivariatePolynomial ([ x, y ], Fraction ( Integer ))

g := x*(x^2-1)

(10)x
3 − x

DistributedMultivariatePolynomial ([ x, y ], Fraction ( Integer ))

relationsIdeal [f,g]

(11)
[

−%KJ
2 +%KI

3 +%KI
2
]

|
[

%KI = x
2 − 1, %KJ = x

3 − x
]

SuchThat(List(Polynomial(Fraction( Integer ))) , List (Equation(Polynomial(Fraction( Integer )))))

We can compute the primary decomposition of an ideal.

l: List DMP ([x,y,z],FRAC INT) := [x^2+2*y^2,x*z^2-y*z,z^2-4]

(12)
[

x
2 + 2 y2

, x z
2 − y z, z

2 − 4
]

List ( DistributedMultivariatePolynomial ([ x, y, z ], Fraction ( Integer )))

ld:= primaryDecomp(ideal l) $IdealDecompositionPackage ([x,y,z])
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(13)

[[

x+
1

2
y, y

2
, z + 2

]

,

[

x− 1

2
y, y

2
, z − 2

]]

List (PolynomialIdeal (Fraction ( Integer ) , DirectProduct(3, NonNegativeInteger), OrderedVariableList ([ x, y, z ]) ,

DistributedMultivariatePolynomial ([x, y, z ], Fraction ( Integer ))))

We can intersect back.

reduce (intersect ,ld)

(14)

[

x− 1

4
y z, y

2
, z

2 − 4

]

PolynomialIdeal (Fraction ( Integer ) , DirectProduct(3, NonNegativeInteger), OrderedVariableList ([ x, y, z ]) ,

DistributedMultivariatePolynomial ([x, y, z ], Fraction ( Integer )))

We can compute the radical of every primary component.

reduce (intersect ,[ radical (ld.i)$IdealDecompositionPackage ([x,y,z]) for i in 1..2])

(15)
[

x, y, z
2 − 4

]

PolynomialIdeal (Fraction ( Integer ) , DirectProduct(3, NonNegativeInteger), OrderedVariableList ([ x, y, z ]) ,

DistributedMultivariatePolynomial ([x, y, z ], Fraction ( Integer )))

Their intersection is equal to the radical of the ideal of l.

radical (ideal l)$IdealDecompositionPackage ([x,y,z])

(16)
[

x, y, z
2 − 4

]

PolynomialIdeal (Fraction ( Integer ) , DirectProduct(3, NonNegativeInteger), OrderedVariableList ([ x, y, z ]) ,

DistributedMultivariatePolynomial ([x, y, z ], Fraction ( Integer )))

8.13 Computation of Galois Groups

As a sample use of FriCAS’s algebraic number facilities, we compute the Galois group of the polynomial
p(x) = x5 − 5x+ 12.

p := x^5 - 5*x + 12
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(1)x
5 − 5x+ 12

Polynomial( Integer )

We would like to construct a polynomial f(x) such that the splitting field of p(x) is generated by one
root of f(x). First we construct a polynomial r = r(x) such that one root of r(x) generates the field
generated by two roots of the polynomial p(x). (As it will turn out, the field generated by two roots
of p(x) is, in fact, the splitting field of p(x).)

From the proof of the primitive element theorem we know that if a and b are algebraic numbers, then
the field Q(a, b) is equal to Q(a+ kb) for an appropriately chosen integer k. In our case, we construct
the minimal polynomial of ai−aj , where ai and aj are two roots of p(x). We construct this polynomial
using resultant. The main result we need is the following: If f(x) is a polynomial with roots ai . . . am and
g(x) is a polynomial with roots bi . . . bn, then the polynomial h(x) = resultant(f(y), g(x-y), y)

is a polynomial of degree m ∗ n with roots ai + bj , i = 1 . . .m, j = 1 . . . n.

For f(x) we use the polynomial p(x). For g(x) we use the polynomial −p(−x). Thus, the polynomial
we first construct is resultant(p(y), -p(y-x), y).

q := resultant (eval(p,x,y),-eval(p,x,y-x),y)

(2)x
25 − 50x21 − 2375 x17 + 90000 x15 − 5000 x13 + 2700000 x11 + 250000 x9 + 18000000 x7 + 64000000 x5

Polynomial( Integer )

The roots of q(x) are ai − aj , i ≤ 1, j ≤ 5. Of course, there are five pairs (i, j) with i = j, so 0 is a
5-fold root of q(x). Let’s get rid of this factor.

q1 := exquo(q, x^5)

(3)x
20 − 50x16 − 2375 x12 + 90000 x10 − 5000 x8 + 2700000 x6 + 250000 x4 + 18000000 x2 + 64000000

Union(Polynomial(Integer) , ...)

Factor the polynomial q1.

factoredQ := factor q1

(4)
(

x
10 − 10 x8 − 75x6 + 1500 x4 − 5500 x2 + 16000

) (

x
10 + 10x8 + 125 x6 + 500 x4 + 2500 x2 + 4000

)
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Factored(Polynomial( Integer ))

We see that q1 has two irreducible factors, each of degree 10. (The fact that the polynomial q1 has
two factors of degree 10 is enough to show that the Galois group of p(x) is the dihedral group of order
10.6 Note that the type of factoredQ is FR POLY INT, that is, Factored Polynomial Integer.
This is a special data type for recording factorizations of polynomials with integer coefficients (see
‘Factored’ on page 490). We can access the individual factors using the operation factorList.

r := factorList (factoredQ ).1. factor

(5)x
10 − 10x8 − 75 x6 + 1500 x4 − 5500 x2 + 16000

Polynomial( Integer )

Consider the polynomial r = r(x). This is the minimal polynomial of the difference of two roots of
p(x). Thus, the splitting field of p(x) contains a subfield of degree 10. We show that this subfield is,
in fact, the splitting field of p(x) by showing that p(x) factors completely over this field. First we
create a symbolic root of the polynomial r(x). (We replaced x by b in the polynomial r so that our
symbolic root would be printed as b.)

beta:AN := rootOf (eval(r,x,b))

(6)b

AlgebraicNumber

We next tell FriCAS to view p(x) as a univariate polynomial in x with algebraic number coefficients.
This is accomplished with this type declaration.

p := p::UP(x,INT)::UP(x,AN)

(7)x
5 − 5x+ 12

UnivariatePolynomial (x, AlgebraicNumber)

Factor p(x) over the field Q(β). (This computation will take some time!)

algFactors := factor (p,[ beta])

6See McKay, Soicher, Computing Galois Groups over the Rationals, Journal of Number Theory 20, 273-281 (1983).
We do not assume the results of this paper, however, and we continue with the computation.
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(8)

(

x+
−85 b9 − 116 b8 + 780 b7 + 2640 b6 + 14895 b5 − 8820 b4 − 127050 b3 − 327000 b2 − 405200 b+ 2062400

1339200

)(

x+
−17 b8 + 156 b6

Factored(UnivariatePolynomial (x, AlgebraicNumber))

When factoring over number fields, it is important to specify the field over which the polynomial is
to be factored, as polynomials have different factorizations over different fields. When you use the
operation factor, the field over which the polynomial is factored is the field generated by

1. the algebraic numbers that appear in the coefficients of the polynomial, and

2. the algebraic numbers that appear in a list passed as an optional second argument of the opera-
tion.

In our case, the coefficients of p are all rational integers and only beta appears in the list, so the field
is simply Q(β). It was necessary to give the list [beta] as a second argument of the operation
because otherwise the polynomial would have been factored over the field generated by its coefficients,
namely the rational numbers.

factor (p)

(9)x
5 − 5x+ 12

Factored(UnivariatePolynomial (x, AlgebraicNumber))

We have shown that the splitting field of p(x) has degree 10. Since the symmetric group of degree
5 has only one transitive subgroup of order 10, we know that the Galois group of p(x) must be this
group, the dihedral group of order 10. Rather than stop here, we explicitly compute the action of the
Galois group on the roots of p(x).

First we assign the roots of p(x) as the values of five variables. We can obtain an individual root by
negating the constant coefficient of one of the factors of p(x).

factor1 := factorList (algFactors ).1. factor

x+
−85 b9 − 116 b8 + 780 b7 + 2640 b6 + 14895 b5 − 8820 b4 − 127050 b3 − 327000 b2 − 405200 b+ 2062400

1339200
(10)

UnivariatePolynomial (x, AlgebraicNumber)

root1 := -coefficient (factor1 ,0)
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(11)
85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4 + 127050 b3 + 327000 b2 + 405200 b− 2062400

1339200

AlgebraicNumber

We can obtain a list of all the roots in this way.

roots := [-coefficient (j.factor , 0) for j in factorList ( algFactors )]

[

85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4 + 127050 b3 + 327000 b2 + 405200 b− 2062400

1339200
,

17 b8 − 156 b6 − 2979 b4 + 25410 b2 + 14080

66960
,
−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 + 334800 b+ 960800

669600
,

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 − 334800 b+ 960800

669600
,

−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4 − 127050 b3 + 327000 b2 − 405200 b− 2062400

1339200

]

(12)

List (AlgebraicNumber)

The expression

- coefficient(j.factor, 0)}

is the ith root of p(x) and the elements of roots are the ith roots of p(x) as i ranges from 1 to 5.

Assign the roots as the values of the variables a1,...,a5.

(a1 ,a2 ,a3 ,a4 ,a5) := (roots .1, roots .2, roots .3, roots .4, roots .5)

(13)
−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4 − 127050 b3 + 327000 b2 − 405200 b− 2062400

1339200

AlgebraicNumber

Next we express the roots of r(x) as polynomials in beta. We could obtain these roots by calling the
operation factor: factor(r, [beta]) factors r(x) over Q(β). However, this is a lengthy computation
and we can obtain the roots of r(x) as differences of the roots a1,...,a5 of p(x). Only ten of these
differences are roots of r(x) and the other ten are roots of the other irreducible factor of q1. We can
determine if a given value is a root of r(x) by evaluating r(x) at that particular value. (Of course,
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the order in which factors are returned by the operation factor is unimportant and may change with
different implementations of the operation. Therefore, we cannot predict in advance which differences
are roots of r(x) and which are not.) Let’s look at four examples (two are roots of r(x) and two are
not).

eval(r,x,a1 - a2)

(14)0

Polynomial(AlgebraicNumber)

eval(r,x,a1 - a3)

(15)
47905 b9 + 66920 b8 − 536100 b7 − 980400 b6 − 3345075 b5 − 5787000 b4 + 75572250 b3 + 161688000 b2 − 184600000 b− 710912000

4464

Polynomial(AlgebraicNumber)

eval(r,x,a1 - a4)

(16)0

Polynomial(AlgebraicNumber)

eval(r,x,a1 - a5)

(17)
405 b8 + 3450 b6 − 19875 b4 − 198000 b2 − 588000

31

Polynomial(AlgebraicNumber)

Take one of the differences that was a root of r(x) and assign it to the variable bb. For example, if
eval(r,x,a1 - a4) returned 0, you would enter this.

bb := a1 - a4

(18)
85 b9 + 402 b8 − 780 b7 − 6840 b6 − 14895 b5 − 12150 b4 + 127050 b3 + 908100 b2 + 1074800 b− 3984000

1339200
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AlgebraicNumber

Of course, if the difference is, in fact, equal to the root beta, you should choose another root of r(x).

Automorphisms of the splitting field are given by mapping a generator of the field, namely beta, to
other roots of its minimal polynomial. Let’s see what happens when beta is mapped to bb. We
compute the images of the roots a1,...,a5 under this automorphism:

aa1 := subst (a1 ,beta = bb)

(19)
−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 + 334800 b+ 960800

669600

AlgebraicNumber

aa2 := subst (a2 ,beta = bb)

(20)
−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4 − 127050 b3 + 327000 b2 − 405200 b− 2062400

1339200

AlgebraicNumber

aa3 := subst (a3 ,beta = bb)

(21)
85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4 + 127050 b3 + 327000 b2 + 405200 b− 2062400

1339200

AlgebraicNumber

aa4 := subst (a4 ,beta = bb)

(22)
−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 − 334800 b+ 960800

669600

AlgebraicNumber

aa5 := subst (a5 ,beta = bb)
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(23)
17 b8 − 156 b6 − 2979 b4 + 25410 b2 + 14080

66960

AlgebraicNumber

Of course, the values aa1,...,aa5 are simply a permutation of the values a1,...,a5. Let’s find
the value of aa1 (execute as many of the following five commands as necessary).

(aa1 = a1) :: Boolean

(24)false

Boolean

(aa1 = a2) :: Boolean

(25)false

Boolean

(aa1 = a3) :: Boolean

(26)true

Boolean

(aa1 = a4) :: Boolean

(27)false

Boolean

(aa1 = a5) :: Boolean

(28)false
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Boolean

Proceeding in this fashion, you can find the values of aa2,...aa5.7 You have represented the au-
tomorphism beta →bb as a permutation of the roots a1,...,a5. If you wish, you can repeat this
computation for all the roots of r(x) and represent the Galois group of p(x) as a subgroup of the
symmetric group on five letters.

Here are two other problems that you may attack in a similar fashion:

1. Show that the Galois group of p(x) = x4+2x3−2x2−3x+1 is the dihedral group of order eight.
(The splitting field of this polynomial is the Hilbert class field of the quadratic field Q(

√
145).)

2. Show that the Galois group of p(x) = x6+108 has order 6 and is isomorphic to S3, the symmetric
group on three letters. (The splitting field of this polynomial is the splitting field of x3 − 2.)

8.14 Non-Associative Algebras and Modelling Genetic Laws

Many algebraic structures of mathematics and FriCAS have a multiplication operation * that satisfies
the associativity law a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b and c. The octonions (see ‘Octonion’ on page
642) are a well known exception. There are many other interesting non-associative structures, such as
the class of Lie algebras.8 Lie algebras can be used, for example, to analyse Lie symmetry algebras of
partial differential equations. In this section we show a different application of non-associative algebras,
the modelling of genetic laws.

The FriCAS library contains several constructors for creating non-associative structures, ranging from
the categories Monad, NonAssociativeRng, and FramedNonAssociativeAlgebra, to the do-
mains AlgebraGivenByStructuralConstants and GenericNonAssociativeAlgebra. Further-
more, the package AlgebraPackage provides operations for analysing the structure of such algebras.9

Mendel’s genetic laws are often written in a form like

Aa× Aa =
1

4
AA+

1

2
Aa+

1

4
aa.

The implementation of general algebras in FriCAS allows us to use this as the definition for multi-
plication in an algebra. Hence, it is possible to study questions of genetic inheritance using FriCAS.
To demonstrate this more precisely, we discuss one example from a monograph of A. Wörz-Busekros,
where you can also find a general setting of this theory.10

We assume that there is an infinitely large random mating population. Random mating of two gametes
ai and aj gives zygotes aiaj, which produce new gametes. In classical Mendelian segregation we have
aiaj =

1
2ai +

1
2aj . In general, we have

aiaj =

n∑

k=1

γki,j ak.

7Here you should use the Clef line editor. See Section 1.1.1 on page 22 for more information about Clef.
8Two FriCAS implementations of Lie algebras are LieSquareMatrix and FreeNilpotentLie.
9The interested reader can learn more about these aspects of the FriCAS library from the paper “Computations in

Algebras of Finite Rank,” by Johannes Grabmeier and Robert Wisbauer, Technical Report, IBM Heidelberg Scientific
Center, 1992.

10Wörz-Busekros, A., Algebras in Genetics, Springer Lectures Notes in Biomathematics 36, Berlin e.a. (1980). In
particular, see example 1.3.
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The segregation rates γi,j are the structural constants of an n-dimensional algebra. This is provided
in FriCAS by the constructor AlgebraGivenByStructuralConstants (abbreviation ALGSC).

Consider two coupled autosomal loci with alleles A,a, B, and b, building four different gametes a1 =
AB, a2 = Ab, a3 = aB, and a4 = ab. The zygotes aiaj produce gametes ai and aj with classical
Mendelian segregation. Zygote a1a4 undergoes transition to a2a3 and vice versa with probability
0 ≤ θ ≤ 1

2 .

Define a list [(γki,j)1 ≤ k ≤ 4] of four four-by-four matrices giving the segregation rates. We use the
value 1/10 for θ.

segregationRates : List SquareMatrix(4, FRAC INT ) := [matrix [ [1, 1/2, 1/2, 9/20] ,

[1/2, 0, 1/20, 0], [1/2, 1/20, 0, 0], [9/20 , 0, 0, 0] ], matrix [ [0, 1/2, 0,

1/20] , [1/2, 1, 9/20, 1/2], [0, 9/20, 0, 0], [1/20 , 1/2, 0, 0] ], matrix [ [0, 0,

1/2, 1/20] , [0, 0, 9/20, 0], [1/2, 9/20, 1, 1/2], [1/20 , 0, 1/2, 0] ], matrix [

[0, 0, 0, 9/20] , [0, 0, 1/20, 1/2], [0, 1/20, 0, 1/2], [9/20 , 1/2, 1/2, 1] ] ]

(1)
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List (SquareMatrix(4, Fraction ( Integer )))

Choose the appropriate symbols for the basis of gametes,

gametes := [’AB ,’Ab ,’aB,’ab]

(2)[AB, Ab, aB, ab]

List ( OrderedVariableList ([AB, Ab, aB, ab]))

Define the algebra.

A := ALGSC(FRAC INT , 4, gametes , segregationRates);

Type

What are the probabilities for zygote a1a4 to produce the different gametes?

a := basis ()$A; a.1* a.4

(4)
9

20
ab+

1

20
aB +

1

20
Ab+

9

20
AB



392 CHAPTER 8. ADVANCED PROBLEM SOLVING

AlgebraGivenByStructuralConstants(Fraction ( Integer ) , 4, [AB, Ab, aB, ab], [[[1, 1/2, 1/2, 9/20], [1/2, 0, 1/20, 0],

[1/2, 1/20, 0, 0], [9/20, 0, 0, 0]], [[0, 1/2, 0, 1/20], [1/2, 1, 9/20, 1/2], [0, 9/20, 0, 0], [1/20, 1/2, 0, 0]], [[0,

0, 1/2, 1/20], [0, 0, 9/20, 0], [1/2, 9/20, 1, 1/2], [1/20, 0, 1/2, 0]], [[0, 0, 0, 9/20], [0, 0, 1/20, 1/2], [0, 1/20,

0, 1/2], [9/20, 1/2, 1/2, 1]]])

Elements in this algebra whose coefficients sum to one play a distinguished role. They represent a
population with the distribution of gametes reflected by the coefficients with respect to the basis of
gametes.

Random mating of different populations x and y is described by their product x ∗ y.
This product is commutative only if the gametes are not sex-dependent, as in our example.

commutative ?() $A

(5)true

Boolean

In general, it is not associative.

associative ?() $A

(6)false

Boolean

Random mating within a population x is described by x ∗ x. The next generation is (x ∗ x) ∗ (x ∗ x).
Use decimal numbers to compare the distributions more easily.

x : ALGSC (DECIMAL , 4, gametes , segregationRates) := convert [3/10 , 1/5, 1/10, 2/5]

(7)0.4 ab+ 0.1 aB + 0.2Ab+ 0.3AB

AlgebraGivenByStructuralConstants(DecimalExpansion, 4, [AB, Ab, aB, ab], [[[1, CONCAT(0, ., 5), CONCAT(0, ., 5),

CONCAT(0, ., CONCAT(4, 5))], [CONCAT(0, ., 5), 0, CONCAT(0, ., CONCAT(0, 5)), 0], [CONCAT(0, ., 5), CONCAT(0, .,

CONCAT(0, 5)), 0, 0], [CONCAT(0, ., CONCAT(4, 5)), 0, 0, 0]], [[0, CONCAT(0, ., 5), 0, CONCAT(0, ., CONCAT(0, 5))],

[CONCAT(0, ., 5), 1, CONCAT(0, ., CONCAT(4, 5)), CONCAT(0, ., 5)], [0, CONCAT(0, ., CONCAT(4, 5)), 0, 0], [CONCAT

(0, ., CONCAT(0, 5)), CONCAT(0, ., 5), 0, 0]], [[0, 0, CONCAT(0, ., 5), CONCAT(0, ., CONCAT(0, 5))], [0, 0, CONCAT(0,

., CONCAT(4, 5)), 0], [CONCAT(0, ., 5), CONCAT(0, ., CONCAT(4, 5)), 1, CONCAT(0, ., 5)], [CONCAT(0, ., CONCAT(0,

5)), 0, CONCAT(0, ., 5), 0]], [[0, 0, 0, CONCAT(0, ., CONCAT(4, 5))], [0, 0, CONCAT(0, ., CONCAT(0, 5)), CONCAT(0,

., 5)], [0, CONCAT(0, ., CONCAT(0, 5)), 0, CONCAT(0, ., 5)], [CONCAT(0, ., CONCAT(4, 5)), CONCAT(0, ., 5), CONCAT

(0, ., 5), 1]]])
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To compute directly the gametic distribution in the fifth generation, we use plenaryPower.

plenaryPower(x,5)

(8)0.36561 ab+ 0.13439 aB + 0.23439Ab+ 0.26561AB

AlgebraGivenByStructuralConstants(DecimalExpansion, 4, [AB, Ab, aB, ab], [[[1, CONCAT(0, ., 5), CONCAT(0, ., 5),

CONCAT(0, ., CONCAT(4, 5))], [CONCAT(0, ., 5), 0, CONCAT(0, ., CONCAT(0, 5)), 0], [CONCAT(0, ., 5), CONCAT(0, .,

CONCAT(0, 5)), 0, 0], [CONCAT(0, ., CONCAT(4, 5)), 0, 0, 0]], [[0, CONCAT(0, ., 5), 0, CONCAT(0, ., CONCAT(0, 5))],

[CONCAT(0, ., 5), 1, CONCAT(0, ., CONCAT(4, 5)), CONCAT(0, ., 5)], [0, CONCAT(0, ., CONCAT(4, 5)), 0, 0], [CONCAT

(0, ., CONCAT(0, 5)), CONCAT(0, ., 5), 0, 0]], [[0, 0, CONCAT(0, ., 5), CONCAT(0, ., CONCAT(0, 5))], [0, 0, CONCAT(0,

., CONCAT(4, 5)), 0], [CONCAT(0, ., 5), CONCAT(0, ., CONCAT(4, 5)), 1, CONCAT(0, ., 5)], [CONCAT(0, ., CONCAT(0,

5)), 0, CONCAT(0, ., 5), 0]], [[0, 0, 0, CONCAT(0, ., CONCAT(4, 5))], [0, 0, CONCAT(0, ., CONCAT(0, 5)), CONCAT(0,

., 5)], [0, CONCAT(0, ., CONCAT(0, 5)), 0, CONCAT(0, ., 5)], [CONCAT(0, ., CONCAT(4, 5)), CONCAT(0, ., 5), CONCAT

(0, ., 5), 1]]])

We now ask two questions: Does this distribution converge to an equilibrium state? What are the
distributions that are stable?

This is an invariant of the algebra and it is used to answer the first question. The new indeterminates
describe a symbolic distribution.

q := leftRankPolynomial () $GCNAALG (FRAC INT , 4, gametes , segregationRates) :: UP(Y,

POLY FRAC INT)

(9)Y
3 +

(

−29

20
%x4− 29

20
%x3− 29

20
%x2− 29

20
%x1

)

Y
2

+

(

9

20
%x42 +

(

9

10
%x3 +

9

10
%x2 +

9

10
%x1

)

%x4 +
9

20
%x32 +

(

9

10
%x2 +

9

10
%x1

)

%x3 +
9

20
%x22 +

9

10
%x1%x2 +

9

20
%x12

)

UnivariatePolynomial (Y, Polynomial(Fraction ( Integer )))

Because the coefficient 9
20 has absolute value less than 1, all distributions do converge, by a theorem

of this theory.

factor (q :: POLY FRAC INT)

(10)(Y −%x4−%x3−%x2−%x1)

(

Y − 9

20
%x4− 9

20
%x3− 9

20
%x2− 9

20
%x1

)

Y

Factored(Polynomial(Fraction ( Integer )))

The second question is answered by searching for idempotents in the algebra.
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cI := conditionsForIdempotents () $GCNAALG (FRAC INT , 4, gametes , segregationRates)

(11)

[

9

10
%x1%x4 +

(

1

10
%x2 + %x1

)

%x3 + %x1%x2 + %x12 −%x1,

(

%x2 +
1

10
%x1

)

%x4 +
9

10
%x2%x3 + %x22 + (%x1− 1)%x2,

(

%x3 +
1

10
%x1

)

%x4 + %x32 +

(

9

10
%x2 + %x1− 1

)

%x3,

%x42 +

(

%x3 +%x2 +
9

10
%x1− 1

)

%x4 +
1

10
%x2%x3

]

List (Polynomial(Fraction ( Integer )))

Solve these equations and look at the first solution.

gbs := groebnerFactorize cI; gbs .1

(12)
[

%x4 + %x3 + %x2 +%x1− 1, (%x2 + %x1)%x3 + %x1%x2 +%x12 −%x1
]

List (Polynomial(Fraction ( Integer )))

Further analysis using the package PolynomialIdeal shows that there is a two-dimensional variety of
equilibrium states and all other solutions are contained in it.

Choose one equilibrium state by setting two indeterminates to concrete values.

sol := solve concat (gbs .1,[%x1 -1/10 ,% x2 -1/10])

(13)

[[

%x4 =
2

5
, %x3 =

2

5
, %x2 =

1

10
, %x1 =

1

10

]]

List ( List (Equation(Fraction(Polynomial( Integer )))))

e : A := represents reverse (map(rhs , sol .1) :: List FRAC INT)

(14)
2

5
ab+

2

5
aB +

1

10
Ab+

1

10
AB
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AlgebraGivenByStructuralConstants(Fraction ( Integer ) , 4, [AB, Ab, aB, ab], [[[1, 1/2, 1/2, 9/20], [1/2, 0, 1/20, 0],

[1/2, 1/20, 0, 0], [9/20, 0, 0, 0]], [[0, 1/2, 0, 1/20], [1/2, 1, 9/20, 1/2], [0, 9/20, 0, 0], [1/20, 1/2, 0, 0]], [[0,

0, 1/2, 1/20], [0, 0, 9/20, 0], [1/2, 9/20, 1, 1/2], [1/20, 0, 1/2, 0]], [[0, 0, 0, 9/20], [0, 0, 1/20, 1/2], [0, 1/20,

0, 1/2], [9/20, 1/2, 1/2, 1]]])

Verify the result.

e*e-e

(15)0

AlgebraGivenByStructuralConstants(Fraction ( Integer ) , 4, [AB, Ab, aB, ab], [[[1, 1/2, 1/2, 9/20], [1/2, 0, 1/20, 0],

[1/2, 1/20, 0, 0], [9/20, 0, 0, 0]], [[0, 1/2, 0, 1/20], [1/2, 1, 9/20, 1/2], [0, 9/20, 0, 0], [1/20, 1/2, 0, 0]], [[0,

0, 1/2, 1/20], [0, 0, 9/20, 0], [1/2, 9/20, 1, 1/2], [1/20, 0, 1/2, 0]], [[0, 0, 0, 9/20], [0, 0, 1/20, 1/2], [0, 1/20,

0, 1/2], [9/20, 1/2, 1/2, 1]]])

8.15 Matrix Manipulation

This section shows some examples on selecting various (rectangular) submatrices of matrices. In the
numerics literature, these operations are usually referred to as slicing. Apart from indexing matrices
by two integers for retrieving single elements, it is possible to use lists of integers (List(Integer)),
segments (Segment(Integer)) and list of segments (List(Segment(Integer))) to select slices like
whole rows, columns or submatrices.

First, we build a simple test matrix to show the above-mentioned manipulations:

m := matrix ([[11 , 12, 13, 14], [21, 22,23, 24], [31, 32, 33, 34]])

(1)





11 12 13 14
21 22 23 24
31 32 33 34





Matrix( Integer )

Select the top right two by two submatrix by slicing using segments:

m(1..2 , 3..4)

(2)

[

13 14
23 24

]
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Matrix( Integer )

Having a nonzero step size in the segment is also supported:

m(1..2 , 1..3 by 2)

(3)

[

11 13
21 23

]

Matrix( Integer )

Indexing by lists works as expected, returning all elements having index pairs from the outer product
of both lists:

m([1,3], [2 ,4])

(4)

[

12 14
32 34

]

Matrix( Integer )

Selecting single elements by any index type other than Integer for both, the row and column index,
will not give the respective element but a 1 times 1 matrix containing it:

m(1, 2)

(5)12

PositiveInteger

m([1], [2])

(6)
[

12
]

Matrix( Integer )

m(1, [2])



8.15. MATRIX MANIPULATION 397

(7)
[

12
]

Matrix( Integer )

m(1, 2..2)

(8)
[

12
]

Matrix( Integer )

m(1, [2..2])

(9)
[

12
]

Matrix( Integer )

It is possible to use lists of segments to select multiple submatrices which get stacked together forming
the result returned:

m([1..2] , [1, 3..4])

(10)

[

11 13 14
21 23 24

]

Matrix( Integer )

Use overlapping segments to repeat elements:

m([1..2] , [3..4 , 3..4])

(11)

[

13 14 13 14
23 24 23 24

]

Matrix( Integer )

It is even possible to mix any of the valid index constructs in the selection of rows and columns:

m(2, [1 ,4])
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(12)
[

21 24
]

Matrix( Integer )

m([1,2,3], 2..3)

(13)





12 13
22 23
32 33





Matrix( Integer )

m([1,2], [1..3 , 4])

(14)

[

11 12 13 14
21 22 23 24

]

Matrix( Integer )

Assignment to a submatrix using slicing syntax is supported, too:

m([1..2] , [3..3]) := m([1,2], [2])

(15)

[

12
22

]

Matrix( Integer )

m

(16)





11 12 12 14
21 22 22 24
31 32 33 34





Matrix( Integer )
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Note that assignment currently does not check for overlapping segments, and the last assignments
wins. However, overlapping case should be considered undefined anyway.

Another caveat shows up when assigning single elements.

Selecting the entry by any index type other than two times an Integer requires assignment of a matrix
type:

m([2], [2]) := matrix ([[4]])

(17)
[

4
]

Matrix( Integer )

m

(18)





11 12 12 14
21 4 22 24
31 32 33 34





Matrix( Integer )

By using the functions rowSlice and colSlice it is possible to obtain for a given matrix two special slicing
objects that when used will select all elements along a column or row respectively (rowSlice varies row
index giving a column). The advantage of using these is that no information about the actual matrix
size in necessary.

It is easily possible to select the second and fourth columns of a given matrix:

r := rowSlice (m)

(19)1 . . 3

Segment(Integer)

m(r, 2)

(20)





12
4
32
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Matrix( Integer )

m(r, 4)

(21)





14
24
34





Matrix( Integer )

Assignment of course works the same way. The following snippet shows simple row operations as used
in Gaussian elimination:

c := colSlice (m)

(22)1 . . 4

Segment(Integer)

m := m :: Matrix (Fraction (Integer ))

(23)





11 12 12 14
21 4 22 24
31 32 33 34





Matrix(Fraction ( Integer ))

m(2, c) := m(2, c) - m(2,1)/m(1,1) * m(1, c)

(24)
[

0 − 208
11

− 10
11

− 30
11

]

Matrix(Fraction ( Integer ))

m(3, c) := m(3, c) - m(3,1)/m(1,1) * m(1, c)

(25)
[

0 − 20
11

− 9
11

− 60
11

]
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Matrix(Fraction ( Integer ))

m(3, c) := m(3, c) - m(3,2)/m(2,2) * m(2, c)

(26)
[

0 0 − 19
26

− 135
26

]

Matrix(Fraction ( Integer ))

m

(27)





11 12 12 14
0 − 208

11
− 10

11
− 30

11

0 0 − 19
26

− 135
26





Matrix(Fraction ( Integer ))

Selecting the whole matrix:

r := rowSlice (m)

(28)1 . . 3

Segment(Integer)

c := colSlice (m)

(29)1 . . 4

Segment(Integer)

m(r,c)

(30)





11 12 12 14
0 − 208

11
− 10

11
− 30

11

0 0 − 19
26

− 135
26
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Matrix(Fraction ( Integer ))



Chapter 9

Some Examples of Domains and
Packages

In this chapter we show examples of many of the most commonly used FriCAS domains and packages.
The sections are organized by constructor names.

9.1 AssociationList

The AssociationList constructor provides a general structure for associative storage. This type
provides association lists in which data objects can be saved according to keys of any type. For a
given association list, specific types must be chosen for the keys and entries. You can think of the
representation of an association list as a list of records with key and entry fields.

Association lists are a form of table and so most of the operations available for Table are also available
for AssociationList. They can also be viewed as lists and can be manipulated accordingly.

This is a Record type with age and gender fields.

Data := Record (monthsOld : Integer , gender : String )

(4)Record(monthsOld:Integer, gender:String)

Type

In this expression, al is declared to be an association list whose keys are strings and whose entries are
the above records.

al : AssociationList(String ,Data)

The table operation is used to create an empty association list.

al := table ()

403
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(6)table()

AssociationList (String , Record(monthsOld: Integer, gender: String ))

You can use assignment syntax to add things to the association list.

al." bob" := [407 ," male"] $Data

(7)[monthsOld = 407, gender = "male"]

Record(monthsOld: Integer, gender: String )

al." judith " := [366 ," female "] $Data

(8)[monthsOld = 366, gender = "female"]

Record(monthsOld: Integer, gender: String )

al." katie " := [24," female "] $Data

(9)[monthsOld = 24, gender = "female"]

Record(monthsOld: Integer, gender: String )

Perhaps we should have included a species field.

al." smokie " := [200 ," female "] $Data

(10)[monthsOld = 200, gender = "female"]

Record(monthsOld: Integer, gender: String )

Now look at what is in the association list. Note that the last-added (key, entry) pair is at the beginning
of the list.

al
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(11)table("smokie" = [monthsOld = 200, gender = "female"] , "katie" = [monthsOld = 24, gender = "female"] , "judith" = [monthsO

AssociationList (String , Record(monthsOld: Integer, gender: String ))

You can reset the entry for an existing key.

al." katie " := [23," female "] $Data

(12)[monthsOld = 23, gender = "female"]

Record(monthsOld: Integer, gender: String )

Use delete! to destructively remove an element of the association list. Use delete to return a copy of the
association list with the element deleted. The second argument is the index of the element to delete.

delete !(al ,1)

(13)table("katie" = [monthsOld = 23, gender = "female"] , "judith" = [monthsOld = 366, gender = "female"] , "bob" = [monthsO

AssociationList (String , Record(monthsOld: Integer, gender: String ))

For more information about tables, see ‘Table’ on page 743. For more information about lists, see
‘List’ on page 607. Issue the system command )show AssociationList to display the full list of
operations defined by AssociationList.

9.2 BalancedBinaryTree

BalancedBinaryTree(S) is the domain of balanced binary trees with elements of type S at the nodes.
A binary tree is either empty or else consists of a node having a value and two branches, each branch a
binary tree. A balanced binary tree is one that is balanced with respect its leaves. One with 2k leaves
is perfectly “balanced”: the tree has minimum depth, and the left and right branch of every interior
node is identical in shape.

Balanced binary trees are useful in algebraic computation for so-called “divide-and-conquer” algo-
rithms. Conceptually, the data for a problem is initially placed at the root of the tree. The original
data is then split into two subproblems, one for each subtree. And so on. Eventually, the problem is
solved at the leaves of the tree. A solution to the original problem is obtained by some mechanism
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that can reassemble the pieces. In fact, an implementation of the Chinese Remainder Algorithm using
balanced binary trees was first proposed by David Y. Y. Yun at the IBM T. J. Watson Research Center
in Yorktown Heights, New York, in 1978. It served as the prototype for polymorphic algorithms in
FriCAS.

In what follows, rather than perform a series of computations with a single expression, the expression
is reduced modulo a number of integer primes, a computation is done with modular arithmetic for each
prime, and the Chinese Remainder Algorithm is used to obtain the answer to the original problem.
We illustrate this principle with the computation of 122 = 144.

A list of moduli.

lm := [3,5,7,11]

(4)[3, 5, 7, 11]

List ( PositiveInteger )

The expression modTree(n, lm) creates a balanced binary tree with leaf values n mod m for each
modulus m in lm.

modTree (12,lm)

(5)[0, 2, 5, 1]

List ( Integer )

Operation modTree does this using operations on balanced binary trees. We trace its steps. Create a
balanced binary tree t of zeros with four leaves.

t := balancedBinaryTree (#lm , 0)

(6)[[0, 0, 0] , 0, [0, 0, 0]]

BalancedBinaryTree(NonNegativeInteger)

The leaves of the tree are set to the individual moduli.

setleaves !(t,lm)

(7)[[3, 0, 5] , 0, [7, 0, 11]]
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BalancedBinaryTree(NonNegativeInteger)

Use mapUp! to do a bottom-up traversal of t, setting each interior node to the product of the values
at the nodes of its children.

mapUp !(t,_*)

(8)1155

PositiveInteger

The value at the node of every subtree is the product of the moduli of the leaves of the subtree.

t

(9)[[3, 15, 5] , 1155, [7, 77, 11]]

BalancedBinaryTree(NonNegativeInteger)

Operation mapDown!(t,a,fn) replaces the value v at each node of t by fn(a,v).

mapDown !(t,12, _rem)

(10)[[0, 12, 2] , 12, [5, 12, 1]]

BalancedBinaryTree(NonNegativeInteger)

The operation leaves returns the leaves of the resulting tree. In this case, it returns the list of 12 mod m

for each modulus m.

leaves %

(11)[0, 2, 5, 1]

List (NonNegativeInteger)

Compute the square of the images of 12 modulo each m.

squares := [x^2 rem m for x in % for m in lm]
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(12)[0, 4, 4, 1]

List (NonNegativeInteger)

Call the Chinese Remainder Algorithm to get the answer for 122.

chineseRemainder(%,lm)

(13)144

PositiveInteger

9.3 BasicOperator

A basic operator is an object that can be symbolically applied to a list of arguments from a set, the
result being a kernel over that set or an expression. In addition to this section, please see ‘Expression’
on page 484 and ‘Kernel’ on page 558 for additional information and examples.

You create an object of type BasicOperator by using the operator operation. This first form of this
operation has one argument and it must be a symbol. The symbol should be quoted in case the name
has been used as an identifier to which a value has been assigned.

A frequent application of BasicOperator is the creation of an operator to represent the unknown
function when solving a differential equation. Let y be the unknown function in terms of x.

y := operator ’y

(4)y

BasicOperator

This is how you enter the equation y’’ + y’ + y = 0.

deq := D(y x, x, 2) + D(y x, x) + y x = 0

(5)y
′′(x) + y

′(x) + y(x) = 0
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Equation(Expression( Integer ))

To solve the above equation, enter this.

solve(deq , y, x)

(6)

[

particular = 0, basis =

[

cos

(

x
√
3

2

)

e
− x

2 , e
−x

2 sin

(

x
√
3

2

)]]

Union(Record( particular : Expression( Integer ) , basis : List (Expression( Integer ))) , ...)

See Section 8.10 on page 343 for this kind of use of BasicOperator.

Use the single argument form of operator (as above) when you intend to use the operator to create
functional expressions with an arbitrary number of arguments Nary means an arbitrary number of
arguments can be used in the functional expressions.

nary? y

(7)true

Boolean

unary? y

(8)false

Boolean

Use the two-argument form when you want to restrict the number of arguments in the functional
expressions created with the operator. This operator can only be used to create functional expressions
with one argument.

opOne := operator (’opOne , 1)

(9)opOne

BasicOperator

nary? opOne
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(10)false

Boolean

unary? opOne

(11)true

Boolean

Use arity to learn the number of arguments that can be used. It returns "false" if the operator is
nary.

arity opOne

(12)1

Union(NonNegativeInteger, ...)

Use name to learn the name of an operator.

name opOne

(13)opOne

Symbol

Use is? to learn if an operator has a particular name.

is?(opOne , ’z2)

(14)false

Boolean

You can also use a string as the name to be tested against.

is?(opOne , "opOne ")
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(15)true

Boolean

You can attached named properties to an operator. These are rarely used at the top-level of the FriCAS
interactive environment but are used with FriCAS library source code. By default, an operator has
no properties.

properties y

(16)table()

AssociationList (Symbol, None)

The interface for setting and getting properties is somewhat awkward because the property values are
stored as values of type None. Attach a property by using setProperty.

setProperty (y, "use", "unknown function " :: None )

(17)y

BasicOperator

properties y

(18)table(use = NONE)

AssociationList (Symbol, None)

We know the property value has type String.

property (y, "use ") :: None pretend String

(19)"unknown function"

String

Use deleteProperty! to destructively remove a property.

deleteProperty!(y, "use ")
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(20)y

BasicOperator

properties y

(21)table()

AssociationList (Symbol, None)

9.4 BinaryExpansion

All rational numbers have repeating binary expansions. Operations to access the individual bits of a
binary expansion can be obtained by converting the value to RadixExpansion(2). More examples of
expansions are available in ‘DecimalExpansion’ on page 467, ‘HexadecimalExpansion’ on page 539,
and ‘RadixExpansion’ on page 679.

The expansion (of type BinaryExpansion) of a rational number is returned by the binary operation.

r := binary (22/7)

(4)11.001

BinaryExpansion

Arithmetic is exact.

r + binary (6/7)

(5)100

BinaryExpansion

The period of the expansion can be short or long . . .

[binary (1/i) for i in 102..106]
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(6)
[

0.000000101, 0.000000100111110001000101100101111001110010010101001, 0.000000100111011,

0.000000100111, 0.00000010011010100100001110011111011001010110111100011
]

List (BinaryExpansion)

or very long.

binary (1/1007)

(7)0.00000000010000010001010010010111100000111111000010111111001011000111110100010011100100110011000110010010101011110

BinaryExpansion

These numbers are bona fide algebraic objects.

p := binary (1/4)*x^2 + binary (2/3)*x + binary (4/9)

(8)0.01 x2 + 0.10 x+ 0.011100

Polynomial(BinaryExpansion)

q := D(p, x)

(9)0.1 x+ 0.10

Polynomial(BinaryExpansion)

g := gcd(p, q)

(10)x+ 1.01

Polynomial(BinaryExpansion)
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9.5 BinarySearchTree

BinarySearchTree(R) is the domain of binary trees with elements of type R, ordered across the
nodes of the tree. A non-empty binary search tree has a value of type R, and right and left binary
search subtrees. If a subtree is empty, it is displayed as a period (“.”).

Define a list of values to be placed across the tree. The resulting tree has 8 at the root; all other
elements are in the left subtree.

lv := [8,3,5,4,6,2,1,5,7]

(4)[8, 3, 5, 4, 6, 2, 1, 5, 7]

List ( PositiveInteger )

A convenient way to create a binary search tree is to apply the operation binarySearchTree to a list of
elements.

t := binarySearchTree lv

(5)[[[1, 2, .] , 3, [4, 5, [5, 6, 7]]] , 8, .]

BinarySearchTree( PositiveInteger )

Another approach is to first create an empty binary search tree of integers.

emptybst := empty () $BSTREE (INT)

(6)[]

BinarySearchTree( Integer )

Insert the value 8. This establishes 8 as the root of the binary search tree. Values inserted later that
are less than 8 get stored in the left subtree, others in the right subtree.

t1 := insert !(8, emptybst )

(7)8

BinarySearchTree( Integer )
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Insert the value 3. This number becomes the root of the left subtree of t1. For optimal retrieval, it is
thus important to insert the middle elements first.

insert !(3,t1)

(8)[3, 8, .]

BinarySearchTree( Integer )

We go back to the original tree t. The leaves of the binary search tree are those which have empty left
and right subtrees.

leaves t

(9)[1, 4, 5, 7]

List ( PositiveInteger )

The operation split(k,t) returns a record containing the two subtrees: one with all elements “less”
than k, another with elements “greater” than k.

split (3,t)

(10)[less = [1, 2, .] , greater = [[., 3, [4, 5, [5, 6, 7]]] , 8, .]]

Record( less : BinarySearchTree( PositiveInteger ) , greater : BinarySearchTree( PositiveInteger ))

Define insertRoot to insert new elements by creating a new node.

insertRoot : (INT ,BSTREE INT) -> BSTREE INT

The new node puts the inserted value between its “less” tree and “greater” tree.

insertRoot (x, t) ==

a := split(x, t)

node(a.less , x, a.greater )

Function buildFromRoot builds a binary search tree from a list of elements ls and the empty tree
emptybst.

buildFromRoot ls == reduce (insertRoot ,ls,emptybst )

Apply this to the reverse of the list lv.

rt := buildFromRoot reverse lv
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Compiling function buildFromRoot with type List(PositiveInteger) ->

BinarySearchTree(Integer )

Compiling function insertRoot with type (Integer , BinarySearchTree(

Integer )) -> BinarySearchTree(Integer )

(14)[[[1, 2, .] , 3, [4, 5, [5, 6, 7]]] , 8, .]

BinarySearchTree( Integer )

Have FriCAS check that these are equal.

(t = rt)@Boolean

(15)true

Boolean

9.6 CardinalNumber

The CardinalNumber domain can be used for values indicating the cardinality of sets, both finite
and infinite.

The non-negative integers have a natural construction as cardinals

0 = #{ }, 1 = {0}, 2 = {0, 1}, ..., n = {i | 0 <= i < n}.

The fact that 0 acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice.

Cardinal numbers can be created by conversion from non-negative integers.

c0 := 0 :: CardinalNumber

(4)0

CardinalNumber

c1 := 1 :: CardinalNumber
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(5)1

CardinalNumber

c2 := 2 :: CardinalNumber

(6)2

CardinalNumber

c3 := 3 :: CardinalNumber

(7)3

CardinalNumber

They can also be obtained as the named cardinal Aleph(n).

A0 := Aleph 0

(8)ℵ0

CardinalNumber

A1 := Aleph 1

(9)ℵ1

CardinalNumber

The finite? operation tests whether a value is a finite cardinal, that is, a non-negative integer.

finite ? c2

(10)true
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Boolean

finite ? A0

(11)false

Boolean

Similarly, the countable? operation determines whether a value is a countable cardinal, that is, finite
or Aleph(0).

countable ? c2

(12)true

Boolean

countable ? A0

(13)true

Boolean

countable ? A1

(14)false

Boolean

Arithmetic operations are defined on cardinal numbers as follows: If x = #X and y = #Y then

x+y = #(X+Y) cardinality of the disjoint union
x-y = #(X-Y) cardinality of the relative complement
x*y = #(X*Y) cardinality of the Cartesian product
x^y = #(X^Y) cardinality of the set of maps from Y to X

Here are some arithmetic examples.

[c2 + c2, c2 + A1]
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(15)[4, ℵ1]

List (CardinalNumber)

[c0*c2 , c1*c2 , c2*c2, c0*A1 , c1*A1 , c2*A1 , A0*A1]

(16)[0, 2, 4, 0, ℵ1, ℵ1, ℵ1]

List (CardinalNumber)

[c2^c0 , c2^c1 , c2^c2, A1^c0 , A1^c1 , A1^c2]

(17)[1, 2, 4, 1, ℵ1, ℵ1]

List (CardinalNumber)

Subtraction is a partial operation: it is not defined when subtracting a larger cardinal from a smaller
one, nor when subtracting two equal infinite cardinals.

[c2 -c1 , c2 -c2 , c2-c3, A1 -c2 , A1 -A0 , A1 -A1]

(18)[1, 0, "failed", ℵ1, ℵ1, "failed"]

List (Union(CardinalNumber, ”failed”))

The generalized continuum hypothesis asserts that

2^Aleph i = Aleph(i+1)

and is independent of the axioms of set theory.1 The CardinalNumber domain provides an
operation to assert whether the hypothesis is to be assumed.

generalizedContinuumHypothesisAssumed true

(19)true

1Goedel, The consistency of the continuum hypothesis, Ann. Math. Studies, Princeton Univ. Press, 1940.
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Boolean

When the generalized continuum hypothesis is assumed, exponentiation to a transfinite power is al-
lowed.

[c0^A0 , c1^A0 , c2^A0, A0^A0 , A0^A1 , A1^A0 , A1^A1]

(20)[0, 1, ℵ1, ℵ1, ℵ2, ℵ1, ℵ2]

List (CardinalNumber)

Three commonly encountered cardinal numbers are

a = #Z countable infinity
c = #R the continuum
f = #{g|g : [0, 1]→ R}
In this domain, these values are obtained under the generalized continuum hypothesis in this way.

a := Aleph 0

(21)ℵ0

CardinalNumber

c := 2^a

(22)ℵ1

CardinalNumber

f := 2^c

(23)ℵ2

CardinalNumber
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9.7 CartesianTensor

CartesianTensor(i0,dim,R) provides Cartesian tensors with components belonging to a commuta-
tive ring R. Tensors can be described as a generalization of vectors and matrices. This gives a concise
tensor algebra for multilinear objects supported by the CartesianTensor domain. You can form the
inner or outer product of any two tensors and you can add or subtract tensors with the same number
of components. Additionally, various forms of traces and transpositions are useful.

The CartesianTensor constructor allows you to specify the minimum index for subscripting. In what
follows we discuss in detail how to manipulate tensors.

Here we construct the domain of Cartesian tensors of dimension 2 over the integers, with indices
starting at 1.

CT := CARTEN (i0 := 1, 2, Integer )

(4)CartesianTensor(1, 2, Integer)

Type

Forming tensors

Scalars can be converted to tensors of rank zero.

t0: CT := 8

(5)8

CartesianTensor (1, 2, Integer )

rank t0

(6)0

NonNegativeInteger

Vectors (mathematical direct products, rather than one dimensional array structures) can be converted
to tensors of rank one.

v: DirectProduct(2, Integer ) := directProduct [3,4]
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(7)[3, 4]

DirectProduct(2, Integer )

Tv: CT := v

(8)[3, 4]

CartesianTensor (1, 2, Integer )

Matrices can be converted to tensors of rank two.

m: SquareMatrix(2, Integer ) := matrix [[1 ,2] ,[4 ,5]]

(9)

[

1 2
4 5

]

SquareMatrix(2, Integer )

Tm: CT := m

(10)

[

1 2
4 5

]

CartesianTensor (1, 2, Integer )

n: SquareMatrix(2, Integer ) := matrix [[2 ,3] ,[0 ,1]]

(11)

[

2 3
0 1

]

SquareMatrix(2, Integer )

Tn: CT := n
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(12)

[

2 3
0 1

]

CartesianTensor (1, 2, Integer )

In general, a tensor of rank k can be formed by making a list of rank k-1 tensors or, alternatively, a
k-deep nested list of lists.

t1: CT := [2, 3]

(13)[2, 3]

CartesianTensor (1, 2, Integer )

rank t1

(14)1

PositiveInteger

t2: CT := [t1 , t1]

(15)

[

2 3
2 3

]

CartesianTensor (1, 2, Integer )

t3: CT := [t2 , t2]

(16)

[[

2 3
2 3

]

,

[

2 3
2 3

]]

CartesianTensor (1, 2, Integer )

tt: CT := [t3 , t3]; tt := [tt, tt]
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(17)

















[

2 3
2 3

] [

2 3
2 3

]

[

2 3
2 3

] [

2 3
2 3

]









,









[

2 3
2 3

] [

2 3
2 3

]

[

2 3
2 3

] [

2 3
2 3

]

















CartesianTensor (1, 2, Integer )

rank tt

(18)5

PositiveInteger

Multiplication

Given two tensors of rank k1 and k2, the outer product forms a new tensor of rank k1+k2. Here
Tmn(i, j, k, l) = Tm(i, j) Tn(k, l).

Tmn := product (Tm, Tn)

(19)









[

2 3
0 1

] [

4 6
0 2

]

[

8 12
0 4

] [

10 15
0 5

]









CartesianTensor (1, 2, Integer )

The inner product (contract) forms a tensor of rank k1+k2-2. This product generalizes the vector dot
product and matrix-vector product by summing component products along two indices. Here we
sum along the second index of Tm and the first index of Tv. Here Tmv =

∑
dim

j=1 Tm(i, j) Tv(j)

Tmv := contract (Tm ,2,Tv ,1)

(20)[11, 32]

CartesianTensor (1, 2, Integer )

The multiplication operator * is scalar multiplication or an inner product depending on the ranks of
the arguments. If either argument is rank zero it is treated as scalar multiplication. Otherwise, a*b
is the inner product summing the last index of a with the first index of b.
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Tm*Tv

(21)[11, 32]

CartesianTensor (1, 2, Integer )

This definition is consistent with the inner product on matrices and vectors.

Tmv = m * v

(22)[11, 32] = [11, 32]

Equation(CartesianTensor (1, 2, Integer ))

Selecting Components

For tensors of low rank (that is, four or less), components can be selected by applying the tensor to its
indices.

t0()

(23)8

PositiveInteger

t1 (1+1)

(24)3

PositiveInteger

t2(2,1)

(25)2
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PositiveInteger

t3(2,1,2)

(26)3

PositiveInteger

Tmn (2,1,2,1)

(27)0

NonNegativeInteger

A general indexing mechanism is provided for a list of indices.

t0[]

(28)8

PositiveInteger

t1[2]

(29)3

PositiveInteger

t2[2,1]

(30)2

PositiveInteger

The general mechanism works for tensors of arbitrary rank, but is somewhat less efficient since the
intermediate index list must be created.

t3[2,1,2]
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(31)3

PositiveInteger

Tmn [2,1,2,1]

(32)0

NonNegativeInteger

Contraction

A “contraction” between two tensors is an inner product, as we have seen above. You can also contract
a pair of indices of a single tensor. This corresponds to a “trace” in linear algebra. The expression
contract(t,k1,k2) forms a new tensor by summing the diagonal given by indices in position k1 and
k2. This is the tensor given by xTmn =

∑
dim

k=1 Tmn(k, k, i, j).

cTmn := contract (Tmn ,1,2)

(33)

[

12 18
0 6

]

CartesianTensor (1, 2, Integer )

Since Tmn is the outer product of matrix m and matrix n, the above is equivalent to this.

trace(m) * n

(34)

[

12 18
0 6

]

SquareMatrix(2, Integer )

In this and the next few examples, we show all possible contractions of Tmn and their matrix algebra
equivalents.

contract (Tmn ,1,2) = trace(m) * n
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(35)

[

12 18
0 6

]

=

[

12 18
0 6

]

Equation(CartesianTensor (1, 2, Integer ))

contract (Tmn ,1,3) = transpose (m) * n

(36)

[

2 7
4 11

]

=

[

2 7
4 11

]

Equation(CartesianTensor (1, 2, Integer ))

contract (Tmn ,1,4) = transpose (m) * transpose (n)

(37)

[

14 4
19 5

]

=

[

14 4
19 5

]

Equation(CartesianTensor (1, 2, Integer ))

contract (Tmn ,2,3) = m * n

(38)

[

2 5
8 17

]

=

[

2 5
8 17

]

Equation(CartesianTensor (1, 2, Integer ))

contract (Tmn ,2,4) = m * transpose (n)

(39)

[

8 2
23 5

]

=

[

8 2
23 5

]

Equation(CartesianTensor (1, 2, Integer ))

contract (Tmn ,3,4) = trace(n) * m
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(40)

[

3 6
12 15

]

=

[

3 6
12 15

]

Equation(CartesianTensor (1, 2, Integer ))

Transpositions

You can exchange any desired pair of indices using the transpose operation.

Here the indices in positions one and three are exchanged, that is, tTmn(i, j, k, l) = Tmn(k, j, i, l).

tTmn := transpose (Tmn ,1,3)

(41)









[

2 3
8 12

] [

4 6
10 15

]

[

0 1
0 4

] [

0 2
0 5

]









CartesianTensor (1, 2, Integer )

If no indices are specified, the first and last index are exchanged.

transpose Tmn

(42)









[

2 8
0 0

] [

4 10
0 0

]

[

3 12
1 4

] [

6 15
2 5

]









CartesianTensor (1, 2, Integer )

This is consistent with the matrix transpose.

transpose Tm = transpose m

(43)

[

1 4
2 5

]

=

[

1 4
2 5

]

Equation(CartesianTensor (1, 2, Integer ))

If a more complicated reordering of the indices is required, then the reindex operation can be used. This
operation allows the indices to be arbitrarily permuted. This defines rTmn(i, j, k, l) = Tmn(i, l, j, k).
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rTmn := reindex (Tmn , [1,4,2,3])

(44)









[

2 0
4 0

] [

3 1
6 2

]

[

8 0
10 0

] [

12 4
15 5

]









CartesianTensor (1, 2, Integer )

Arithmetic

Tensors of equal rank can be added or subtracted so arithmetic expressions can be used to produce
new tensors.

tt := transpose (Tm)*Tn - Tn*transpose (Tm)

(45)

[

−6 −16
2 6

]

CartesianTensor (1, 2, Integer )

Tv*(tt+Tn)

(46)[−4, −11]

CartesianTensor (1, 2, Integer )

reindex (product (Tn ,Tn) ,[4,3,2,1]) +3* Tn*product (Tm,Tm)

(47)









[

46 84
174 212

] [

57 114
228 285

]

[

18 24
57 63

] [

17 30
63 76

]









CartesianTensor (1, 2, Integer )
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Specific Tensors

Two specific tensors have properties which depend only on the dimension.

The Kronecker delta satisfies

delta(i, j) =

{
1 if i = j
0 if i 6= j

delta: CT := kroneckerDelta()

(48)

[

1 0
0 1

]

CartesianTensor (1, 2, Integer )

This can be used to reindex via contraction.

contract (Tmn , 2, delta , 1) = reindex (Tmn , [1,3,4,2])

(49)









[

2 4
3 6

] [

0 0
1 2

]

[

8 10
12 15

] [

0 0
4 5

]









=









[

2 4
3 6

] [

0 0
1 2

]

[

8 10
12 15

] [

0 0
4 5

]









Equation(CartesianTensor (1, 2, Integer ))

The Levi Civita symbol determines the sign of a permutation of indices.

epsilon :CT := leviCivitaSymbol ()

(50)

[

0 1
−1 0

]

CartesianTensor (1, 2, Integer )

Here we have:

epsilon(i1, . . . , idim) =







+1 if i1, . . . , idim is an even permutation of
i0, . . . , i0 + dim− 1

−1 if i1, . . . , idim is an odd permutation of
i0, . . . , i0 + dim− 1

0 if i1, . . . , idim is not a permutation of
i0, . . . , i0 + dim− 1

This property can be used to form determinants.
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contract (epsilon *Tm*epsilon , 1,2) = 2 * determinant m

(51)− 6 = −6

Equation(CartesianTensor (1, 2, Integer ))

Properties of the CartesianTensor domain

GradedModule(R,E) denotes “E-graded R-module”, that is, a collection of R-modules indexed by an
abelian monoid E. An element g of G[s] for some specific s in E is said to be an element of G with
degree s. Sums are defined in each module G[s] so two elements of G can be added if they have the
same degree. Morphisms can be defined and composed by degree to give the mathematical category
of graded modules.

GradedAlgebra(R,E) denotes “E-graded R-algebra.” A graded algebra is a graded module together
with a degree preserving R-bilinear map, called the product.

degree(product(a,b))= degree(a) + degree(b)

product(r*a,b) = product(a,r*b) = r*product(a,b)

product(a1+a2,b) = product(a1,b) + product(a2,b)

product(a,b1+b2) = product(a,b1) + product(a,b2)

product(a,product(b,c)) = product(product(a,b),c)

The domain CartesianTensor(i0, dim, R) belongs to the category GradedAlgebra(R, NonNeg-
ativeInteger). The non-negative integer degree is the tensor rank and the graded algebra product is
the tensor outer product. The graded module addition captures the notion that only tensors of equal
rank can be added.

If V is a vector space of dimension dim over R, then the tensor module T[k](V) is defined as

T[0](V) = R

T[k](V) = T[k-1](V) * V

where * denotes the R-module tensor product. CartesianTensor(i0,dim,R) is the graded algebra in
which the degree k module is T[k](V).

Tensor Calculus

It should be noted here that often tensors are used in the context of tensor-valued manifold maps. This
leads to the notion of covariant and contravariant bases with tensor component functions transforming
in specific ways under a change of coordinates on the manifold. This is no more directly supported by
the CartesianTensor domain than it is by the Vector domain. However, it is possible to have the
components implicitly represent component maps by choosing a polynomial or expression type for the
components. In this case, it is up to the user to satisfy any constraints which arise on the basis of this
interpretation.
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9.8 Character

The members of the domain Character are values representing letters, numerals and other text
elements. For more information on related topics, see ‘CharacterClass’ on page 435 and ‘String’ on
page 731.

Characters can be obtained using String notation.

chars := [char "a", char "A", char "X", char "8", char "+"]

(4)[a, A, X, 8, +]

List (Character)

Certain characters are available by name. This is the blank character.

space ()

(5)

Character

This is the quote that is used in strings.

quote ()

(6)"

Character

This is the underscore character which is used to allow quotes and other special characters within
strings.

underscore ()

(7)

Character

Characters are represented as integers in a machine-dependent way. The integer value can be obtained
using the ord operation. It is always true that char(ord c)= c and ord(char i)= i, provided that
i is in the range 0..size()$Character-1.

[ord c for c in chars ]
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(8)[97, 65, 88, 56, 43]

List ( Integer )

The lowerCase operation converts an upper case letter to the corresponding lower case letter. If the
argument is not an upper case letter, then it is returned unchanged.

[upperCase c for c in chars ]

(9)[A, A, X, 8, +]

List (Character)

Likewise, the upperCase operation converts lower case letters to upper case.

[lowerCase c for c in chars ]

(10)[a, a, x, 8, +]

List (Character)

A number of tests are available to determine whether characters belong to certain families.

[alphabetic ? c for c in chars]

(11)[true, true, true, false, false]

List (Boolean)

[upperCase ? c for c in chars]

(12)[false, true, true, false, false]

List (Boolean)

[lowerCase ? c for c in chars]



9.9. CHARACTERCLASS 435

(13)[true, false, false, false, false]

List (Boolean)

[digit ? c for c in chars ]

(14)[false, false, false, true, false]

List (Boolean)

[hexDigit ? c for c in chars ]

(15)[true, true, false, true, false]

List (Boolean)

[alphanumeric? c for c in chars]

(16)[true, true, true, true, false]

List (Boolean)

9.9 CharacterClass

The CharacterClass domain allows classes of characters to be defined and manipulated efficiently.

Character classes can be created by giving either a string or a list of characters.

cl1 := charClass [char "a", char "e", char "i", char "o", char "u", char "y"]

(4)"aeiouy"
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CharacterClass

cl2 := charClass " bcdfghjklmnpqrstvwxyz "

(5)"bcdfghjklmnpqrstvwxyz"

CharacterClass

A number of character classes are predefined for convenience.

digit ()

(6)"0123456789"

CharacterClass

hexDigit ()

(7)"0123456789ABCDEFabcdef"

CharacterClass

upperCase ()

(8)"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

CharacterClass

lowerCase ()

(9)"abcdefghijklmnopqrstuvwxyz"

CharacterClass

alphabetic ()
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(10)"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

CharacterClass

alphanumeric()

(11)"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

CharacterClass

You can quickly test whether a character belongs to a class.

member ?(char "a", cl1 )

(12)true

Boolean

member ?(char "a", cl2 )

(13)false

Boolean

Classes have the usual set operations because the CharacterClass domain belongs to the category
FiniteSetAggregate(Character).

intersect (cl1 , cl2 )

(14)"y"

CharacterClass

union(cl1 ,cl2)
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(15)"abcdefghijklmnopqrstuvwxyz"

CharacterClass

difference (cl1 ,cl2 )

(16)"aeiou"

CharacterClass

intersect (complement (cl1 ),cl2)

(17)"bcdfghjklmnpqrstvwxz"

CharacterClass

You can modify character classes by adding or removing characters.

insert !(char "a", cl2 )

(18)"abcdfghjklmnpqrstvwxyz"

CharacterClass

remove !(char "b", cl2 )

(19)"acdfghjklmnpqrstvwxyz"

CharacterClass

For more information on related topics, see ‘Character’ on page 433 and ‘String’ on page 731. Issue
the system command )show CharacterClass to display the full list of operations defined by Char-
acterClass.
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9.10 CliffordAlgebra

CliffordAlgebra(n,K,Q) defines a vector space of dimension 2n over the field K with a given bilinar
form represented by square matrix Q. If e1, . . . , en is a basis for Kn then

{ 1
ei for 1 ≤ i ≤ n

ei1 ei2 for 1 ≤ i1 < i2 ≤ n
. . .

e1 e2 · · · en }

is a basis for the Clifford algebra. The algebra is defined by the relation

ei ei = Q(ei)
ei ej = −ej ei for i 6= j

for all v being linear combinations of e(i). Examples of Clifford Algebras are gaussians (complex
numbers), quaternions, exterior algebras and spin algebras.

9.10.1 The Complex Numbers as a Clifford Algebra

This is the field over which we will work, rational functions with integer coefficients.

K := Fraction Polynomial Integer

(1)Fraction(Polynomial(Integer))

Type

We use this matrix for the quadratic form.

m := matrix [[ -1]]

(2)
[

−1
]

Matrix( Integer )

We get complex arithmetic by using this domain.

C := CliffordAlgebra(1, K, m)

(3)CliffordAlgebra
(

1,Fraction(Polynomial(Integer)),
[

−1
])
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Type

Here is i, the usual square root of -1.

i: C := e(1)

(4)e1

CliffordAlgebra (1, Fraction (Polynomial( Integer )) , [[−1]])

Here are some examples of the arithmetic.

x := a + b * i

(5)a+ b e1

CliffordAlgebra (1, Fraction (Polynomial( Integer )) , [[−1]])

y := c + d * i

(6)c+ d e1

CliffordAlgebra (1, Fraction (Polynomial( Integer )) , [[−1]])

See ‘Complex’ on page 447 for examples of FriCAS’s constructor implementing complex numbers.

x * y

(7)− b d+ a c+ (a d+ b c) e1

CliffordAlgebra (1, Fraction (Polynomial( Integer )) , [[−1]])

9.10.2 The Quaternion Numbers as a Clifford Algebra

This is the field over which we will work, rational functions with integer coefficients.

K := Fraction Polynomial Integer
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(1)Fraction(Polynomial(Integer))

Type

We use this matrix for the quadratic form.

m := matrix [[-1,0],[0,-1]]

(2)

[

−1 0
0 −1

]

Matrix( Integer )

The resulting domain is the quaternions.

H := CliffordAlgebra(2, K, m)

(3)CliffordAlgebra

(

2,Fraction(Polynomial(Integer)),

[

−1 0
0 −1

])

Type

We use Hamilton’s notation for i,j,k.

i: H := e(1)

(4)e1

CliffordAlgebra (2, Fraction (Polynomial( Integer )) , [[−1, 0], [0, −1]])

j: H := e(2)

(5)e2

CliffordAlgebra (2, Fraction (Polynomial( Integer )) , [[−1, 0], [0, −1]])

k: H := i * j
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(6)e1 e2

CliffordAlgebra (2, Fraction (Polynomial( Integer )) , [[−1, 0], [0, −1]])

x := a + b * i + c * j + d * k

(7)a+ b e1 + c e2 + d e1 e2

CliffordAlgebra (2, Fraction (Polynomial( Integer )) , [[−1, 0], [0, −1]])

y := e + f * i + g * j + h * k

(8)e+ f e1 + g e2 + h e1 e2

CliffordAlgebra (2, Fraction (Polynomial( Integer )) , [[−1, 0], [0, −1]])

x + y

(9)e+ a+ (f + b) e1 + (g + c) e2 + (h+ d) e1 e2

CliffordAlgebra (2, Fraction (Polynomial( Integer )) , [[−1, 0], [0, −1]])

x * y

(10)− d h− c g− b f + a e+(c h− d g + a f + b e) e1 +(−b h+ a g + d f + c e) e2 +(a h+ b g − c f + d e) e1 e2

CliffordAlgebra (2, Fraction (Polynomial( Integer )) , [[−1, 0], [0, −1]])

See ‘Quaternion’ on page 676 for examples of FriCAS’s constructor implementing quaternions.

y * x

(11)− d h− c g− b f + a e+(−c h+ d g + a f + b e) e1 +(b h+ a g − d f + c e) e2 +(a h− b g + c f + d e) e1 e2
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CliffordAlgebra (2, Fraction (Polynomial( Integer )) , [[−1, 0], [0, −1]])

9.10.3 The Exterior Algebra on a Three Space

This is the field over which we will work, rational functions with integer coefficients.

K := Fraction Polynomial Integer

(1)Fraction(Polynomial(Integer))

Type

If we chose the three by three zero quadratic form, we obtain the exterior algebra on e(1),e(2),e(3).

Ext := CliffordAlgebra(3, K, 0)

(2)CliffordAlgebra



3,Fraction(Polynomial(Integer)),





0 0 0
0 0 0
0 0 0









Type

This is a three dimensional vector algebra. We define i, j, k as the unit vectors.

i: Ext := e(1)

(3)e1

CliffordAlgebra (3, Fraction (Polynomial( Integer )) , [[0, 0, 0], [0, 0, 0], [0, 0, 0]])

j: Ext := e(2)

(4)e2

CliffordAlgebra (3, Fraction (Polynomial( Integer )) , [[0, 0, 0], [0, 0, 0], [0, 0, 0]])

k: Ext := e(3)
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(5)e3

CliffordAlgebra (3, Fraction (Polynomial( Integer )) , [[0, 0, 0], [0, 0, 0], [0, 0, 0]])

Now it is possible to do arithmetic.

x := x1*i + x2*j + x3*k

(6)x1 e1 + x2 e2 + x3e3

CliffordAlgebra (3, Fraction (Polynomial( Integer )) , [[0, 0, 0], [0, 0, 0], [0, 0, 0]])

y := y1*i + y2*j + y3*k

(7)y1 e1 + y2e2 + y3 e3

CliffordAlgebra (3, Fraction (Polynomial( Integer )) , [[0, 0, 0], [0, 0, 0], [0, 0, 0]])

x + y

(8)(y1 + x1) e1 + (y2 + x2) e2 + (y3 + x3) e3

CliffordAlgebra (3, Fraction (Polynomial( Integer )) , [[0, 0, 0], [0, 0, 0], [0, 0, 0]])

x * y + y * x

(9)0

CliffordAlgebra (3, Fraction (Polynomial( Integer )) , [[0, 0, 0], [0, 0, 0], [0, 0, 0]])

On an n space, a grade p form has a dual n-p form. In particular, in three space the dual of a grade
two element identifies e1*e2→e3, e2*e3→e1, e3*e1→e2.

dual2 a == coefficient (a ,[2 ,3]) * i + coefficient (a ,[3 ,1]) * j + coefficient (a,[1 ,2])

* k

The vector cross product is then given by this.
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dual2(x*y)

Compiling function dual2 with type CliffordAlgebra(3, Fraction (

Polynomial (Integer )),[[0,0,0],[0 ,0,0],[0 ,0,0]]) ->

CliffordAlgebra(3, Fraction ( Polynomial (Integer )),[[0,0,0],[0,0,0],

[0 ,0 ,0]])

(11)(x2 y3− x3 y2) e1 + (−x1 y3 + x3 y1) e2 + (x1 y2− x2 y1) e3

CliffordAlgebra (3, Fraction (Polynomial( Integer )) , [[0, 0, 0], [0, 0, 0], [0, 0, 0]])

9.10.4 The Dirac Spin Algebra

In this section we will work over the field of rational numbers.

K := Fraction Integer

(1)Fraction(Integer)

Type

We define the quadratic form to be the Minkowski space-time metric.

g := matrix [[1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1]]

(2)









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









Matrix( Integer )

We obtain the Dirac spin algebra used in Relativistic Quantum Field Theory.

D := CliffordAlgebra(4, K, g)

(3)CliffordAlgebra









4,Fraction(Integer),









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
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Type

The usual notation for the basis is γ with a superscript. For FriCAS input we will use gam(i):

gam := [e(i)$D for i in 1..4]

(4)[e1, e2, e3, e4]

List ( CliffordAlgebra (4, Fraction ( Integer ) , [[1, 0, 0, 0], [0, −1, 0, 0], [0, 0, −1, 0], [0, 0, 0, −1]]))

There are various contraction identities of the form

g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) =

2*(gam(s)gam(m)gam(n)gam(r) + gam(r)*gam(n)*gam(m)*gam(s))

where a sum over l and t is implied. Verify this identity for particular values of m,n,r,s.

m := 1; n:= 2; r := 3; s := 4;

PositiveInteger

lhs := reduce (+, [reduce (+, [ g(l,t)*gam(l)*gam (m)*gam(n)*gam(r)*gam(s)*gam(t) for l

in 1..4]) for t in 1..4])

(6)− 4 e1 e2 e3 e4

CliffordAlgebra (4, Fraction ( Integer ) , [[1, 0, 0, 0], [0, −1, 0, 0], [0, 0, −1, 0], [0, 0, 0, −1]])

rhs := 2*( gam s * gam m*gam n*gam r + gam r*gam n*gam m*gam s)

(7)− 4 e1 e2 e3 e4

CliffordAlgebra (4, Fraction ( Integer ) , [[1, 0, 0, 0], [0, −1, 0, 0], [0, 0, −1, 0], [0, 0, 0, −1]])



9.11. COMPLEX 447

9.11 Complex

The Complex constructor implements complex objects over a commutative ring R. Typically, the
ring R is Integer, Fraction Integer, Float or DoubleFloat. R can also be a symbolic type, like
Polynomial Integer. For more information about the numerical and graphical aspects of complex
numbers, see Section 8.1 on page 287.

Complex objects are created by the complex operation.

a := complex (4/3 ,5/2)

(4)
4

3
+

5

2
i

Complex(Fraction(Integer))

b := complex (4/3 , -5/2)

(5)
4

3
− 5

2
i

Complex(Fraction(Integer))

The standard arithmetic operations are available.

a + b

(6)
8

3

Complex(Fraction(Integer))

a - b

(7)5 i

Complex(Fraction(Integer))

a * b
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(8)
289

36

Complex(Fraction(Integer))

If R is a field, you can also divide the complex objects.

a / b

(9)− 161

289
+

240

289
i

Complex(Fraction(Integer))

Use a conversion (Section 2.7 on page 98) to view the last object as a fraction of complex integers.

% :: Fraction Complex Integer

(10)
−15 + 8 i

15 + 8 i

Fraction (Complex(Integer))

The predefined macro %i is defined to be complex(0,1).

3.4 + 6.7 * %i

(11)3.4 + 6.7 i

Complex(Float)

You can also compute the conjugate and norm of a complex number.

conjugate a

(12)
4

3
− 5

2
i
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Complex(Fraction(Integer))

norm a

(13)
289

36

Fraction ( Integer )

The real and imag operations are provided to extract the real and imaginary parts, respectively.

real a

(14)
4

3

Fraction ( Integer )

imag a

(15)
5

2

Fraction ( Integer )

The domain Complex Integer is also called the Gaussian integers. If R is the integers (or, more
generally, a EuclideanDomain), you can compute greatest common divisors.

gcd (13 - 13*%i,31 + 27*%i)

(16)5 + i

Complex(Integer)

You can also compute least common multiples.

lcm (13 - 13*%i,31 + 27*%i)
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(17)143− 39 i

Complex(Integer)

You can factor Gaussian integers.

factor (13 - 13*%i)

(18)− (1 + i) (2 + 3 i) (3 + 2 i)

Factored(Complex(Integer))

factor complex (2,0)

(19)− i (1 + i)2

Factored(Complex(Integer))

9.12 ContinuedFraction

Continued fractions have been a fascinating and useful tool in mathematics for well over three hundred
years. FriCAS implements continued fractions for fractions of any Euclidean domain. In practice, this
usually means rational numbers. In this section we demonstrate some of the operations available for
manipulating both finite and infinite continued fractions. It may be helpful if you review ‘Stream’ on
page 728 to remind yourself of some of the operations with streams.

The ContinuedFraction domain is a field and therefore you can add, subtract, multiply and divide
the fractions. The continuedFraction operation converts its fractional argument to a continued
fraction.

c := continuedFraction (314159/100000)

(4)3 +
1|
|7 +

1|
|15 +

1|
|1 +

1|
|25 +

1|
|1 +

1|
|7 +

1|
|4

ContinuedFraction( Integer )
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This display is a compact form of the bulkier

3 +
1

7 +
1

15 +
1

1 +
1

25 +
1

1 +
1

7 +
1

4

You can write any rational number in a similar form. The fraction will be finite and you can always take
the “numerators” to be 1. That is, any rational number can be written as a simple, finite continued
fraction of the form

a1 +
1

a2 +
1

a3 +
1

.. . an−1 +
1

an

The ai are called partial quotients and the operation partialQuotients creates a stream of them.

partialQuotients c

(5)[3, 7, 15, 1, 25, 1, 7, . . .]

Stream(Integer)

By considering more and more of the fraction, you get the convergents. For example, the first convergent
is a1, the second is a1 + 1/a2 and so on.

convergents c

(6)

[

3,
22

7
,
333

106
,
355

113
,
9208

2931
,
9563

3044
,
76149

24239
, . . .

]

Stream(Fraction( Integer ))

Since this is a finite continued fraction, the last convergent is the original rational number, in reduced
form. The result of approximants is always an infinite stream, though it may just repeat the “last”
value.

approximants c
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(7)

[

3,
22

7
,
333

106
,
355

113
,
9208

2931
,
9563

3044
,
76149

24239
, . . .

]

Stream(Fraction( Integer ))

Inverting c only changes the partial quotients of its fraction by inserting a 0 at the beginning of the
list.

pq := partialQuotients (1/c)

(8)[0, 3, 7, 15, 1, 25, 1, . . .]

Stream(Integer)

Do this to recover the original continued fraction from this list of partial quotients. The three-argument
form of the continuedFraction operation takes an element which is the whole part of the fraction, a
stream of elements which are the numerators of the fraction, and a stream of elements which are the
denominators of the fraction.

continuedFraction(first pq, repeating [1], rest pq)

(9)
1|
|3 +

1|
|7 +

1|
|15 +

1|
|1 +

1|
|25 +

1|
|1 +

1|
|7 + . . .

ContinuedFraction( Integer )

The streams need not be finite for continuedFraction. Can you guess which irrational number has the
following continued fraction? See the end of this section for the answer.

z:= continuedFraction(3, repeating [1], repeating [3 ,6])

(10)3 +
1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 + . . .

ContinuedFraction( Integer )

In 1737 Euler discovered the infinite continued fraction expansion

e− 1

2
=

1

1 +
1

6 +
1

10 +
1

14 + · · ·
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We use this expansion to compute rational and floating point approximations of e.2

By looking at the above expansion, we see that the whole part is 0 and the numerators are all equal
to 1. This constructs the stream of denominators.

dens : Stream Integer := cons(1, stream ((x +-> x + 4), 6))

(11)[1, 6, 10, 14, 18, 22, 26, . . .]

Stream(Integer)

Therefore this is the continued fraction expansion for (e− 1)/2.

cf := continuedFraction(0, repeating [1], dens)

(12)
1|
|1 +

1|
|6 +

1|
|10 +

1|
|14 +

1|
|18 +

1|
|22 +

1|
|26 + . . .

ContinuedFraction( Integer )

These are the rational number convergents.

ccf := convergents cf

(13)

[

0, 1,
6

7
,
61

71
,

860

1001
,
15541

18089
,
342762

398959
, . . .

]

Stream(Fraction( Integer ))

You can get rational convergents for e by multiplying by 2 and adding 1.

eConvergents := [2*e + 1 for e in ccf]

(14)

[

1, 3,
19

7
,
193

71
,
2721

1001
,
49171

18089
,
1084483

398959
, . . .

]

Stream(Fraction( Integer ))

You can also compute the floating point approximations to these convergents.

eConvergents :: Stream Float

2For this and other interesting expansions, see C. D. Olds, Continued Fractions, New Mathematical Library, (New
York: Random House, 1963), pp. 134–139.
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(15)[1.0, 3.0, 2.7142857142857142857, 2.7183098591549295775,

2.7182817182817182817, 2.7182818287356957267, 2.7182818284585634113, . . .]

Stream(Float)

Compare this to the value of e computed by the exp operation in Float.

exp 1.0

(16)2.7182818284590452354

Float

In about 1658, Lord Brouncker established the following expansion for 4/π.

1 +
1

2 +
9

2 +
25

2 +
49

2 +
81

2 + · · ·
Let’s use this expansion to compute rational and floating point approximations for π.

cf := continuedFraction (1 ,[(2* i+1) ^2 for i in 0..], repeating [2])

(17)1 +
1|
|2 +

9|
|2 +

25|
|2 +

49|
|2 +

81|
|2 +

121|
|2 +

169|
|2 + . . .

ContinuedFraction( Integer )

ccf := convergents cf

(18)

[

1,
3

2
,
15

13
,
105

76
,
315

263
,
3465

2578
,
45045

36979
, . . .

]

Stream(Fraction( Integer ))

piConvergents := [4/p for p in ccf]
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(19)

[

4,
8

3
,
52

15
,
304

105
,
1052

315
,
10312

3465
,
147916

45045
, . . .

]

Stream(Fraction( Integer ))

As you can see, the values are converging to π = 3.14159265358979323846..., but not very quickly.

piConvergents :: Stream Float

(20)[4.0, 2.6666666666666666667, 3.4666666666666666667, 2.8952380952380952381,

3.3396825396825396825, 2.9760461760461760462, 3.2837384837384837385, . . .]

Stream(Float)

You need not restrict yourself to continued fractions of integers. Here is an expansion for a quotient
of Gaussian integers.

continuedFraction((- 122 + 597*%i)/(4 - 4*%i))

(21)− 90 + 59 i+
1|

|1− 2 i
+

1|
|−1 + 2 i

ContinuedFraction(Complex(Integer))

This is an expansion for a quotient of polynomials in one variable with rational number coefficients.

r : Fraction UnivariatePolynomial (x,Fraction Integer )

r := ((x - 1) * (x - 2)) / ((x -3) * (x-4) )

(23)
x2 − 3x+ 2

x2 − 7x+ 12

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

continuedFraction r

(24)1 +
1|

∣

∣

1
4
x− 9

8

+
1|

∣

∣

16
3
x− 40

3
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ContinuedFraction(UnivariatePolynomial (x, Fraction ( Integer )))

To conclude this section, we give you evidence that

z

(25)3 +
1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 + . . .

ContinuedFraction( Integer )

is the expansion of
√
11.

[i*i for i in convergents (z) :: Stream Float ]

(26)[9.0, 11.111111111111111111, 10.99445983379501385, 11.000277777777777778,

10.999986076398799786, 11.000000697929731039, 10.999999965015834446, . . .]

Stream(Float)

continuedFraction sqrt 11.0

(27)3 +
1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 + . . .

ContinuedFraction( Integer )

9.13 CycleIndicators

This section is based upon the paper J. H. Redfield, “The Theory of Group-Reduced Distributions”,
American J. Math.,49 (1927) 433-455, and is an application of group theory to enumeration problems.
It is a development of the work by P. A. MacMahon on the application of symmetric functions and
Hammond operators to combinatorial theory.

The theory is based upon the power sum symmetric functions si which are the sum of the ith powers
of the variables. The cycle index of a permutation is an expression that specifies the sizes of the cycles
of a permutation, and may be represented as a partition. A partition of a non-negative integer n is a
collection of positive integers called its parts whose sum is n. For example, the partition (32 2 12) will
be used to represent s23s2s

2
1 and will indicate that the permutation has two cycles of length 3, one of

length 2 and two of length 1. The cycle index of a permutation group is the sum of the cycle indices
of its permutations divided by the number of permutations. The cycle indices of certain groups are
provided. We first expose something from the library.
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)expose EVALCYC

EvaluateCycleIndicators is now explicitly exposed in frame initial

The operation complete returns the cycle index of the symmetric group of order n for argument n.
Alternatively, it is the nth complete homogeneous symmetric function expressed in terms of power
sum symmetric functions.

complete 1

(4)(1)

SymmetricPolynomial(Fraction(Integer))

complete 2

(5)
1

2
(2) +

1

2

(

12
)

SymmetricPolynomial(Fraction(Integer))

complete 3

(6)
1

3
(3) +

1

2
(2 1) +

1

6

(

13
)

SymmetricPolynomial(Fraction(Integer))

complete 7

(7)
1

7
(7) +

1

6
(6 1) +

1

10
(5 2) +

1

10

(

5 12
)

+
1

12
(4 3) +

1

8
(4 2 1) +

1

24

(

4 13
)

+
1

18

(

32 1
)

+
1

24

(

3 22
)

+
1

12

(

3 2 12
)

+
1

72

(

3 14
)

+
1

48

(

23 1
)

+
1

48

(

22 13
)

+
1

240

(

2 15
)

+
1

5040

(

17
)

SymmetricPolynomial(Fraction(Integer))

The operation elementary computes the nth elementary symmetric function for argument n.

elementary 7
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(8)
1

7
(7)− 1

6
(6 1) − 1

10
(5 2) +

1

10

(

5 12
)

− 1

12
(4 3) +

1

8
(4 2 1)− 1

24

(

4 13
)

+
1

18

(

32 1
)

+
1

24

(

3 22
)

− 1

12

(

3 2 12
)

+
1

72

(

3 14
)

− 1

48

(

23 1
)

+
1

48

(

22 13
)

− 1

240

(

2 15
)

+
1

5040

(

17
)

SymmetricPolynomial(Fraction(Integer))

The operation alternating returns the cycle index of the alternating group having an even number of
even parts in each cycle partition.

alternating 7

(9)
2

7
(7) +

1

5

(

5 12
)

+
1

4
(4 2 1) +

1

9

(

32 1
)

+
1

12

(

3 22
)

+
1

36

(

3 14
)

+
1

24

(

22 13
)

+
1

2520

(

17
)

SymmetricPolynomial(Fraction(Integer))

The operation cyclic returns the cycle index of the cyclic group.

cyclic 7

(10)
6

7
(7) +

1

7

(

17
)

SymmetricPolynomial(Fraction(Integer))

The operation dihedral is the cycle index of the dihedral group.

dihedral 7

(11)
3

7
(7) +

1

2

(

23 1
)

+
1

14

(

17
)

SymmetricPolynomial(Fraction(Integer))

The operation graphs for argument n returns the cycle index of the group of permutations on the edges
of the complete graph with n nodes induced by applying the symmetric group to the nodes.

graphs 5
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(12)
1

6
(6 3 1) +

1

5

(

52
)

+
1

4

(

42 2
)

+
1

6

(

33 1
)

+
1

8

(

24 12
)

+
1

12

(

23 14
)

+
1

120

(

110
)

SymmetricPolynomial(Fraction(Integer))

The cycle index of a direct product of two groups is the product of the cycle indices of the groups.
Redfield provided two operations on two cycle indices which will be called “cup” and “cap” here. The
cup of two cycle indices is a kind of scalar product that combines monomials for permutations with the
same cycles. The cap operation provides the sum of the coefficients of the result of the cup operation
which will be an integer that enumerates what Redfield called group-reduced distributions.

We can, for example, represent complete 2 * complete 2 as the set of objects a a b b and complete

2 * complete 1 * complete 1 as c c d e.

This integer is the number of different sets of four pairs.

cap (complete 2^2, complete 2* complete 1^2)

(13)4

Fraction ( Integer )

For example,

a a b b a a b b a a b b a a b b

c c d e c d c e c e c d d e c c

This integer is the number of different sets of four pairs no two pairs being equal.

cap (elementary 2^2, complete 2* complete 1^2)

(14)2

Fraction ( Integer )

For example,

a a b b a a b b

c d c e c e c d

In this case the configurations enumerated are easily constructed, however the theory merely enumer-
ates them providing little help in actually constructing them. Here are the number of 6-pairs, first
from a a a b b c, second from d d e e f g.

cap (complete 3* complete 2* complete 1,complete 2^2* complete 1^2)
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(15)24

Fraction ( Integer )

Here it is again, but with no equal pairs.

cap (elementary 3* elementary 2* elementary 1,complete 2^2* complete 1^2)

(16)8

Fraction ( Integer )

cap (complete 3* complete 2* complete 1,elementary 2^2* elementary 1^2)

(17)8

Fraction ( Integer )

The number of 6-triples, first from a a a b b c, second from d d e e f g, third from h h i i j

j.

eval(cup(complete 3* complete 2* complete 1, cup(complete 2^2* complete 1^2, complete

2^3)))

(18)1500

Fraction ( Integer )

The cycle index of vertices of a square is dihedral 4.

square := dihedral 4

(19)
1

4
(4) +

3

8

(

22
)

+
1

4

(

2 12
)

+
1

8

(

14
)

SymmetricPolynomial(Fraction(Integer))

The number of different squares with 2 red vertices and 2 blue vertices.

cap (complete 2^2, square )
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(20)2

Fraction ( Integer )

The number of necklaces with 3 red beads, 2 blue beads and 2 green beads.

cap (complete 3* complete 2^2, dihedral 7)

(21)18

Fraction ( Integer )

The number of graphs with 5 nodes and 7 edges.

cap (graphs 5, complete 7* complete 3)

(22)4

Fraction ( Integer )

The cycle index of rotations of vertices of a cube.

s(x) == powerSum (x)

cube :=(1/24) *(s 1^8+9* s 2^4 + 8*s 3^2*s 1^2+6* s 4^2)

Compiling function s with type PositiveInteger ->

SymmetricPolynomial(Fraction (Integer ))

(24)
1

4

(

42
)

+
1

3

(

32 12
)

+
3

8

(

24
)

+
1

24

(

18
)

SymmetricPolynomial(Fraction(Integer))

The number of cubes with 4 red vertices and 4 blue vertices.

cap (complete 4^2, cube)

(25)7
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Fraction ( Integer )

The number of labeled graphs with degree sequence 2 2 2 1 1 with no loops or multiple edges.

cap (complete 2^3* complete 1^2, wreath (elementary 4, elementary 2))

(26)7

Fraction ( Integer )

Again, but with loops allowed but not multiple edges.

cap (complete 2^3* complete 1^2, wreath (elementary 4,complete 2))

(27)17

Fraction ( Integer )

Again, but with multiple edges allowed, but not loops

cap (complete 2^3* complete 1^2, wreath (complete 4, elementary 2))

(28)10

Fraction ( Integer )

Again, but with both multiple edges and loops allowed

cap (complete 2^3* complete 1^2, wreath (complete 4, complete 2))

(29)23

Fraction ( Integer )

Having constructed a cycle index for a configuration we are at liberty to evaluate the si components
any way we please. For example we can produce enumerating generating functions. This is done
by providing a function f on an integer i to the value required of si, and then evaluating eval(f,

cycleindex).

x: ULS (FRAC INT ,’x,0) := ’x
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(30)x

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

ZeroOrOne : INT -> ULS (FRAC INT , ’x, 0)

Integers : INT -> ULS(FRAC INT , ’x, 0)

For the integers 0 and 1, or two colors.

ZeroOrOne n == 1+x^n

ZeroOrOne 5

Compiling function ZeroOrOne with type Integer ->

UnivariateLaurentSeries ( Fraction (Integer ),x,0)

(34)1 + x
5

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

For the integers 0, 1, 2, ... we have this.

Integers n == 1/(1-x^n)

Integers 5

Compiling function Integers with type Integer ->

UnivariateLaurentSeries ( Fraction (Integer ),x,0)

(36)1 + x
5 +O

(

x
8
)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

The coefficient of xn is the number of graphs with 5 nodes and n edges.

eval(ZeroOrOne , graphs 5)

(37)1 + x+ 2x2 + 4 x3 + 6x4 + 6x5 + 6x6 + 4x7 +O
(

x
8)
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UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

The coefficient of xn is the number of necklaces with n red beads and n-8 green beads.

eval(ZeroOrOne ,dihedral 8)

(38)1 + x+ 4x2 + 5x3 + 8x4 + 5 x5 + 4x6 + x
7 +O

(

x
8
)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

The coefficient of xn is the number of partitions of n into 4 or fewer parts.

eval(Integers ,complete 4)

(39)1 + x+ 2x2 + 3x3 + 5 x4 + 6x5 + 9x6 + 11 x7 +O
(

x
8
)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

The coefficient of xn is the number of partitions of n into 4 boxes containing ordered distinct parts.

eval(Integers ,elementary 4)

(40)x
6 + x

7 + 2x8 + 3x9 + 5 x10 + 6x11 + 9x12 + 11 x13 +O
(

x
14)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

The coefficient of xn is the number of different cubes with n red vertices and 8-n green ones.

eval(ZeroOrOne ,cube)

(41)1 + x+ 3x2 + 3x3 + 7x4 + 3 x5 + 3x6 + x
7 +O

(

x
8)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

The coefficient of xn is the number of different cubes with integers on the vertices whose sum is n.

eval(Integers ,cube)
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(42)1 + x+ 4x2 + 7 x3 + 21x4 + 37 x5 + 85x6 + 151 x7 +O
(

x
8
)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

The coefficient of xn is the number of graphs with 5 nodes and with integers on the edges whose sum
is n. In other words, the enumeration is of multigraphs with 5 nodes and n edges.

eval(Integers ,graphs 5)

(43)1 + x+ 3x2 + 7 x3 + 17x4 + 35 x5 + 76x6 + 149 x7 +O
(

x
8)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

Graphs with 15 nodes enumerated with respect to number of edges.

eval(ZeroOrOne ,graphs 15)

(44)1 + x+ 2x2 + 5 x3 + 11x4 + 26 x5 + 68x6 + 177 x7 +O
(

x
8
)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10 red beads.

cap (dihedral 30, complete 7* complete 8* complete 5* complete 10)

(45)49958972383320

Fraction ( Integer )

The operation SFunction is the S-function or Schur function of a partition written as a descending list
of integers expressed in terms of power sum symmetric functions. In this case the argument partition
represents a tableau shape. For example 3,2,2,1 represents a tableau with three boxes in the first
row, two boxes in the second and third rows, and one box in the fourth row. SFunction [3,2,2,1]

counts the number of different tableaux of shape 3, 2, 2, 1 filled with objects with an ascending
order in the columns and a non-descending order in the rows.

sf3221 := SFunction [3,2,2,1]
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(46)
1

12
(6 2)− 1

12

(

6 12
)

− 1

16

(

42
)

+
1

12
(4 3 1)+

1

24

(

4 14
)

− 1

36

(

32 2
)

+
1

36

(

32 12
)

− 1

24

(

3 22 1
)

− 1

36

(

3 2 13
)

− 1

72

(

3 15
)

− 1

192

(

24
)

+
1

48

(

23 12
)

+
1

96

(

22 14
)

− 1

144

(

2 16
)

+
1

576

(

18
)

SymmetricPolynomial(Fraction(Integer))

This is the number filled with a a b b c c d d.

cap (sf3221 ,complete 2^4)

(47)3

Fraction ( Integer )

The configurations enumerated above are:

a a b a a c a a d

b c b b b b

c d c d c c

d d d

This is the number of tableaux filled with 1..8.

cap (sf3221 , powerSum 1^8)

(48)70

Fraction ( Integer )

The coefficient of xn is the number of column strict reverse plane partitions of n of shape 3 2 2 1.

eval(Integers , sf3221 )

(49)x
9 + 3x10 + 7x11 + 14 x12 + 27 x13 + 47 x14 +O

(

x
15
)

UnivariateLaurentSeries (Fraction ( Integer ) , x, 0)

The smallest is

0 0 0

1 1

2 2

3
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9.14 DecimalExpansion

All rationals have repeating decimal expansions. Operations to access the individual digits of a decimal
expansion can be obtained by converting the value to RadixExpansion(10). More examples of
expansions are available in ‘BinaryExpansion’ on page 412, ‘HexadecimalExpansion’ on page 539,
and ‘RadixExpansion’ on page 679. Issue the system command )show DecimalExpansion to display
the full list of operations defined by DecimalExpansion.

The operation decimal is used to create this expansion of type DecimalExpansion.

r := decimal (22/7)

(4)3.142857

DecimalExpansion

Arithmetic is exact.

r + decimal (6/7)

(5)4

DecimalExpansion

The period of the expansion can be short or long . . .

[decimal (1/i) for i in 350..354]

(6)
[

0.00285714, 0.002849, 0.0028409, 0.00283286118980169971671388101983,

0.00282485875706214689265536723163841807909604519774011299435
]

List (DecimalExpansion)

or very long.

decimal (1/2049)

(7)0.00048804294777940458760370912640312347486578818936066373840897999023914104441190824792581747193753050268423621278
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DecimalExpansion

These numbers are bona fide algebraic objects.

p := decimal (1/4)*x^2 + decimal (2/3) *x + decimal (4/9)

(8)0.25 x2 + 0.6 x+ 0.4

Polynomial(DecimalExpansion)

q := differentiate(p, x)

(9)0.5 x+ 0.6

Polynomial(DecimalExpansion)

g := gcd(p, q)

(10)x+ 1.3

Polynomial(DecimalExpansion)

9.15 DeRhamComplex

The domain constructor DeRhamComplex creates the class of differential forms of arbitrary degree
over a coefficient ring. The De Rham complex constructor takes two arguments: a ring, coefRing,
and a list of coordinate variables.

This is the ring of coefficients.

coefRing := Integer

(4)Integer

Type

These are the coordinate variables.

lv : List Symbol := [x,y,z]
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(5)[x, y, z]

List (Symbol)

This is the De Rham complex of Euclidean three-space using coordinates x, y and z.

der := DERHAM (coefRing ,lv)

(6)DeRhamComplex(Integer, [x, y, z])

Type

This complex allows us to describe differential forms having expressions of integers as coefficients. These
coefficients can involve any number of variables, for example, f(x,t,r,y,u,z). As we’ve chosen to
work with ordinary Euclidean three-space, expressions involving these forms are treated as functions
of x, y and z with the additional arguments t, r and u regarded as symbolic constants. Here are
some examples of coefficients.

R := Expression coefRing

(7)Expression(Integer)

Type

f : R := x^2*y*z -5*x^3*y^2*z^5

(8)− 5x3
y
2
z
5 + x

2
y z

Expression( Integer )

g : R := z^2*y*cos (z) -7* sin(x^3*y^2)*z^2

(9)− 7 z2 sin
(

x
3
y
2)+ y z

2 cos(z)

Expression( Integer )

h : R :=x*y*z -2*x^3*y*z^2
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(10)− 2x3
y z

2 + x y z

Expression( Integer )

We now define the multiplicative basis elements for the exterior algebra over R.

dx : der := generator (1)

(11)dx

DeRhamComplex(Integer, [x, y, z ])

dy : der := generator (2)

(12)dy

DeRhamComplex(Integer, [x, y, z ])

dz : der := generator (3)

(13)dz

DeRhamComplex(Integer, [x, y, z ])

This is an alternative way to give the above assignments.

[dx ,dy ,dz] := [generator (i)$der for i in 1..3]

(14)[dx, dy, dz]

List (DeRhamComplex(Integer, [x, y, z ]) )

Now we define some one-forms.

alpha : der := f*dx + g*dy + h*dz
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(15)
(

−2x3
y z

2 + x y z
)

dz +
(

−7 z2 sin
(

x
3
y
2
)

+ y z
2 cos(z)

)

dy +
(

−5x3
y
2
z
5 + x

2
y z
)

dx

DeRhamComplex(Integer, [x, y, z ])

beta : der := cos (tan(x*y*z)+x*y*z)*dx + x*dy

(16)x dy + cos(tan(x y z) + x y z) dx

DeRhamComplex(Integer, [x, y, z ])

A well-known theorem states that the composition of exteriorDifferential with itself is the zero map for
continuous forms. Let’s verify this theorem for alpha.

exteriorDifferential alpha;

DeRhamComplex(Integer, [x, y, z ])

We suppressed the lengthy output of the last expression, but nevertheless, the composition is zero.

exteriorDifferential %

(18)0

DeRhamComplex(Integer, [x, y, z ])

Now we check that exteriorDifferential is a “graded derivation” D, that is, D satisfies:

D(ab) = D(a)b + (−1)degree(a)aD(b)

gamma := alpha * beta

(19)
(

2x4
y z

2 − x
2
y z
)

dy dz +
(

2 x3
y z

2 − x y z
)

cos(tan(x y z) + x y z) dx dz

+
((

7 z2 sin
(

x
3
y
2)− y z

2 cos(z)
)

cos(tan(x y z) + x y z)− 5x4
y
2
z
5 + x

3
y z
)

dx dy

DeRhamComplex(Integer, [x, y, z ])

We try this for the one-forms alpha and beta.

exteriorDifferential(gamma) - (exteriorDifferential (alpha)*beta - alpha *

exteriorDifferential(beta))
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(20)0

DeRhamComplex(Integer, [x, y, z ])

Now we define some “basic operators” (see ‘Operator’ on page 648).

a : BOP := operator (’a)

(21)a

BasicOperator

b : BOP := operator (’b)

(22)b

BasicOperator

c : BOP := operator (’c)

(23)c

BasicOperator

We also define some indeterminate one- and two-forms using these operators.

sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz

(24)c(x, y, z) dz + b(x, y, z) dy + a(x, y, z) dx

DeRhamComplex(Integer, [x, y, z ])

theta := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz + c(x,y,z) * dy * dz

(25)c(x, y, z) dy dz + b(x, y, z) dx dz + a(x, y, z) dx dy
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DeRhamComplex(Integer, [x, y, z ])

This allows us to get formal definitions for the “gradient” . . .

totalDifferential(a(x,y,z))$der

(26)a,3(x, y, z) dz + a,2(x, y, z) dy + a,1(x, y, z) dx

DeRhamComplex(Integer, [x, y, z ])

the “curl” . . .

exteriorDifferential sigma

(27)(c,2(x, y, z)− b,3(x, y, z)) dy dz + (c,1(x, y, z)− a,3(x, y, z)) dx dz + (b,1(x, y, z)− a,2(x, y, z)) dx dy

DeRhamComplex(Integer, [x, y, z ])

and the “divergence.”

exteriorDifferential theta

(28)(c,1(x, y, z)− b,2(x, y, z) + a,3(x, y, z)) dx dy dz

DeRhamComplex(Integer, [x, y, z ])

Note that the De Rham complex is an algebra with unity. This element 1 is the basis for elements for
zero-forms, that is, functions in our space.

one : der := 1

(29)1

DeRhamComplex(Integer, [x, y, z ])

To convert a function to a function lying in the De Rham complex, multiply the function by “one.”

g1 : der := a([x,t,y,u,v,z,e]) * one
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(30)a(x, t, y, u, v, z, e)

DeRhamComplex(Integer, [x, y, z ])

A current limitation of FriCAS forces you to write functions with more than four arguments using
square brackets in this way.

h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one

(31)a(x, y, x, t, x, z, y, r, u, x)

DeRhamComplex(Integer, [x, y, z ])

Now note how the system keeps track of where your coordinate functions are located in expressions.

exteriorDifferential g1

(32)a,6(x, t, y, u, v, z, e) dz + a,3(x, t, y, u, v, z, e) dy + a,1(x, t, y, u, v, z, e) dx

DeRhamComplex(Integer, [x, y, z ])

exteriorDifferential h1

(33)a,6(x, y, x, t, x, z, y, r, u, x) dz + (a,7(x, y, x, t, x, z, y, r, u, x) + a,2(x, y, x, t, x, z, y, r, u, x)) dy

+(a,10(x, y, x, t, x, z, y, r, u, x) + a,5(x, y, x, t, x, z, y, r, u, x) + a,3(x, y, x, t, x, z, y, r, u, x) + a,1(x, y, x, t, x, z, y, r, u, x)) dx

DeRhamComplex(Integer, [x, y, z ])

In this example of Euclidean three-space, the basis for the De Rham complex consists of the eight
forms: 1, dx, dy, dz, dx*dy, dx*dz, dy*dz, and dx*dy*dz.

coefficient (gamma , dx*dy)

(34)
(

7 z2 sin
(

x
3
y
2)− y z

2 cos(z)
)

cos(tan(x y z) + x y z)− 5x4
y
2
z
5 + x

3
y z



9.16. DISTRIBUTEDMULTIVARIATEPOLYNOMIAL 475

Expression( Integer )

coefficient (gamma , one)

(35)0

Expression( Integer )

coefficient (g1,one )

(36)a(x, t, y, u, v, z, e)

Expression( Integer )

9.16 DistributedMultivariatePolynomial

DistributedMultivariatePolynomial andHomogeneousDistributedMultivariatePolynomial,
abbreviated DMP and HDMP, respectively, are very similar to MultivariatePolynomial except
that they are represented and displayed in a non-recursive manner.

(d1 ,d2 ,d3) : DMP ([z,y,x],FRAC INT)

The constructor DMP orders its monomials lexicographically while HDMP orders them by total
order refined by reverse lexicographic order.

d1 := -4*z + 4*y^2*x + 16*x^2 + 1

(5)− 4 z + 4 y2
x+ 16x2 + 1

DistributedMultivariatePolynomial ([ z , y, x ], Fraction ( Integer ))

d2 := 2*z*y^2 + 4*x + 1

(6)2 z y2 + 4x+ 1
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DistributedMultivariatePolynomial ([ z , y, x ], Fraction ( Integer ))

d3 := 2*z*x^2 - 2*y^2 - x

(7)2 z x2 − 2 y2 − x

DistributedMultivariatePolynomial ([ z , y, x ], Fraction ( Integer ))

These constructors are mostly used in Gröbner basis calculations.

groebner [d1 ,d2 ,d3]

(8)

[

z − 1568

2745
x
6 − 1264

305
x
5 +

6

305
x
4 +

182

549
x
3 − 2047

610
x
2 − 103

2745
x− 2857

10980
,

y
2 +

112

2745
x
6 − 84

305
x
5 − 1264

305
x
4 − 13

549
x
3 +

84

305
x
2 +

1772

2745
x+

2

2745
,

x
7 +

29

4
x
6 − 17

16
x
4 − 11

8
x
3 +

1

32
x
2 +

15

16
x+

1

4

]

List ( DistributedMultivariatePolynomial ([ z, y, x ], Fraction ( Integer )))

(n1 ,n2 ,n3) : HDMP ([z,y,x],FRAC INT)

(n1 ,n2 ,n3) := (d1,d2,d3)

(10)2 z x2 − 2 y2 − x

HomogeneousDistributedMultivariatePolynomial([z, y, x ], Fraction ( Integer ))

Note that we get a different Gröbner basis when we use the HDMP polynomials, as expected.

groebner [n1 ,n2 ,n3]

(11)

[

y
4 + 2x3 − 3

2
x
2 +

1

2
z − 1

8
, x

4 +
29

4
x
3 − 1

8
y
2 − 7

4
z x− 9

16
x− 1

4
, z y

2 + 2x+
1

2
,

y
2
x+ 4x2 − z +

1

4
, z x

2 − y
2 − 1

2
x, z

2 − 4 y2 + 2x2 − 1

4
z − 3

2
x

]
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List (HomogeneousDistributedMultivariatePolynomial([z, y, x ], Fraction ( Integer )))

GeneralDistributedMultivariatePolynomial is somewhat more flexible in the sense that as well
as accepting a list of variables to specify the variable ordering, it also takes a predicate on exponent
vectors to specify the term ordering. With this polynomial type the user can experiment with the
effect of using completely arbitrary term orderings. This flexibility is mostly important for algorithms
such as Gröbner basis calculations which can be very sensitive to term ordering.

For more information on related topics, see Section 1.9 on page 55, Section 2.7 on page 98, ‘Polynomial’
on page 666, ‘UnivariatePolynomial’ on page 755, and ‘MultivariatePolynomial’ on page 639.
Issue the system command )show DistributedMultivariatePolynomial to display the full list of
operations defined by DistributedMultivariatePolynomial.

9.17 DoubleFloat

FriCAS provides two kinds of floating point numbers. The domain Float (abbreviation FLOAT)
implements a model of arbitrary precision floating point numbers. The domain DoubleFloat (abbre-
viation DFLOAT) is intended to make available hardware floating point arithmetic in FriCAS. The
actual model of floating point DoubleFloat that provides is system-dependent. In the past there were
wide variety of floating point formats. For example, the IBM system 370 used hexadecimal format such
that double precision number had fourteen hexadecimal digits of precision or roughly sixteen decimal
digits. All system currently supported by FriCAS use IEEE binary format with 64-bit double having
sign bit, 11 exponents bits and 53 significant bits (that adds to 65, but most significant bit is 1 and
there is no need to store it).

Arbitrary precision floats allow the user to specify the precision at which arithmetic operations are
computed. Although this is an attractive facility, it comes at a cost. Arbitrary-precision floating-point
arithmetic typically takes twenty to two hundred times more time than hardware floating point.

The usual arithmetic and elementary functions are available forDoubleFloat. Use )show DoubleFloat

to get a list of operations or the HyperDoc Browse facility to get more extensive documentation about
DoubleFloat.

By default, floating point numbers that you enter into FriCAS are of type Float.

2.71828

(4)2.71828

Float

You must therefore tell FriCAS that you want to use DoubleFloat values and operations. The
following are some conservative guidelines for getting FriCAS to use DoubleFloat.

To get a value of type DoubleFloat, use a target with “@”, . . .

2.71828 @DoubleFloat
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(5)2.71828

DoubleFloat

a conversion, . . .

2.71828 :: DoubleFloat

(6)2.71828

DoubleFloat

or an assignment to a declared variable. It is more efficient if you use a target rather than an explicit
or implicit conversion.

eApprox : DoubleFloat := 2.71828

(7)2.71828

DoubleFloat

You also need to declare functions that work with DoubleFloat.

avg : List DoubleFloat -> DoubleFloat

avg l ==

empty? l => 0 :: DoubleFloat

reduce (_+,l) / #l

avg []

Compiling function avg with type List(DoubleFloat ) -> DoubleFloat

(10)0.0

DoubleFloat

avg [3.4 ,9.7 , -6.8]

(11)2.1
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DoubleFloat

Use package-calling for operations from DoubleFloat unless the arguments themselves are already of
type DoubleFloat.

cos (3.1415926) $DoubleFloat

(12)− 0.9999999999999986

DoubleFloat

cos (3.1415926 :: DoubleFloat )

(13)− 0.9999999999999986

DoubleFloat

By far, the most common usage of DoubleFloat is for functions to be graphed. For more information
about FriCAS’s numerical and graphical facilities, see Section 7 on page 227, Section 8.1 on page 287,
and ‘Float’ on page 509.

9.18 EqTable

The EqTable domain provides tables where the keys are compared using eq?. Keys are considered
equal only if they are the same instance of a structure. This is useful if the keys are themselves
updatable structures. Otherwise, all operations are the same as for type Table. See ‘Table’ on page
743 for general information about tables. Issue the system command )show EqTable to display the
full list of operations defined by EqTable.

The operation table is here used to create a table where the keys are lists of integers.

e: EqTable (List Integer , Integer ) := table ()

(4)table()

EqTable(List( Integer ) , Integer )

These two lists are equal according to =, but not according to eq?.

l1 := [1,2,3]
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(5)[1, 2, 3]

List ( PositiveInteger )

l2 := [1,2,3]

(6)[1, 2, 3]

List ( PositiveInteger )

Because the two lists are not eq?, separate values can be stored under each.

e.l1 := 111

(7)111

PositiveInteger

e.l2 := 222

(8)222

PositiveInteger

e.l1

(9)111

PositiveInteger

9.19 Equation

The Equation domain provides equations as mathematical objects. These are used, for example, as
the input to various solve operations.

Equations are created using the equals symbol, =.

eq1 := 3*x + 4*y = 5
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(4)4 y + 3x = 5

Equation(Polynomial(Integer ))

eq2 := 2*x + 2*y = 3

(5)2 y + 2x = 3

Equation(Polynomial(Integer ))

The left- and right-hand sides of an equation are accessible using the operations lhs and rhs.

lhs eq1

(6)4 y + 3x

Polynomial( Integer )

rhs eq1

(7)5

Polynomial( Integer )

Arithmetic operations are supported and operate on both sides of the equation.

eq1 + eq2

(8)6 y + 5x = 8

Equation(Polynomial(Integer ))

eq1 * eq2
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(9)8 y2 + 14 x y + 6 x2 = 15

Equation(Polynomial(Integer ))

2*eq2 - eq1

(10)x = 1

Equation(Polynomial(Integer ))

Equations may be created for any type so the arithmetic operations will be defined only when they
make sense. For example, exponentiation is not defined for equations involving non-square matrices.

eq1 ^2

(11)16 y2 + 24 x y + 9x2 = 25

Equation(Polynomial(Integer ))

Note that an equals symbol is also used to test for equality of values in certain contexts. For example,
x+1 and y are unequal as polynomials.

if x+1 = y then "equal" else "unequal "

(12)"unequal"

String

eqpol := x+1 = y

(13)x+ 1 = y

Equation(Polynomial(Integer ))

If an equation is used where a Boolean value is required, then it is evaluated using the equality test
from the operand type.

if eqpol then "equal" else "unequal "
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(14)"unequal"

String

If one wants a Boolean value rather than an equation, all one has to do is ask!

eqpol :: Boolean

(15)false

Boolean

9.20 Exit

A function that does not return directly to its caller has Exit as its return type. The operation error
is an example of one which does not return to its caller. Instead, it causes a return to top-level.

n := 0

(4)0

NonNegativeInteger

The function gasp is given return type Exit since it is guaranteed never to return a value to its caller.

gasp(): Exit ==

free n

n := n + 1

error "Oh no!"

Function declaration gasp : () -> Exit has been added to workspace .

The return type of half is determined by resolving the types of the two branches of the if.

half(k) ==

if odd? k then gasp ()

else k quo 2

Because gasp has the return type Exit, the type of if in half is resolved to be Integer.

half 4

Compiling function gasp with type () -> Exit

Compiling function half with type PositiveInteger -> Integer
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(7)2

PositiveInteger

half 3

Error signalled from user code in function gasp:

Oh no!

n

(8)1

NonNegativeInteger

For functions which return no value at all, use Void. See Section 6 on page 171 and ‘Void’ on page
767 for more information. Issue the system command )show Exit to display the full list of operations
defined by Exit.

9.21 Expression

Expression is a constructor that creates domains whose objects can have very general symbolic forms.
Here are some examples: This is an object of type Expression Integer.

sin (x) + 3*cos(x)^2

(4)sin(x) + 3 (cos(x))2

Expression( Integer )

This is an object of type Expression Float.

tan (x) - 3.45*x

(5)tan(x)− 3.45 x

Expression(Float)

This object contains symbolic function applications, sums, products, square roots, and a quotient.

(tan sqrt 7 - sin sqrt 11) ^2 / (4 - cos(x - y))
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(6)
−
(

tan
(√

7
))2

+ 2 sin
(√

11
)

tan
(√

7
)

−
(

sin
(√

11
))2

cos(y − x)− 4

Expression( Integer )

As you can see, Expression actually takes an argument domain. The coefficients of the terms within
the expression belong to the argument domain. Integer and Float, along with Complex Integer
and Complex Float are the most common coefficient domains. The choice of whether to use a
Complex coefficient domain or not is important since FriCAS can perform some simplifications on
real-valued objects

log (exp x)@Expression (Integer )

(7)x

Expression( Integer )

... which are not valid on complex ones.

log (exp x)@Expression (Complex Integer )

(8)log(ex)

Expression(Complex(Integer))

Many potential coefficient domains, such asAlgebraicNumber, are not usually used becauseExpression
can subsume them.

sqrt 3 + sqrt(2 + sqrt(-5))

(9)

√√
−5 + 2 +

√
3

AlgebraicNumber

% :: Expression Integer

(10)

√√
−5 + 2 +

√
3
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Expression( Integer )

Note that we sometimes talk about “an object of type Expression.” This is not really correct because
we should say, for example, “an object of type Expression Integer” or “an object of type Expression
Float.” By a similar abuse of language, when we refer to an “expression” in this section we will mean
an object of type Expression R for some domain R.

The FriCAS documentation contains many examples of the use of Expression. For the rest of this
section, we’ll give you some pointers to those examples plus give you some idea of how to manipulate
expressions.

It is important for you to know that Expression creates domains that have category Field. Thus
you can invert any non-zero expression and you shouldn’t expect an operation like factor to give you
much information. You can imagine expressions as being represented as quotients of “multivariate”
polynomials where the “variables” are kernels (see ‘Kernel’ on page 558). A kernel can either be a
symbol such as x or a symbolic function application like sin(x + 4). The second example is actually
a nested kernel since the argument to sin contains the kernel x.

height mainKernel sin (x + 4)

(11)2

PositiveInteger

Actually, the argument to sin is an expression, and so the structure ofExpression is recursive. ‘Kernel’
on page 558 demonstrates how to extract the kernels in an expression.

Use the HyperDoc Browse facility to see what operations are applicable to expression. At the time of
this writing, there were 262 operations with 147 distinct name in Expression Integer. For example,
numer and denom extract the numerator and denominator of an expression.

e := (sin (x) - 4)^2 / ( 1 - 2*y*sqrt(- y) )

(12)
−(sin(x))2 + 8 sin(x)− 16

2 y
√−y − 1

Expression( Integer )

numer e

(13)− (sin(x))2 + 8 sin(x)− 16
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SparseMultivariatePolynomial ( Integer , Kernel(Expression( Integer )))

denom e

(14)2 y
√
−y − 1

SparseMultivariatePolynomial ( Integer , Kernel(Expression( Integer )))

Use D to compute partial derivatives.

D(e, x)

(15)
(4 y cos(x) sin(x)− 16 y cos(x))

√−y − 2 cos(x) sin(x) + 8 cos(x)

4 y
√−y + 4 y3 − 1

Expression( Integer )

See Section 1.12 on page 61 for more examples of expressions and derivatives.

D(e, [x, y], [1, 2])

(16)

((

−2304 y7 + 960 y4
)

cos(x) sin(x) +
(

9216 y7 − 3840 y4
)

cos(x)
)√−y +

(

−960 y9 + 2160 y6 − 180 y3 − 3
)

cos(x) sin(x) +
(

3840 y9

(256 y12 − 1792 y9 + 1120 y6 − 112 y3 + 1)
√−y − 1024 y11 + 1792 y8 − 448 y5 + 16 y2

Expression( Integer )

See Section 1.10 on page 57 and Section 1.11 on page 59 for more examples of expressions and calculus.
Differential equations involving expressions are discussed in Section 8.10 on page 343. Chapter 8 has
many advanced examples: see Section 8.8 on page 322 for a discussion of FriCAS’s integration facilities.

When an expression involves no “symbol kernels” (for example, x), it may be possible to numeri-
cally evaluate the expression. If you suspect the evaluation will create a complex number, use
complexNumeric.

complexNumeric(cos (2 - 3*%i))

(17)− 4.1896256909688072301 + 9.109227893755336598 i
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Complex(Float)

If you know it will be real, use numeric.

numeric (tan 3.8)

(18)0.77355609050312607286

Float

The numeric operation will display an error message if the evaluation yields a value with an non-zero
imaginary part. Both of these operations have an optional second argument n which specifies that the
accuracy of the approximation be up to n decimal places.

When an expression involves no “symbolic application” kernels, it may be possible to convert it a
polynomial or rational function in the variables that are present.

e2 := cos (x^2 - y + 3)

(19)cos
(

y − x
2 − 3

)

Expression( Integer )

e3 := asin(e2) - %pi/2

(20)
2 arcsin

(

cos
(

y − x2 − 3
))

− π

2

Expression( Integer )

e4 := normalize (e3)

(21)− y + x
2 + 3

Expression( Integer )

e4 :: Polynomial Integer
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(22)− y + x
2 + 3

Polynomial( Integer )

This also works for the polynomial types where specific variables and their ordering are given.

e4 :: DMP ([x, y], Integer )

(23)x
2 − y + 3

DistributedMultivariatePolynomial ([ x, y ], Integer )

Finally, a certain amount of simplication takes place as expressions are constructed.

sin %pi

(24)0

Expression( Integer )

cos (%pi / 4)

(25)

√
2

2

Expression( Integer )

For simplications that involve multiple terms of the expression, use simplify.

tan (x)^6 + 3* tan(x)^4 + 3*tan(x)^2 + 1

(26)(tan(x))6 + 3 (tan(x))4 + 3 (tan(x))2 + 1

Expression( Integer )

simplify %
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(27)
1

(cos(x))6

Expression( Integer )

See Section 6.21 on page 218 for examples of how to write your own rewrite rules for expressions.

9.22 Factored

Factored creates a domain whose objects are kept in factored form as long as possible. Thus certain
operations like * (multiplication) and gcd are relatively easy to do. Others, such as addition, require
somewhat more work, and the result may not be completely factored unless the argument domain R

provides a factor operation. Each object consists of a unit and a list of factors, where each factor
consists of a member of R (the base), an exponent, and a flag indicating what is known about the
base. A flag may be one of "nil", "sqfr", "irred" or "prime", which mean that nothing is known
about the base, it is square-free, it is irreducible, or it is prime, respectively. The current restriction
to factored objects of integral domains allows simplification to be performed without worrying about
multiplication order.

9.22.1 Decomposing Factored Objects

In this section we will work with a factored integer.

g := factor (4312)

(1)23 72 11

Factored( Integer )

Let’s begin by decomposing g into pieces. The only possible units for integers are 1 and -1.

unit(g)

(2)1

PositiveInteger

There are three factors.

numberOfFactors(g)
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(3)3

PositiveInteger

We can make a list of the bases, . . .

[i.factor for i in factorList (g)]

(4)[2, 7, 11]

List ( Integer )

and the exponents, . . .

[i.exponent for i in factorList (g)]

(5)[3, 2, 1]

List (NonNegativeInteger)

and the flags. You can see that all the bases (factors) are prime.

[i.flag for i in factorList (g)]

(6)["prime", "prime", "prime"]

List (Union(”nil ”, ”sqfr ”, ” irred ”, ”prime”))

A useful operation for pulling apart a factored object into a list of records of the components is
factorList.

factorList (g)

(7)[[flag = "prime", factor = 2, exponent = 3] , [flag = "prime", factor = 7,

exponent = 2] , [flag = "prime", factor = 11, exponent = 1]]
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List (Record(flag : Union(”nil ”, ”sqfr ”, ” irred ”, ”prime”), factor : Integer , exponent: NonNegativeInteger))

If you don’t care about the flags, use factors.

factors (g)

(8)[[factor = 2, exponent = 3] , [factor = 7, exponent = 2] , [factor = 11, exponent = 1]]

List (Record(factor : Integer , exponent: NonNegativeInteger))

Neither of these operations returns the unit.

first (%).factor

(9)2

PositiveInteger

9.22.2 Expanding Factored Objects

Recall that we are working with this factored integer.

g := factor (4312)

(1)23 72 11

Factored( Integer )

To multiply out the factors with their multiplicities, use expand.

expand (g)

(2)4312

PositiveInteger

If you would like, say, the distinct factors multiplied together but with multiplicity one, you could do
it this way.

reduce (*,[t.factor for t in factors (g)])
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(3)154

PositiveInteger

9.22.3 Arithmetic with Factored Objects

We’re still working with this factored integer.

g := factor (4312)

(1)23 72 11

Factored( Integer )

We’ll also define this factored integer.

f := factor (246960)

(2)24 32 5 73

Factored( Integer )

Operations involving multiplication and division are particularly easy with factored objects.

f * g

(3)27 32 5 75 11

Factored( Integer )

f^500

(4)22000 31000 5500 71500

Factored( Integer )

gcd (f,g)
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(5)23 72

Factored( Integer )

lcm (f,g)

(6)24 32 5 73 11

Factored( Integer )

If we use addition and subtraction things can slow down because we may need to compute greatest
common divisors.

f + g

(7)23 72 641

Factored( Integer )

f - g

(8)23 72 619

Factored( Integer )

Test for equality with 0 and 1 by using zero? and one?, respectively.

zero?( factor (0) )

(9)true

Boolean

zero?(g)
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(10)false

Boolean

one ?( factor (1))

(11)true

Boolean

one ?(f)

(12)false

Boolean

Another way to get the zero and one factored objects is to use package calling (see Section 2.9 on page
105).

0$Factored (Integer )

(13)0

Factored( Integer )

1$Factored (Integer )

(14)1

Factored( Integer )

9.22.4 Creating New Factored Objects

Themap operation is used to iterate across the unit and bases of a factored object. See ‘FactoredFunctions2’
on page 498 for a discussion of map.

The following four operations take a base and an exponent and create a factored object. They differ
in handling the flag component.

nilFactor (24 ,2)
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(1)242

Factored( Integer )

This factor has no associated information.

factorList (%) .1. flag

(2)"nil"

Union(”nil ”, ...)

This factor is asserted to be square-free.

sqfrFactor (30 ,2)

(3)302

Factored( Integer )

This factor is asserted to be irreducible.

irreducibleFactor (13 ,10)

(4)1310

Factored( Integer )

This factor is asserted to be prime.

primeFactor (11 ,5)

(5)115

Factored( Integer )

A partial inverse to factorList is makeFR.

h := factor ( -720)
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(6)− 24 32 5

Factored( Integer )

The first argument is the unit and the second is a list of records as returned by factorList.

h - makeFR (unit(h),factorList (h))

(7)0

Factored( Integer )

9.22.5 Factored Objects with Variables

Some of the operations available for polynomials are also available for factored polynomials.

p := (4*x*x-12*x+9)*y*y + (4*x*x -12*x+9)*y + 28*x*x - 84*x + 63

(1)
(

4x2 − 12x+ 9
)

y
2 +

(

4 x2 − 12x+ 9
)

y + 28 x2 − 84x+ 63

Polynomial( Integer )

fp := factor (p)

(2)(2x− 3)2
(

y
2 + y + 7

)

Factored(Polynomial( Integer ))

You can differentiate with respect to a variable.

D(p,x)

(3)(8x− 12) y2 + (8x− 12) y + 56 x− 84

Polynomial( Integer )

D(fp ,x)



498 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(4)4 (2x− 3)
(

y
2 + y + 7

)

Factored(Polynomial( Integer ))

numberOfFactors(%)

(5)2

PositiveInteger

9.23 FactoredFunctions2

The FactoredFunctions2 package implements one operation, map, for applying an operation to every
base in a factored object and to the unit.

double (x) == x + x

f := factor (720)

(5)24 32 5

Factored( Integer )

Actually, the map operation used in this example comes from Factored itself, since double takes an
integer argument and returns an integer result.

map (double ,f)

Compiling function double with type Integer -> Integer

(6)2 44 62 10

Factored( Integer )

If we want to use an operation that returns an object that has a type different from the operation’s
argument, the map in Factored cannot be used and we use the one in FactoredFunctions2.

makePoly (b) == x + b
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In fact, the “2” in the name of the package means that we might be using factored objects of two
different types.

g := map(makePoly ,f)

Compiling function makePoly with type Integer -> Polynomial (Integer )

(8)(x+ 1) (x+ 2)4 (x+ 3)2 (x+ 5)

Factored(Polynomial( Integer ))

It is important to note that both versions of map destroy any information known about the bases (the
fact that they are prime, for instance). The flags for each base are set to “nil” in the object returned
by map.

factorList (g).1. flag

(9)"nil"

Union(”nil ”, ...)

For more information about factored objects and their use, see ‘Factored’ on page 490 and Section
8.13 on page 382.

9.24 File

The File(S) domain provides a basic interface to read and write values of type S in files. Before
working with a file, it must be made accessible to FriCAS with the open operation.

ifile:File List Integer :=open ("/ tmp /jazz1 "," output ")

(4)"/tmp/jazz1"

File ( List ( Integer ))

The open function arguments are a FileName and a String specifying the mode. If a full pathname is
not specified, the current default directory is assumed. The mode must be one of "input" or "output".
If it is not specified, "input" is assumed. Once the file has been opened, you can read or write data.
The operations read! and write! are provided.

write !(ifile , [-1,2,3])
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(5)[−1, 2, 3]

List ( Integer )

write !(ifile , [10 , -10 ,0 ,111])

(6)[10, −10, 0, 111]

List ( Integer )

write !(ifile , [7])

(7)[7]

List ( Integer )

You can change from writing to reading (or vice versa) by reopening a file.

reopen !(ifile , "input ")

(8)"/tmp/jazz1"

File ( List ( Integer ))

read! ifile

(9)[−1, 2, 3]

List ( Integer )

read! ifile

(10)[10, −10, 0, 111]
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List ( Integer )

The read! operation can cause an error if one tries to read more data than is in the file. To guard
against this possibility the readIfCan! operation should be used.

readIfCan ! ifile

(11)[7]

Union(List( Integer ) , ...)

readIfCan ! ifile

(12)"failed"

Union(” failed ”, ...)

You can find the current mode of the file, and the file’s name.

iomode ifile

(13)"input"

String

name ifile

(14)"/tmp/jazz1"

FileName

When you are finished with a file, you should close it.

close! ifile

(15)"/tmp/jazz1"
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File ( List ( Integer ))

)system rm /tmp /jazz1

A limitation of the underlying LISP system is that not all values can be represented in a file. In
particular, delayed values containing compiled functions cannot be saved.

For more information on related topics, see ‘TextFile’ on page 748, ‘KeyedAccessFile’ on page 562,
‘Library’ on page 583, and ‘FileName’ on page 502. Issue the system command )show File to display
the full list of operations defined by File.

9.25 FileName

The FileName domain provides an interface to the computer’s file system. Functions are provided to
manipulate file names and to test properties of files.

The simplest way to use file names in the FriCAS interpreter is to rely on conversion to and from
strings. The syntax of these strings depends on the operating system.

fn: FileName

On AIX, this is a proper file syntax:

fn := "/spad/src/input/fname.input"

(5)"/spad/src/input/fname.input"

FileName

Although it is very convenient to be able to use string notation for file names in the interpreter, it is
desirable to have a portable way of creating and manipulating file names from within programs. A
measure of portability is obtained by considering a file name to consist of three parts: the directory,
the name, and the extension.

directory fn

(6)"/spad/src/input"

String

name fn
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(7)"fname"

String

extension fn

(8)"input"

String

The meaning of these three parts depends on the operating system. For example, on CMS the file
"SPADPROF INPUT M" would have directory "M", name "SPADPROF" and extension "INPUT".

It is possible to create a filename from its parts.

fn := filename ("/u/smwatt /work", "fname", "input ")

(9)"/u/smwatt/work/fname.input"

FileName

When writing programs, it is helpful to refer to directories via variables.

objdir := "/tmp "

(10)"/tmp"

String

fn := filename (objdir , "table", "spad")

(11)"/tmp/table.spad"

FileName

If the directory or the extension is given as an empty string, then a default is used. On AIX, the
defaults are the current directory and no extension.

fn := filename ("", "letter ", "")
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(12)"letter"

FileName

Three tests provide information about names in the file system. The exists? operation tests whether
the named file exists.

exists ? "/ etc/passwd "

(13)true

Boolean

The operation readable? tells whether the named file can be read. If the file does not exist, then it
cannot be read.

readable ? "/etc /passwd "

(14)true

Boolean

readable ? "/etc /security /passwd "

(15)false

Boolean

readable ? "/etc /passwd "

(16)true

Boolean

Likewise, the operation writable? tells whether the named file can be written. If the file does not exist,
the test is determined by the properties of the directory.

writable ? "/etc /passwd "
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(17)false

Boolean

writable ? "/dev /null"

(18)true

Boolean

writable ? "/etc /DoesNotExist"

(19)false

Boolean

writable ? "/tmp /DoesNotExist"

(20)true

Boolean

The new operation constructs the name of a new writable file. The argument sequence is the same
as for filename, except that the name part is actually a prefix for a constructed unique name. The
resulting file is in the specified directory with the given extension, and the same defaults are used.

fn := new (objdir , "xxx", "yy")

(21)"/tmp/xxx20.yy"

FileName
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9.26 FlexibleArray

The FlexibleArray domain constructor creates one-dimensional arrays of elements of the same type.
Flexible arrays are an attempt to provide a data type that has the best features of both one-dimensional
arrays (fast, random access to elements) and lists (flexibility). They are implemented by a fixed block
of storage. When necessary for expansion, a new, larger block of storage is allocated and the elements
from the old storage area are copied into the new block.

Flexible arrays have available most of the operations provided byOneDimensionalArray (see ‘OneDimensionalArray’
on page 646 and ‘Vector’ on page 765). Since flexible arrays are also of categoryExtensibleLinearAg-
gregate, they have operations concat!, delete!, insert!, merge!, remove!, removeDuplicates!, and select!.
In addition, the operations physicalLength and physicalLength! provide user-control over expansion and
contraction.

A convenient way to create a flexible array is to apply the operation flexibleArray to a list of values.

flexibleArray [i for i in 1..6]

(4)[1, 2, 3, 4, 5, 6]

FlexibleArray ( PositiveInteger )

Create a flexible array of six zeroes.

f : FARRAY INT := new (6,0)

(5)[0, 0, 0, 0, 0, 0]

FlexibleArray ( Integer )

For i = 1 . . . 6, set the ith element to i. Display f.

for i in 1..6 repeat f.i := i; f

(6)[1, 2, 3, 4, 5, 6]

FlexibleArray ( Integer )

Initially, the physical length is the same as the number of elements.

physicalLength f
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(7)6

PositiveInteger

Add an element to the end of f.

concat !(f ,11)

(8)[1, 2, 3, 4, 5, 6, 11]

FlexibleArray ( Integer )

See that its physical length has grown.

physicalLength f

(9)10

PositiveInteger

Make f grow to have room for 15 elements.

physicalLength!(f,15)

(10)[1, 2, 3, 4, 5, 6, 11]

FlexibleArray ( Integer )

Concatenate the elements of f to itself. The physical length allows room for three more values at the
end.

concat !(f,f)

(11)[1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

FlexibleArray ( Integer )

Use insert! to add an element to the front of a flexible array.

insert !(22,f,1)
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(12)[22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

FlexibleArray ( Integer )

Create a second flexible array from f consisting of the elements from index 10 forward.

g := f(10..)

(13)[2, 3, 4, 5, 6, 11]

FlexibleArray ( Integer )

Insert this array at the front of f.

insert !(g,f,1)

(14)[2, 3, 4, 5, 6, 11, 22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

FlexibleArray ( Integer )

Merge the flexible array f into g after sorting each in place.

merge !( sort! f, sort! g)

(15)[1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 11, 11, 11, 11, 22]

FlexibleArray ( Integer )

Remove duplicates in place.

removeDuplicates! f

(16)[1, 2, 3, 4, 5, 6, 11, 22]

FlexibleArray ( Integer )

Remove all odd integers.

select !(i +-> even? i,f)
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(17)[2, 4, 6, 22]

FlexibleArray ( Integer )

All these operations have shrunk the physical length of f.

physicalLength f

(18)8

PositiveInteger

To force FriCAS not to shrink flexible arrays call the shrinkable operation with the argument false.
You must package call this operation. The previous value is returned.

shrinkable (false)$FlexibleArray(Integer )

(19)true

Boolean

9.27 Float

FriCAS provides two kinds of floating point numbers. The domain Float (abbreviation FLOAT)
implements a model of arbitrary precision floating point numbers. The domain DoubleFloat (abbre-
viation DFLOAT) is intended to make available hardware floating point arithmetic in FriCAS. The
actual model of floating point that DoubleFloat provides is system-dependent. For example, on the
IBM system 370 FriCAS uses IBM double precision which has fourteen hexadecimal digits of precision
or roughly sixteen decimal digits. Arbitrary precision floats allow the user to specify the precision at
which arithmetic operations are computed. Although this is an attractive facility, it comes at a cost.
Arbitrary-precision floating-point arithmetic typically takes twenty to two hundred times more time
than hardware floating point.

For more information about FriCAS’s numeric and graphic facilities, see Section 7 on page 227, Section
8.1 on page 287, and ‘DoubleFloat’ on page 477.

9.27.1 Introduction to Float

Scientific notation is supported for input and output of floating point numbers. A floating point number
is written as a string of digits containing a decimal point optionally followed by the letter “E”, and
then the exponent. We begin by doing some calculations using arbitrary precision floats. The default
precision is twenty decimal digits.
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1.234

(1)1.234

Float

A decimal base for the exponent is assumed, so the number 1.234E2 denotes 1.234 · 102.
1.234 E2

(2)123.4

Float

The normal arithmetic operations are available for floating point numbers.

sqrt (1.2 + 2.3 / 3.4 ^ 4.5)

(3)1.0996972790671286226

Float

9.27.2 Conversion Functions

You can use conversion (Section 2.7 on page 98) to go back and forth between Integer, Fraction
Integer and Float, as appropriate.

i := 3 :: Float

(1)3.0

Float

i :: Integer

(2)3
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Integer

i :: Fraction Integer

(3)3

Fraction ( Integer )

Since you are explicitly asking for a conversion, you must take responsibility for any loss of exactness.

r := 3/7 :: Float

(4)0.42857142857142857143

Float

r :: Fraction Integer

(5)
3

7

Fraction ( Integer )

This conversion cannot be performed: use truncate or round if that is what you intend.

r :: Integer

Cannot convert the value from type Float to Integer .

The operations truncate and round truncate . . .

truncate 3.6

(6)3.0

Float

and round to the nearest integral Float respectively.

round 3.6



512 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(7)4.0

Float

truncate ( -3.6)

(8)− 3.0

Float

round ( -3.6)

(9)− 4.0

Float

The operation fractionPart computes the fractional part of x, that is, x - truncate x.

fractionPart 3.6

(10)0.6

Float

The operation digits allows the user to set the precision. It returns the previous value it was using.

digits 40

(11)20

PositiveInteger

sqrt 0.2

(12)0.4472135954999579392818347337462552470881
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Float

pi() $Float

(13)3.141592653589793238462643383279502884197

Float

The precision is only limited by the computer memory available. Calculations at 500 or more digits of
precision are not difficult.

digits 500

(14)40

PositiveInteger

pi() $Float

(15)3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328

Float

Reset digits to its default value.

digits 20

(16)500

PositiveInteger

Numbers of type Float are represented as a record of two integers, namely, the mantissa and the
exponent where the base of the exponent is binary. That is, the floating point number (m,e) represents
the number m · 2e. A consequence of using a binary base is that decimal numbers can not, in general,
be represented exactly.
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9.27.3 Output Functions

A number of operations exist for specifying how numbers of type Float are to be displayed. By default,
spaces are inserted every ten digits in the output for readability.3

Output spacing can be modified with the outputSpacing operation. This inserts no spaces and then
displays the value of x.

outputSpacing 0; x := sqrt 0.2

(1)0.44721359549995793928

Float

Issue this to have the spaces inserted every 5 digits.

outputSpacing 5; x

(2)0.44721359549995793928

Float

By default, the system displays floats in either fixed format or scientific format, depending on the
magnitude of the number.

y := x/10^10

(3)0.44721359549995793928E − 10

Float

A particular format may be requested with the operations outputFloating and outputFixed.

outputFloating(); x

(4)0.44721359549995793928E0

Float

outputFixed (); y

3Note that you cannot include spaces in the input form of a floating point number, though you can use underscores.
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(5)0.000000000044721359549995793928

Float

Additionally, you can ask for n digits to be displayed after the decimal point.

outputFloating 2; y

(6)0.45E − 10

Float

outputFixed 2; x

(7)0.45

Float

This resets the output printing to the default behavior.

outputGeneral()

9.27.4 An Example: Determinant of a Hilbert Matrix

Consider the problem of computing the determinant of a 10 by 10 Hilbert matrix. The (i, j)th entry
of a Hilbert matrix is given by 1/(i+j+1).

First do the computation using rational numbers to obtain the exact result.

a: Matrix Fraction Integer := matrix [[1/(i+j+1) for j in 0..9] for i in 0..9]

(1)
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Matrix(Fraction ( Integer ))

This version of determinant uses Gaussian elimination.

d:= determinant a

(2)
1

46206893947914691316295628839036278726983680000000000

Fraction ( Integer )

d :: Float

(3)0.21641792264314918691E − 52

Float

Now use hardware floats. Note that a semicolon (;) is used to prevent the display of the matrix.

b: Matrix DoubleFloat := matrix [[1/(i+j+1 $DoubleFloat) for j in 0..9] for i in 0..9];

Matrix(DoubleFloat)

The result given by hardware floats is correct only to four significant digits of precision. In the jargon
of numerical analysis, the Hilbert matrix is said to be “ill-conditioned.”

determinant b

(5)2.164367794572141e-53

DoubleFloat

Now repeat the computation at a higher precision using Float.

digits 40

(6)20



9.28. FRACTION 517

PositiveInteger

c: Matrix Float := matrix [[1/(i+j+1 $Float ) for j in 0..9] for i in 0..9];

Matrix(Float)

determinant c

(8)0.2164179226431491869060594983622617436159E − 52

Float

Reset digits to its default value.

digits 20

(9)40

PositiveInteger

9.28 Fraction

The Fraction domain implements quotients. The elements must belong to a domain of category
IntegralDomain: multiplication must be commutative and the product of two non-zero elements
must not be zero. This allows you to make fractions of most things you would think of, but don’t
expect to create a fraction of two matrices! The abbreviation for Fraction is FRAC.

Use / to create a fraction.

a := 11/12

(4)
11

12

Fraction ( Integer )

b := 23/24
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(5)
23

24

Fraction ( Integer )

The standard arithmetic operations are available.

3 - a*b^2 + a + b/a

(6)
313271

76032

Fraction ( Integer )

Extract the numerator and denominator by using numer and denom, respectively.

numer(a)

(7)11

PositiveInteger

denom(b)

(8)24

PositiveInteger

Operations like max, min, negative?, positive? and zero? are all available if they are provided for the
numerators and denominators. See ‘Integer’ on page 540 for examples.

Don’t expect a useful answer from factor, gcd or lcm if you apply them to fractions.

r := (x^2 + 2*x + 1)/(x^2 - 2*x + 1)

(9)
x2 + 2x+ 1

x2 − 2x+ 1
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Fraction (Polynomial( Integer ))

Since all non-zero fractions are invertible, these operations have trivial definitions.

factor (r)

(10)
x2 + 2x+ 1

x2 − 2x+ 1

Factored(Fraction (Polynomial( Integer )))

Use map to apply factor to the numerator and denominator, which is probably what you mean.

map (factor ,r)

(11)
(x+ 1)2

(x− 1)2

Fraction (Factored(Polynomial( Integer )))

Other forms of fractions are available. Use continuedFraction to create a continued fraction.

continuedFraction (7/12)

(12)
1|
|1 +

1|
|1 +

1|
|2 +

1|
|2

ContinuedFraction( Integer )

Use partialFraction to create a partial fraction. See ‘ContinuedFraction’ on page 450 and ‘PartialFraction’
on page 662 for additional information and examples.

partialFraction(7 ,12)

(13)1− 3

22
+

1

3

PartialFraction ( Integer )

Use conversion to create alternative views of fractions with objects moved in and out of the numerator
and denominator.

g := 2/3 + 4/5*%i
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(14)
2

3
+

4

5
i

Complex(Fraction(Integer))

Conversion is discussed in detail in Section 2.7 on page 98.

g :: FRAC COMPLEX INT

(15)
10 + 12 i

15

Fraction (Complex(Integer))

9.29 FreeMagma

Initialisations

x:Symbol :=’x

(4)x

Symbol

y:Symbol :=’y

(5)y

Symbol

z:Symbol :=’z

(6)z
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Symbol

word := FreeMonoid (Symbol )

(7)FreeMonoid(Symbol)

Type

tree := FreeMagma (Symbol )

(8)FreeMagma(Symbol)

Type

Let’s make some trees

a:tree := x*x

(9)[x, x]

FreeMagma(Symbol)

b:tree := y*y

(10)[y, y]

FreeMagma(Symbol)

c:tree := a*b

(11)[[x, x] , [y, y]]

FreeMagma(Symbol)

Query the trees

left c
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(12)[x, x]

FreeMagma(Symbol)

right c

(13)[y, y]

FreeMagma(Symbol)

length c

(14)4

PositiveInteger

Coerce to the monoid

c:: word

(15)x
2
y
2

FreeMonoid(Symbol)

Check ordering

a < b

(16)true

Boolean

a < c

(17)true
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Boolean

b < c

(18)true

Boolean

Navigate the tree

first c

(19)x

Symbol

rest c

(20)[x, [y, y]]

FreeMagma(Symbol)

rest rest c

(21)[y, y]

FreeMagma(Symbol)

Check ordering

ax:tree := a*x

(22)[[x, x] , x]

FreeMagma(Symbol)

xa:tree := x*a
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(23)[x, [x, x]]

FreeMagma(Symbol)

xa < ax

(24)true

Boolean

lexico (xa ,ax)

(25)false

Boolean

9.30 FullPartialFractionExpansion

The domain FullPartialFractionExpansion implements factor-free conversion of quotients to full
partial fractions.

Our examples will all involve quotients of univariate polynomials with rational number coefficients.

Fx := FRAC UP(x, FRAC INT)

(4)Fraction(UnivariatePolynomial(x,Fraction(Integer)))

Type

Here is a simple-looking rational function.

f : Fx := 36 / (x^5-2*x^4-2*x^3+4*x^2+x -2)

(5)
36

x5 − 2x4 − 2x3 + 4x2 + x− 2
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Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

We use fullPartialFraction to convert it to an object of type FullPartialFractionExpansion.

g := fullPartialFraction f

(6)
4

x− 2
− 4

x+ 1
+

∑

%A2−1 =0

−3%A− 6

(x−%A)2

FullPartialFractionExpansion (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

Use a coercion to change it back into a quotient.

g :: Fx

(7)
36

x5 − 2x4 − 2x3 + 4x2 + x− 2

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

Full partial fractions differentiate faster than rational functions.

g5 := D(g, 5)

(8)− 480

(x− 2)6
+

480

(x+ 1)6
+

∑

%A2−1 =0

2160%A+ 4320

(x−%A)7

FullPartialFractionExpansion (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

f5 := D(f, 5)

(9)
−544320 x10 + 4354560 x9 − 14696640 x8 + 28615680 x7 − 40085280 x6 + 46656000 x5 − 39411360 x4 + 18247680

x20 − 12 x19 + 53 x18 − 76 x17 − 159 x16 + 676 x15 − 391 x14 − 1596 x13 + 2527 x12 + 1148 x11 − 4977 x10 + 1372 x9 + 4907 x8 − 3444

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

We can check that the two forms represent the same function.

g5::Fx - f5
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(10)0

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

Here are some examples that are more complicated.

f : Fx := (x^5 * (x-1)) / ((x^2 + x + 1)^2 * (x-2) ^3)

(11)
x6 − x5

x7 − 4x6 + 3x5 + 9x3 − 6x2 − 4 x− 8

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

g := fullPartialFraction f

(12)
1952
2401

x− 2
+

464
343

(x− 2)2
+

32
49

(x− 2)3
+

∑

%A2+%A+1 =0

− 179
2401

%A+ 135
2401

x−%A
+

∑

%A2+%A+1 =0

37
1029

%A+ 20
1029

(x−%A)2

FullPartialFractionExpansion (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

g :: Fx - f

(13)0

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

f : Fx := (2*x^7-7*x^5+26* x^3+8*x) / (x^8-5* x^6+6* x^4+4* x^2-8)

(14)
2x7 − 7 x5 + 26x3 + 8x

x8 − 5x6 + 6x4 + 4x2 − 8

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

g := fullPartialFraction f
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(15)
∑

%A2−2 =0

1
2

x−%A
+

∑

%A2−2 =0

1

(x−%A)3
+

∑

%A2+1 =0

1
2

x−%A

FullPartialFractionExpansion (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

g :: Fx - f

(16)0

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

f:Fx := x^3 / (x^21 + 2*x^20 + 4*x^19 + 7*x^18 + 10*x^17 + 17* x^16 + 22*x^15 +

30* x^14 + 36*x^13 + 40*x^12 + 47*x^11 + 46*x^10 + 49* x^9 + 43*x^8 + 38*x^7 +

32* x^6 + 23* x^5 + 19* x^4 + 10*x^3 + 7*x^2 + 2*x + 1)

(17)
x3

x21 + 2 x20 + 4x19 + 7x18 + 10 x17 + 17 x16 + 22 x15 + 30 x14 + 36 x13 + 40 x12 + 47 x11 + 46 x10 + 49 x9 + 43 x8 + 38x7 + 32 x6 + 23

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

g := fullPartialFraction f

∑

%A2+1 =0

1
2
%A

x−%A
+

∑

%A2+%A+1 =0

1
9
%A− 19

27

x−%A
+

∑

%A2+%A+1 =0

1
27

%A− 1
27

(x−%A)2

+
∑

%A5+%A2+1 =0

− 96556567040
912390759099

%A
4 + 420961732891

912390759099
%A

3 − 59101056149
912390759099

%A
2 − 373545875923

912390759099
%A+ 529673492498

912390759099

x−%A

+
∑

%A5+%A2+1 =0

− 5580868
94070601

%A
4 − 2024443

94070601
%A

3 + 4321919
94070601

%A
2 − 84614

1542141
%A− 5070620

94070601

(x−%A)2

+
∑

%A5+%A2+1 =0

1610957
94070601

%A
4 + 2763014

94070601
%A

3 − 2016775
94070601

%A
2 + 266953

94070601
%A+ 4529359

94070601

(x−%A)3

(18)

FullPartialFractionExpansion (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

This verification takes much longer than the conversion to partial fractions.

g :: Fx - f



528 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(19)0

Fraction (UnivariatePolynomial (x, Fraction ( Integer )))

For more information, see the paper: Bronstein, M and Salvy, B. “Full Partial Fraction Decomposition
of Rational Functions,” Proceedings of ISSAC’93, Kiev, ACM Press. All see ‘PartialFraction’ on
page 662 for standard partial fraction decompositions.

9.31 GeneralQuaternion

The domain constructor GeneralQuaternion implements general quaternions over commutative
rings. For information on related topics, see ‘Quaternion’ on page 676, ‘Complex’ on page 447 and
‘Octonion’ on page 642. You can also issue the system command )show GeneralQuaternion to display
the full list of operations defined by GeneralQuaternion.

To use general quaternions we need to explicitly qualify calls. So first we assign initialize domain and
assign it to a variable.

Q2 := GeneralQuaternion(Fraction (Integer ), 2, 3)

(4)GeneralQuaternion(Fraction(Integer), 2, 3)

Type

The basic operation for creating quaternions is quatern.

i := quatern (0, 1, 0, 0) $Q2

(5)i

GeneralQuaternion(Fraction( Integer ) , 2, 3)

In GeneralQuaternion(Fraction(Integer), a, b) squaring i gives a.

i^2

(6)2
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GeneralQuaternion(Fraction( Integer ) , 2, 3)

Similarly for b.

( quatern (0, 0, 1, 0)$Q2 )^2

(7)3

GeneralQuaternion(Fraction( Integer ) , 2, 3)

Yet another quaternion.

q := quatern (2/11 , -8 ,3/4 ,1) $Q2

(8)
2

11
− 8 i+

3

4
j + k

GeneralQuaternion(Fraction( Integer ) , 2, 3)

Because q is over the rationals (and nonzero), you can invert it.

iq := inv q

(9)− 352

239395
− 15488

239395
i+

1452

239395
j +

1936

239395
k

GeneralQuaternion(Fraction( Integer ) , 2, 3)

Check the inverse.

iq*q

(10)1

GeneralQuaternion(Fraction( Integer ) , 2, 3)

The usual arithmetic (ring) operations are available

q^6
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(11)
13785787472776443

7256313856
− 172175104091

1288408
i+

516525312273

41229056
j +

172175104091

10307264
k

GeneralQuaternion(Fraction( Integer ) , 2, 3)

r := quatern (-2,3,23/9,-89) $Q2; q + r

(12)− 20

11
− 5 i+

119

36
j − 88 k

GeneralQuaternion(Fraction( Integer ) , 2, 3)

In general, multiplication is not commutative.

q * r - r * q

(13)
2495

6
i+ 2836 j − 817

18
k

GeneralQuaternion(Fraction( Integer ) , 2, 3)

The norm is the quaternion times its conjugate. Norm is rational, but may be negative.

norm q

(14)− 239395

1936

Fraction ( Integer )

conjugate q

(15)
2

11
+ 8 i− 3

4
j − k

GeneralQuaternion(Fraction( Integer ) , 2, 3)

q * %
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(16)− 239395

1936

GeneralQuaternion(Fraction( Integer ) , 2, 3)

9.32 GeneralSparseTable

Sometimes when working with tables there is a natural value to use as the entry in all but a few cases.
The GeneralSparseTable constructor can be used to provide any table type with a default value
for entries. See ‘Table’ on page 743 for general information about tables. Issue the system command
)show GeneralSparseTable to display the full list of operations defined by GeneralSparseTable.

Suppose we launched a fund-raising campaign to raise fifty thousand dollars. To record the contribu-
tions, we want a table with strings as keys (for the names) and integer entries (for the amount). In a
data base of cash contributions, unless someone has been explicitly entered, it is reasonable to assume
they have made a zero dollar contribution. This creates a keyed access file with default entry 0.

patrons : GeneralSparseTable(String , Integer , KeyedAccessFile(Integer ), 0) := table () ;

GeneralSparseTable(String , Integer , KeyedAccessFile( Integer ) , 0)

Now patrons can be used just as any other table. Here we record two gifts.

patrons ." Smith" := 10500

(5)10500

PositiveInteger

patrons ." Jones" := 22000

(6)22000

PositiveInteger

Now let us look up the size of the contributions from Jones and Stingy.

patrons ." Jones"
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(7)22000

PositiveInteger

patrons ." Stingy "

(8)0

NonNegativeInteger

Have we met our seventy thousand dollar goal?

reduce (+, entries patrons )

(9)32500

PositiveInteger

So the project is cancelled and we can delete the data base:

)system rm -r kaf *.sdata

9.33 GroebnerFactorizationPackage

Solving systems of polynomial equations with the Gröbner basis algorithm can often be very time
consuming because, in general, the algorithm has exponential run-time. These systems, which often
come from concrete applications, frequently have symmetries which are not taken advantage of by the
algorithm. However, it often happens in this case that the polynomials which occur during the Gröbner
calculations are reducible. Since FriCAS has an excellent polynomial factorization algorithm, it is very
natural to combine the Gröbner and factorization algorithms.

GroebnerFactorizationPackage exports the groebnerFactorize operation which implements a mod-
ified Gröbner basis algorithm. In this algorithm, each polynomial that is to be put into the partial
list of the basis is first factored. The remaining calculation is split into as many parts as there are
irreducible factors. Call these factors p1, . . . , pn. In the branches corresponding to p2, . . . , pn, the factor
p1 can be divided out, and so on. This package also contains operations that allow you to specify the
polynomials that are not zero on the common roots of the final Gröbner basis.

Here is an example from chemistry. In a theoretical model of the cyclohexan C6H12, the six carbon
atoms each sit in the center of gravity of a tetrahedron that has two hydrogen atoms and two carbon
atoms at its corners. We first normalize and set the length of each edge to 1. Hence, the distances of



9.33. GROEBNERFACTORIZATIONPACKAGE 533

one fixed carbon atom to each of its immediate neighbours is 1. We will denote the distances to the
other three carbon atoms by x, y and z.

A. Dress developed a theory to decide whether a set of points and distances between them can be
realized in an n-dimensional space. Here, of course, we have n = 3.

mfzn : SQMATRIX (6, DMP ([x,y,z], Fraction INT)) := [[0,1,1,1,1,1], [1,0,1,8/3,x,8/3] ,

[1,1,0,1,8/3,y], [1,8/3,1,0,1,8/3] , [1,x,8/3,1,0,1], [1,8/3,y,8/3 ,1 ,0]]

(4)

















0 1 1 1 1 1
1 0 1 8

3
x 8

3

1 1 0 1 8
3
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1 8
3

1 0 1 8
3

1 x 8
3

1 0 1
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3
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3
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SquareMatrix(6, DistributedMultivariatePolynomial ([ x, y, z ], Fraction ( Integer )))

For the cyclohexan, the distances have to satisfy this equation.

eq := determinant mfzn

(5)− x
2
y
2 +

22

3
x
2
y − 25

9
x
2 +

22

3
x y

2 − 388

9
x y − 250

27
x− 25

9
y
2 − 250

27
y +

14575

81

DistributedMultivariatePolynomial ([ x, y, z ], Fraction ( Integer ))

They also must satisfy the equations given by cyclic shifts of the indeterminates.

groebnerFactorize [eq , eval(eq , [x,y,z], [y,z,x]), eval(eq, [x,y,z], [z,x,y])]

(6)

[[

x y + x z − 22

3
x+ y z − 22

3
y − 22

3
z +

121

3
,

x z
2 − 22

3
x z +

25

9
x+ y z

2 − 22

3
y z +

25

9
y − 22

3
z
2 +

388

9
z +

250

27
,

y
2
z
2 − 22

3
y
2
z+

25

9
y
2 − 22

3
y z

2 +
388

9
y z +

250

27
y+

25

9
z
2 +

250

27
z − 14575

81

]

,

[

x+ y− 21994

5625
,

y
2− 21994

5625
y+

4427

675
, z− 463

87

]

,

[

x
2− 1

2
x z− 11

2
x− 5

6
z+

265

18
, y−z, z

2− 38

3
z+

265

9

]

,

[

x− 25

9
,

y − 11

3
, z − 11

3

]

,

[

x− 11

3
, y − 11

3
, z − 11

3

]

,

[

x+
5

3
, y +

5

3
, z +

5

3

]

,

[

x− 19

3
, y +

5

3
, z +

5

3

]]

List ( List ( DistributedMultivariatePolynomial ([x, y, z ], Fraction ( Integer ))))
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The union of the solutions of this list is the solution of our original problem. If we impose positivity
conditions, we get two relevant ideals. One ideal is zero-dimensional, namely x = y = z = 11/3, and
this determines the “boat” form of the cyclohexan. The other ideal is one-dimensional, which means
that we have a solution space given by one parameter. This gives the “chair” form of the cyclohexan.
The parameter describes the angle of the “back of the chair.”

groebnerFactorize has an optional Boolean-valued second argument. When it is true partial results
are displayed, since it may happen that the calculation does not terminate in a reasonable time. See
the source code for GroebnerFactorizationPackage in groebf.spad for more details about the
algorithms used.

9.34 GroupPresentation

The domain GroupPresentation implements group presentations.

We first expose it to simplify notation.

)expose GroupPresentation

GroupPresentation is now explicitly exposed in frame initial

We create cyclic group.

c3 := groupPresentation ([1], [[1, 1, 1]])

(4)<a | a*a*a>

GroupPresentation

And we convert it to PermutationGroup using Todd-Coxeter coset enumeration.

toPermutationIfCan(c3)

(5)<(1 2 3) >

Union(PermutationGroup(Integer), ...)

For nicer input there is package GroupPresentationFunctions1.

We first assign generators of free group to variables.

fG := FreeGroup (Symbol )
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(6)FreeGroup(Symbol)

Type

a := (^ $fG)(’a, 1)

(7)a

FreeGroup(Symbol)

b := (^ $fG)(’b, 1)

(8)b

FreeGroup(Symbol)

c := (^ $fG)(’c, 1)

(9)c

FreeGroup(Symbol)

Now we give presentation of Mathieu group M12.

m12f := [a^11, b^2, c^2, (a*b)^3, (a*c)^3, (b*c)^10, a^2*(b*c)^2*a*(b*c)^(-2)]

(10)
[

a
11
, b

2
, c

2
, a b a b a b, a c a c a c, b c b c b c b c b c b c b c b c b c b c, a

2
b c b c a c

−1
b
−1

c
−1

b
−1
]

List (FreeGroup(Symbol))

cP := GroupPresentationFunctions1 (Symbol )

(11)GroupPresentationFunctions1(Symbol)
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Type

m12pres := convert ([’a, ’b, ’c], m12f)$cP

(12)<a b c | a*a*a*a*a*a*a*a*a*a*a, b*b, c*c, a*b*a*b*a*b, a*c*a*c*a*c,

b*c*b*c*b*c*b*c*b*c*b*c*b*c*b*c*b*c*b*c, a*a*b*c*b*c*a*-c*-b*-c*-b>

GroupPresentation

And convert it to permutation group. Since Mathieu group has many elements we compute represen-
tation on cosets of group generated by a and b.

m12per := toPermutationIfCan(m12pres , [[1], [2]], false)

(13)<(2 3 5 6 7 8 9 10 11 12 4)(13 14 23 40 41 42 43 44 45 46 26)(15 38 50 51 28 22 25 52 53 54 24)(16 33 21 31 60 61 49 62 59 63 35)

(3 13)(4 14)(5 22)(6 19)(7 17)(8 21)(9 16)(10 20)(11 18)(12 15)(23 24)(25 26)(27 28)(29 30)(31 32)(34 35)(36 37)(38 39)(40 62)(41

(1 2)(3 4)(5 8)(6 10)(7 11)(9 12)(13 22)(14 15)(16 17)(18 19)(20 21)(23 55)(24 56)(25 47)(26 48)(27 49)(28 38)(29 57)(30 80)(31 81)

Union(PermutationGroup(Integer), ...)

To check the result we compute order.

order(m12per :: PermutationGroup(Integer ))

(14)95040

PositiveInteger

9.35 GuessPolynomialInteger

The package GuessPolynomialInteger can guess formulas for sequences of polynomials or rational
functions over integers, given the first few terms. Related packages are GuessInteger for sequences
of rational numbers or rational functions, GuessAlgebraicNumber when sequences contain ale-
braic numbers, GuessPolynomial for polynomials and rational functions with general coefficients
and Guess (general version).

Below we show how to guess recurence relation for squares of Hermite polynomials.

We first need to prepare data.
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hl := [hermiteH (i, x)^2 for i in 0..15];

List (Polynomial( Integer ))

Now guessing proper:

guessPRec (hl , homogeneous == true , maxDegree ==3)

(5)
[[

f(n): − f(n+ 3) +
(

4x2 − 2n− 4
)

f(n+ 2) +
(

(−8n− 16) x2 + 4n2 + 16n+ 16
)

f(n+ 1)

+
(

8n3 + 32n2 + 40n+ 16
)

f(n) = 0, f(0) = 1, f(1) = 4x2
, f(2) = 16 x4 − 16x2 + 4

]]

List (Expression( Integer ))

9.36 Heap

The domain Heap(S) implements a priority queue of objects of type S such that the operation extract!
removes and returns the maximum element. The implementation represents heaps as flexible arrays
(see ‘FlexibleArray’ on page 506). The representation and algorithms give complexity of O(log(n))
for insertion and extractions, and O(n) for construction.

Create a heap of six elements.

h := heap [-4,9,11,2,7,-7]

(4)[11, 9, −4, 2, 7, −7]

Heap(Integer)

Use insert! to add an element.

insert !(3,h)

(5)[11, 9, 3, 2, 7, −7, −4]

Heap(Integer)

The operation extract! removes and returns the maximum element.

extract ! h
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(6)11

PositiveInteger

The internal structure of h has been appropriately adjusted.

h

(7)[9, 7, 3, 2, −4, −7]

Heap(Integer)

Now extract! elements repeatedly until none are left, collecting the elements in a list.

[extract !(h) while not empty ?(h)]

(8)[9, 7, 3, 2, −4, −7]

List ( Integer )

Another way to produce the same result is by defining a heapsort function.

heapsort (x) == (empty ? x => []; cons(extract !(x),heapsort x))

Create another sample heap.

h1 := heap [17,-4,9,-11,2,7,-7]

(10)[17, 2, 9, −11, −4, 7, −7]

Heap(Integer)

Apply heapsort to present elements in order.

heapsort h1

Compiling function heapsort with type Heap(Integer ) -> List(Integer )

(11)[17, 9, 7, 2, −4, −7, −11]
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List ( Integer )

9.37 HexadecimalExpansion

All rationals have repeating hexadecimal expansions. The operation hex returns these expansions
of type HexadecimalExpansion. Operations to access the individual numerals of a hexadecimal
expansion can be obtained by converting the value to RadixExpansion(16). More examples of
expansions are available in the ‘DecimalExpansion’ on page 467, ‘BinaryExpansion’ on page 412, and
‘RadixExpansion’ on page 679.

Issue the system command )show HexadecimalExpansion to display the full list of operations defined
by HexadecimalExpansion.

This is a hexadecimal expansion of a rational number.

r := hex (22/7)

(4)3.249

HexadecimalExpansion

Arithmetic is exact.

r + hex (6/7)

(5)4

HexadecimalExpansion

The period of the expansion can be short or long . . .

[hex (1/i) for i in 350..354]

(6)
[

0.00BB3EE721A54D88, 0.00BAB6561, 0.00BA2E8, 0.00B9A7862A0FF465879D5F, 0.00B92143FA36F5E02E4850FE8DBD78
]

List (HexadecimalExpansion)

or very long!

hex (1/1007)
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(7)0.0041149783F0BF2C7D13933192AF6980619EE345E91EC2BB9D5CCA5C071E40926E54E8DDAE24196C0B2F8A0AAD60DBA57F5D4C8536262210

HexadecimalExpansion

These numbers are bona fide algebraic objects.

p := hex (1/4)*x^2 + hex (2/3)*x + hex (4/9)

(8)0.4 x2 + 0.Ax+ 0.71C

Polynomial(HexadecimalExpansion)

q := D(p, x)

(9)0.8 x+ 0.A

Polynomial(HexadecimalExpansion)

g := gcd(p, q)

(10)x+ 1.5

Polynomial(HexadecimalExpansion)

9.38 Integer

FriCAS provides many operations for manipulating arbitrary precision integers. In this section we will
show some of those that come from Integer itself plus some that are implemented in other packages.
More examples of using integers are in the following sections: ‘Some Numbers’ in Section 1.5 on page 33,
‘IntegerNumberTheoryFunctions’ on page 552, ‘DecimalExpansion’ on page 467, ‘BinaryExpansion’
on page 412, ‘HexadecimalExpansion’ on page 539, and ‘RadixExpansion’ on page 679.
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9.38.1 Basic Functions

The size of an integer in FriCAS is only limited by the amount of computer storage you have available.
The usual arithmetic operations are available.

2^(5678 - 4856 + 2 * 17)

(1)4804810770435008147181540925125924391239526139871682263473855610088084200076308293086342527091412083743074572278211

PositiveInteger

There are a number of ways of working with the sign of an integer. Let’s use this x as an example.

x := -101

(2)− 101

Integer

First of all, there is the absolute value function.

abs (x)

(3)101

PositiveInteger

The sign operation returns -1 if its argument is negative, 0 if zero and 1 if positive.

sign(x)

(4)− 1

Integer

You can determine if an integer is negative in several other ways.

x < 0
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(5)true

Boolean

x <= -1

(6)true

Boolean

negative ?(x)

(7)true

Boolean

Similarly, you can find out if it is positive.

x > 0

(8)false

Boolean

x >= 1

(9)false

Boolean

positive ?(x)

(10)false
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Boolean

This is the recommended way of determining whether an integer is zero.

zero?(x)

(11)false

Boolean

Use the zero? operation whenever you are testing any mathematical object for equality with zero.
This is usually more efficient that using = (think of matrices: it is easier to tell if a matrix is zero
by just checking term by term than constructing another “zero” matrix and comparing the two
matrices term by term) and also avoids the problem that = is usually used for creating equations.

This is the recommended way of determining whether an integer is equal to one.

one ?(x)

(12)false

Boolean

This syntax is used to test equality using =. It says that you want a Boolean (true or false) answer
rather than an equation.

(x = -101) @Boolean

(13)true

Boolean

The operations odd? and even? determine whether an integer is odd or even, respectively. They each
return a Boolean object.

odd ?(x)

(14)true
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Boolean

even?(x)

(15)false

Boolean

The operation gcd computes the greatest common divisor of two integers.

gcd (56788 ,43688)

(16)4

PositiveInteger

The operation lcm computes their least common multiple.

lcm (56788 ,43688)

(17)620238536

PositiveInteger

To determine the maximum of two integers, use max.

max (678 ,567)

(18)678

PositiveInteger

To determine the minimum, use min.

min (678 ,567)

(19)567
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PositiveInteger

The reduce operation is used to extend binary operations to more than two arguments. For example,
you can use reduce to find the maximum integer in a list or compute the least common multiple of all
integers in the list.

reduce (max ,[2,45,-89,78 ,100 , -45])

(20)100

PositiveInteger

reduce (min ,[2,45,-89,78 ,100 , -45])

(21)− 89

Integer

reduce (gcd ,[2,45,-89,78 ,100 , -45])

(22)1

PositiveInteger

reduce (lcm ,[2,45,-89,78 ,100 , -45])

(23)1041300

PositiveInteger

The infix operator “/” is not used to compute the quotient of integers. Rather, it is used to create
rational numbers as described in ‘Fraction’ on page 517.

13 / 4

(24)
13

4
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Fraction ( Integer )

The infix operation quo computes the integer quotient.

13 quo 4

(25)3

PositiveInteger

The infix operation rem computes the integer remainder.

13 rem 4

(26)1

PositiveInteger

One integer is evenly divisible by another if the remainder is zero. The operation exquo can also be
used. See Section 2.5 on page 92 for an example.

zero ?(167604736446952 rem 2003644)

(27)true

Boolean

The operation divide returns a record of the quotient and remainder and thus is more efficient when
both are needed.

d := divide (13 ,4)

(28)[quotient = 3, remainder = 1]

Record(quotient : Integer , remainder: Integer )

d.quotient
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(29)3

PositiveInteger

Records are discussed in detail in Section 2.4 on page 88.

d.remainder

(30)1

PositiveInteger

9.38.2 Primes and Factorization

Use the operation factor to factor integers. It returns an object of type Factored Integer. See
‘Factored’ on page 490 for a discussion of the manipulation of factored objects.

factor 102400

(1)212 52

Factored( Integer )

The operation prime? returns true or false depending on whether its argument is a prime.

prime? 7

(2)true

Boolean

prime? 8

(3)false

Boolean

The operation nextPrime returns the least prime number greater than its argument.

nextPrime 100
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(4)101

PositiveInteger

The operation prevPrime returns the greatest prime number less than its argument.

prevPrime 100

(5)97

PositiveInteger

To compute all primes between two integers (inclusively), use the operation primes.

primes (100 ,175)

(6)[101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173]

List ( Integer )

You might sometimes want to see the factorization of an integer when it is considered a Gaussian
integer. See ‘Complex’ on page 447 for more details.

factor (2 :: Complex Integer )

(7)− i (1 + i)2

Factored(Complex(Integer))

9.38.3 Some Number Theoretic Functions

FriCAS provides several number theoretic operations for integers. More examples are in ‘IntegerNumberTheoryFunctions
on page 552.

The operation fibonacci computes the Fibonacci numbers. The algorithm has running time O (log3(n))
for argument n.

[fibonacci (k) for k in 0..]
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(1)[0, 1, 1, 2, 3, 5, 8, . . .]

Stream(Integer)

The operation legendre computes the Legendre symbol for its two integer arguments where the second
one is prime. If you know the second argument to be prime, use jacobi instead where no check is made.

[legendre (i,11) for i in 0..10]

(2)[0, 1, −1, 1, 1, 1, −1, −1, −1, 1, −1]

List ( Integer )

The operation jacobi computes the Jacobi symbol for its two integer arguments. By convention, 0 is
returned if the greatest common divisor of the numerator and denominator is not 1.

[jacobi (i ,15) for i in 0..9]

(3)[0, 1, 1, 0, 1, 0, 0, −1, 1, 0]

List ( Integer )

The operation eulerPhi computes the values of Euler’s ϕ-function where ϕ(n) equals the number of
positive integers less than or equal to n that are relatively prime to the positive integer n.

[eulerPhi i for i in 1..]

(4)[1, 1, 2, 2, 4, 2, 6, . . .]

Stream(Integer)

The operation moebiusMu computes the Möbius µ function.

[moebiusMu i for i in 1..]

(5)[1, −1, −1, 0, −1, 1, −1, . . .]
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Stream(Integer)

Although they have somewhat limited utility, FriCAS provides Roman numerals.

a := roman (78)

(6)LXXV III

RomanNumeral

b := roman (87)

(7)LXXXV II

RomanNumeral

a + b

(8)CLXV

RomanNumeral

a * b

(9)MMMMMMDCCLXXXV I

RomanNumeral

b rem a

(10)IX

RomanNumeral
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9.39 IntegerLinearDependence

The elements v1, . . . , vn of a module M over a ring R are said to be linearly dependent over R if there
exist c1, . . . , cn in R, not all 0, such that c1v1 + . . . cnvn = 0. If such ci’s exist, they form what is called
a linear dependence relation over R for the vi’s.

The package IntegerLinearDependence provides functions for testing whether some elements of a
module over the integers are linearly dependent over the integers, and to find the linear dependence
relations, if any. Consider the domain of two by two square matrices with integer entries.

M := SQMATRIX (2, INT)

(4)SquareMatrix(2, Integer)

Type

Now create three such matrices.

m1: M := squareMatrix matrix [[1, 2], [0, -1]]

(5)

[

1 2
0 −1

]

SquareMatrix(2, Integer )

m2: M := squareMatrix matrix [[2, 3], [1, -2]]

(6)

[

2 3
1 −2

]

SquareMatrix(2, Integer )

m3: M := squareMatrix matrix [[3, 4], [2, -3]]

(7)

[

3 4
2 −3

]

SquareMatrix(2, Integer )

This tells you whether m1, m2 and m3 are linearly dependent over the integers.

linearlyDependentOverZ ? vector [m1 , m2 , m3]
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(8)true

Boolean

Since they are linearly dependent, you can ask for the dependence relation.

c := linearDependenceOverZ vector [m1, m2 , m3]

(9)[1, −2, 1]

Union(Vector(Integer ) , ...)

This means that the following linear combination should be 0.

c.1 * m1 + c.2 * m2 + c.3 * m3

(10)

[

0 0
0 0

]

SquareMatrix(2, Integer )

When a given set of elements are linearly dependent over R, this also means that at least one of them
can be rewritten as a linear combination of the others with coefficients in the quotient field of R. To
express a given element in terms of other elements, use the operation solveLinearlyOverQ.

solveLinearlyOverQ(vector [m1, m3], m2)

(11)

[

particular =

[

1

2
,
1

2

]

, basis = []

]

Record( particular : Union(Vector(Fraction( Integer )) , ” failed ”), basis : List (Vector(Fraction ( Integer ))))

9.40 IntegerNumberTheoryFunctions

The IntegerNumberTheoryFunctions package contains a variety of operations of interest to number
theorists. Many of these operations deal with divisibility properties of integers. (Recall that an integer
a divides an integer b if there is an integer c such that b = a * c.)

The operation divisors returns a list of the divisors of an integer.
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div144 := divisors (144)

(4)[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144]

List ( Integer )

You can now compute the number of divisors of 144 and the sum of the divisors of 144 by counting
and summing the elements of the list we just created.

#( div144 )

(5)15

PositiveInteger

reduce (+, div144 )

(6)403

PositiveInteger

Of course, you can compute the number of divisors of an integer n, usually denoted d(n), and the sum
of the divisors of an integer n, usually denoted σ(n), without ever listing the divisors of n.

In FriCAS, you can simply call the operations numberOfDivisors and sumOfDivisors.

numberOfDivisors (144)

(7)15

PositiveInteger

sumOfDivisors(144)

(8)403
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PositiveInteger

The key is that d(n) and σ(n) are “multiplicative functions.” This means that when n and m are
relatively prime, that is, when n and m have no prime factor in common, then d(nm) = d(n)d(m) and
σ(nm) = σ(n) σ(m). Note that these functions are trivial to compute when n is a prime power and are
computed for general n from the prime factorization of n. Other examples of multiplicative functions
are σk(n), the sum of the kth powers of the divisors of n and ϕ(n), the number of integers between 1
and n which are prime to n. The corresponding FriCAS operations are called sumOfKthPowerDivisors
and eulerPhi.

An interesting function is µ(n), the Möbius µ function, defined as follows: µ(1) = 1, µ(n) = 0, when n

is divisible by a square, and µ = (−1)k, when n is the product of k distinct primes. The corresponding
FriCAS operation is moebiusMu. This function occurs in the following theorem:

Theorem (Möbius Inversion Formula):
Let f(n) be a function on the positive integers and let F(n) be defined by

F (n) =
∑

d|n
f(d)

where the sum is taken over the positive divisors of n. Then the values of f(n) can be recovered from
the values of F(n):

f(n) =
∑

d|n
µ(n)F (

n

d
)

where again the sum is taken over the positive divisors of n.

When f(n) = 1, then F(n) = d(n). Thus, if you sum µ(d) d(n/d) over the positive divisors d of n,
you should always get 1.

f1(n) == reduce (+,[ moebiusMu (d) * numberOfDivisors(quo(n,d)) for d in divisors (n)])

f1 (200)

Compiling function f1 with type PositiveInteger -> Integer

(10)1

PositiveInteger

f1 (846)

(11)1

PositiveInteger

Similarly, when f(n) = n, then F(n) = σ(n). Thus, if you sum µ(d) σ (n/d) over the positive divisors
d of n, you should always get n.
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f2(n) == reduce (+,[ moebiusMu (d) * sumOfDivisors(quo(n,d)) for d in divisors (n)])

f2 (200)

Compiling function f2 with type PositiveInteger -> Integer

(13)200

PositiveInteger

f2 (846)

(14)846

PositiveInteger

The Möbius inversion formula is derived from the multiplication of formal Dirichlet series. A Dirichlet
series is an infinite series of the form ∞∑

n=1

a(n)n−s

When ∞∑

n=1

a(n)n−s ·
∞∑

n=1

b(n)n−s =

∞∑

n=1

c(n)n−s

then c(n) =
∑

d|n a(d)b(n/d). Recall that the Riemann ζ function is defined by

ζ(s) =
∏

p

(1− p−s)−1 = σ∞
n=1n

−s

where the product is taken over the set of (positive) primes. Thus,

ζ(s)−1 =
∏

p

(1− p−s) = σ∞
n=1µ(n)n

−s

Now if F (n) =
∑

d|n)f(d), then

∑

f(n)n−s · ζ(s) =
∑

F (n)n−s

Thus,

ζ(s)−1 ·
∑

F (n)n−s =
∑

f(n)n−s

and f(n) =
∑

d|n µ(d)F (n/d).

The Fibonacci numbers are defined by F(1) = F(2)= 1 and F(n) = F(n-1)+ F(n-2) for n = 3,4,

.... The operation fibonacci computes the nth Fibonacci number.

fibonacci (25)
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(15)75025

PositiveInteger

[fibonacci (n) for n in 1..15]

(16)[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

List ( Integer )

Fibonacci numbers can also be expressed as sums of binomial coefficients.

fib (n) == reduce (+,[ binomial (n-1-k,k) for k in 0.. quo (n-1,2) ])

fib (25)

Compiling function fib with type PositiveInteger -> Integer

(18)75025

PositiveInteger

[fib(n) for n in 1..15]

(19)[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

List ( Integer )

Quadratic symbols can be computed with the operations legendre and jacobi. The Legendre symbol
(

a
p

)

is defined for integers a and p with p an odd prime number. By definition,
(

a
p

)

, when a is a

square (mod p),
(

a
p

)

, when a is not a square (mod p), and
(

a
p

)

, when a is divisible by p. You

compute
(

a
p

)

via the command legendre(a,p).

legendre (3,5)

(20)− 1
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Integer

legendre (23 ,691)

(21)− 1

Integer

The Jacobi symbol
(

a
p

)

is the usual extension of the Legendre symbol, where n is an arbitrary integer.

The most important property of the Jacobi symbol is the following: if K is a quadratic field with
discriminant d and quadratic character χ, then χ(n) = (d/n). Thus, you can use the Jacobi symbol
to compute, say, the class numbers of imaginary quadratic fields from a standard class number formula.
This function computes the class number of the imaginary quadratic field with discriminant d.

h(d) == quo(reduce (+, [jacobi (d,k) for k in 1.. quo (-d, 2)]), 2 - jacobi (d,2) )

h( -163)

Compiling function h with type Integer -> Integer

(23)1

PositiveInteger

h( -499)

(24)3

PositiveInteger

h( -1832)

(25)26

PositiveInteger
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9.41 Kernel

A kernel is a symbolic function application (such as sin(x + y)) or a symbol (such as x). More
precisely, a non-symbol kernel over a set S is an operator applied to a given list of arguments from S.
The operator has type BasicOperator (see ‘BasicOperator’ on page 408) and the kernel object is
usually part of an expression object (see ‘Expression’ on page 484).

Kernels are created implicitly for you when you create expressions.

x :: Expression Integer

(4)x

Expression( Integer )

You can directly create a “symbol” kernel by using the kernel operation.

kernel x

(5)x

Kernel(Expression( Integer ))

This expression has two different kernels.

sin (x) + cos (x)

(6)sin(x) + cos(x)

Expression( Integer )

The operator kernels returns a list of the kernels in an object of type Expression.

kernels %

(7)[sin(x), cos(x)]

List (Kernel(Expression( Integer )))

This expression also has two different kernels.

sin (x)^2 + sin(x) + cos(x)
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(8)(sin(x))2 + sin(x) + cos(x)

Expression( Integer )

The sin(x) kernel is used twice.

kernels %

(9)[sin(x), cos(x)]

List (Kernel(Expression( Integer )))

An expression need not contain any kernels.

kernels (1 :: Expression Integer )

(10)[]

List (Kernel(Expression( Integer )))

If one or more kernels are present, one of them is designated the main kernel.

mainKernel (cos(x) + tan(x))

(11)tan(x)

Union(Kernel(Expression( Integer )) , ...)

Kernels can be nested. Use height to determine the nesting depth.

height kernel x

(12)1

PositiveInteger

This has height 2 because the x has height 1 and then we apply an operator to that.

height mainKernel (sin x)
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(13)2

PositiveInteger

height mainKernel (sin cos x)

(14)3

PositiveInteger

height mainKernel (sin cos (tan x + sin x))

(15)4

PositiveInteger

Use the operator operation to extract the operator component of the kernel. The operator has type
BasicOperator.

operator mainKernel (sin cos (tan x + sin x))

(16)sin

BasicOperator

Use the name operation to extract the name of the operator component of the kernel. The name has
type Symbol. This is really just a shortcut for a two-step process of extracting the operator and then
calling name on the operator.

name mainKernel (sin cos (tan x + sin x))

(17)sin

Symbol

FriCAS knows about functions such as sin, cos and so on and can make kernels and then expressions
using them. To create a kernel and expression using an arbitrary operator, use operator. Now f can
be used to create symbolic function applications.

f := operator ’f
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(18)f

BasicOperator

e := f(x, y, 10)

(19)f(x, y, 10)

Expression( Integer )

Use the is? operation to learn if the operator component of a kernel is equal to a given operator.

is?(e, f)

(20)true

Boolean

You can also use a symbol or a string as the second argument to is?.

is?(e, ’f)

(21)true

Boolean

Use the argument operation to get a list containing the argument component of a kernel.

argument mainKernel e

(22)[x, y, 10]

List (Expression( Integer ))

Conceptually, an object of type Expression can be thought of a quotient of multivariate polynomials,
where the “variables” are kernels. The arguments of the kernels are again expressions and so the
structure recurses. See ‘Expression’ on page 484 for examples of using kernels to take apart expression
objects.
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9.42 KeyedAccessFile

The domain KeyedAccessFile(S) provides files which can be used as associative tables. Data values
are stored in these files and can be retrieved according to their keys. The keys must be strings so
this type behaves very much like the StringTable(S) domain. The difference is that keyed access
files reside in secondary storage while string tables are kept in memory. For more information on
table-oriented operations, see the description of Table.

Before a keyed access file can be used, it must first be opened. A new file can be created by opening
it for output.

ey: KeyedAccessFile(Integer ) := open ("/ tmp/editor .year", "output ")

(4)"/tmp/editor.year"

KeyedAccessFile( Integer )

Just as for vectors, tables or lists, values are saved in a keyed access file by setting elements.

ey." Char" := 1986

(5)1986

PositiveInteger

ey." Caviness " := 1985

(6)1985

PositiveInteger

ey." Fitch " := 1984

(7)1984

PositiveInteger

Values are retrieved using application, in any of its syntactic forms.

ey." Char"
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(8)1986

PositiveInteger

ey(" Char")

(9)1986

PositiveInteger

ey "Char"

(10)1986

PositiveInteger

Attempting to retrieve a non-existent element in this way causes an error. If it is not known whether
a key exists, you should use the search operation.

search ("Char", ey)

(11)1986

Union(Integer , ...)

search (" Smith", ey)

(12)"failed"

Union(” failed ”, ...)

When an entry is no longer needed, it can be removed from the file.

remove !(" Char", ey)
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(13)1986

Union(Integer , ...)

The keys operation returns a list of all the keys for a given file.

keys ey

(14)["Fitch", "Caviness"]

List (String )

The # operation gives the number of entries.

#ey

(15)2

PositiveInteger

The table view of keyed access files provides safe operations. That is, if the FriCAS program is
terminated between file operations, the file is left in a consistent, current state. This means, however,
that the operations are somewhat costly. For example, after each update the file is closed. Here we
add several more items to the file, then check its contents.

KE := Record (key: String , entry: Integer )

(16)Record(key:String, entry:Integer)

Type

reopen !(ey , "output ")

(17)"/tmp/editor.year"

KeyedAccessFile( Integer )

If many items are to be added to a file at the same time, then it is more efficient to use the write!
operation.

write !(ey , [" van Hulzen ", 1983] $KE)
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(18)[key = "van Hulzen", entry = 1983]

Record(key: String , entry : Integer )

write !(ey , [" Calmet ", 1982] $KE)

(19)[key = "Calmet", entry = 1982]

Record(key: String , entry : Integer )

write !(ey , [" Wang", 1981] $KE)

(20)[key = "Wang", entry = 1981]

Record(key: String , entry : Integer )

close! ey

(21)"/tmp/editor.year"

KeyedAccessFile( Integer )

The read! operation is also available from the file view, but it returns elements in a random order. It
is generally clearer and more efficient to use the keys operation and to extract elements by key.

keys ey

(22)["Wang", "Calmet", "van Hulzen", "Fitch", "Caviness"]

List (String )

members ey

(23)[1981, 1982, 1983, 1984, 1985]
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List ( Integer )

)system rm -r /tmp /editor .year

For more information on related topics, see ‘File’ on page 499, ‘TextFile’ on page 748, and ‘Library’
on page 583. Issue the system command )show KeyedAccessFile to display the full list of operations
defined by KeyedAccessFile.

9.43 LazardSetSolvingPackage

The LazardSetSolvingPackage package constructor solves polynomial systems by means of Lazard
triangular sets. However one condition is relaxed: Regular triangular sets whose saturated ideals have
positive dimension are not necessarily normalized.

The decompositions are computed in two steps. First the algorithm of Moreno Maza (implemented
in the RegularTriangularSet domain constructor) is called. Then the resulting decompositions are
converted into lists of square-free regular triangular sets and the redundant components are removed.
Moreover, zero-dimensional regular triangular sets are normalized.

Note that the way of understanding triangular decompositions is detailed in the example of the Reg-
ularTriangularSet constructor.

The LazardSetSolvingPackage constructor takes six arguments. The first one, R, is the coefficient
ring of the polynomials; it must belong to the category GcdDomain. The second one, E, is the expo-
nent monoid of the polynomials; it must belong to the category OrderedAbelianMonoidSup. the
third one, V, is the ordered set of variables; it must belong to the category OrderedSet. The fourth
one is the polynomial ring; it must belong to the category RecursivePolynomialCategory(R,E,V).
The fifth one is a domain of the category RegularTriangularSetCategory(R,E,V,P) and the last
one is a domain of the category SquareFreeRegularTriangularSetCategory(R,E,V,P). The ab-
breviation for LazardSetSolvingPackage is LAZM3PK.

N.B. For the purpose of solving zero-dimensional algebraic systems, see also LexTriangularPackage
and ZeroDimensionalSolvePackage. These packages are easier to call than LAZM3PK. Moreover, the
ZeroDimensionalSolvePackage package provides operations to compute either the complex roots
or the real roots.

We illustrate now the use of the LazardSetSolvingPackage package constructor with two examples
(Butcher and Vermeer).

Define the coefficient ring.

R := Integer

(4)Integer

Type

Define the list of variables,
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ls : List Symbol := [b1,x,y,z,t,v,u,w]

(5)[b1, x, y, z, t, v, u, w]

List (Symbol)

and make it an ordered set;

V := OVAR(ls)

(6)OrderedVariableList([b1, x, y, z, t, v, u, w])

Type

then define the exponent monoid.

E := IndexedExponents V

(7)IndexedExponents(OrderedVariableList([b1, x, y, z, t, v, u, w]))

Type

Define the polynomial ring.

P := NSMP(R, V)

(8)NewSparseMultivariatePolynomial(Integer,OrderedVariableList([b1, x, y, z, t, v, u, w]))

Type

Let the variables be polynomial.

b1: P := ’b1

(9)b1
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NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

x: P := ’x

(10)x

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

y: P := ’y

(11)y

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

z: P := ’z

(12)z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

t: P := ’t

(13)t

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

u: P := ’u

(14)u

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

v: P := ’v
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(15)v

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

w: P := ’w

(16)w

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

Now call the RegularTriangularSet domain constructor.

T := REGSET (R,E,V,P)

(17)RegularTriangularSet(Integer, IndexedExponents(OrderedVariableList([b1, x, y, z, t, v, u, w])),OrderedVariableList([b1, x, y, z,

Type

Define a polynomial system (the Butcher example).

p0 := b1 + y + z - t - w

(18)b1 + y + z − t− w

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

p1 := 2*z*u + 2*y*v + 2*t*w - 2*w^2 - w - 1

(19)2 v y + 2u z + 2w t− 2w2 − w − 1

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

p2 := 3*z*u^2 + 3*y*v^2 - 3*t*w^2 + 3*w^3 + 3*w^2 - t + 4*w
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(20)3 v2 y + 3u2
z +

(

−3w2 − 1
)

t+ 3w3 + 3w2 + 4w

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

p3 := 6*x*z*v - 6*t*w^2 + 6*w^3 - 3*t*w + 6*w^2 - t + 4*w

(21)6 v z x+
(

−6w2 − 3w − 1
)

t+ 6w3 + 6w2 + 4w

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

p4 := 4*z*u^3+ 4*y*v^3+ 4*t*w^3- 4*w^4 - 6*w^3+ 4*t*w- 10*w^2- w- 1

(22)4 v3 y + 4 u3
z +

(

4w3 + 4w
)

t− 4w4 − 6w3 − 10w2 − w − 1

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

p5 := 8*x*z*u*v +8*t*w^3 -8*w^4 +4* t*w^2 -12*w^3 +4*t*w -14*w^2 -3*w -1

(23)8u v z x+
(

8w3 + 4w2 + 4w
)

t− 8w4 − 12w3 − 14w2 − 3w − 1

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

p6 := 12* x*z*v^2+12* t*w^3 -12*w^4 +12*t*w^2 -18*w^3 +8*t*w -14*w^2 -w -1

(24)12 v2 z x+
(

12w3 + 12w2 + 8w
)

t− 12w4 − 18w3 − 14w2 − w − 1

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

p7 := -24*t*w^3 + 24* w^4 - 24*t*w^2 + 36* w^3 - 8*t*w + 26*w^2 + 7*w + 1

(25)
(

−24w3 − 24w2 − 8w
)

t+ 24w4 + 36w3 + 26w2 + 7w + 1
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NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

lp := [p0 , p1 , p2, p3 , p4 , p5, p6 , p7]

(26)

[

b1 + y + z − t−w, 2 v y + 2u z + 2w t− 2w2 −w − 1,

3 v2 y + 3u2
z +

(

−3w2 − 1
)

t+ 3w3 + 3w2 + 4w,

6 v z x+
(

−6w2 − 3w − 1
)

t+ 6w3 + 6w2 + 4w,

4 v3 y + 4u3
z +

(

4w3 + 4w
)

t− 4w4 − 6w3 − 10w2 − w − 1,

8u v z x+
(

8w3 + 4w2 + 4w
)

t− 8w4 − 12w3 − 14w2 − 3w − 1,

12 v2 z x+
(

12w3 + 12w2 + 8w
)

t− 12w4 − 18w3 − 14w2 − w − 1,
(

−24w3 − 24w2 − 8w
)

t+ 24w4 + 36w3 + 26w2 + 7w + 1
]

List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z, t , v, u, w])))

First of all, let us solve this system in the sense of Lazard by means of the REGSET constructor:

lts := zeroSetSplit(lp ,false)$T

(27)

[

{w + 1, u, v, t+ 1, b1 + y + z + 2} , {w + 1, v, t+ 1, z, b1 + y + 2} ,
{w + 1, t+ 1, z, y, b1 + 2} , {w + 1, v − u, t+ 1, y + z, x, b1 + 2} , {w + 1,

u, t+ 1, y, x, b1 + z + 2} ,
{

144w5 + 216w4 + 96w3 + 6w2 − 11w − 1,
(

12w2 + 9w + 1
)

u− 72w5 − 108w4 − 42w3 − 9w2 − 3w,
(

12w2 + 9w + 1
)

v + 36w4 + 54w3 + 18w2
,

(

24w3 + 24w2 + 8w
)

t− 24w4 − 36w3 − 26w2 − 7w − 1,
(

12u v − 12 u2)
z +

(

12w v + 12w2 + 4
)

t+ (3w − 5) v + 36w4 + 42w3 + 6w2 − 16w,

2 v y + 2u z + 2w t− 2w2 −w − 1,

6 v z x+
(

−6w2 − 3w − 1
)

t+ 6w3 + 6w2 + 4w, b1 + y + z − t− w
}]

List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([b1, x, y, z, t , v, u, w])) ,

OrderedVariableList ([b1, x, y, z, t , v, u, w]), NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x,

y, z, t , v, u, w]))))

We can get the dimensions of each component of a decomposition as follows.

[coHeight (ts) for ts in lts]

(28)[3, 3, 3, 2, 2, 0]
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List (NonNegativeInteger)

The first five sets have a simple shape. However, the last one, which has dimension zero, can be
simplified by using Lazard triangular sets.

Thus we call the SquareFreeRegularTriangularSet domain constructor,

ST := SREGSET (R,E,V,P)

(29)SquareFreeRegularTriangularSet(Integer, IndexedExponents(OrderedVariableList([b1, x, y, z, t, v, u, w])),OrderedVariableList([

Type

and set the LAZM3PK package constructor to our situation.

pack := LAZM3PK (R,E,V,P,T,ST)

(30)LazardSetSolvingPackage(Integer, IndexedExponents(OrderedVariableList([b1, x, y, z, t, v, u, w])),OrderedVariableList([b1, x, y

Type

We are ready to solve the system by means of Lazard triangular sets:

zeroSetSplit(lp ,false )$pack

(31)

[

{w + 1, t+ 1, z, y, b1 + 2} , {w + 1, v, t+ 1, z, b1 + y + 2} , {w + 1, u,

v, t+ 1, b1 + y + z + 2} , {w + 1, v − u, t+ 1, y + z, x, b1 + 2} , {w + 1,

u, t+ 1, y, x, b1 + z + 2} ,
{

144w5 + 216w4 + 96w3 + 6w2 − 11w − 1,

u− 24w4 − 36w3 − 14w2 + w + 1, 3 v − 48w4 − 60w3 − 10w2 + 8w + 2,

t− 24w4 − 36w3 − 14w2 − w + 1, 486 z − 2772w4 − 4662w3 − 2055w2 + 30w + 127,

2916 y − 22752w4 − 30312w3 − 8220w2 + 2064w + 1561,

356 x− 3696w4 − 4536w3 − 968w2 + 822w + 371,

2916 b1− 30600w4 − 46692w3 − 20274w2 − 8076w + 593
}]

List (SquareFreeRegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([b1, x, y, z, t , v, u, w])) ,

OrderedVariableList ([b1, x, y, z, t , v, u, w]), NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x,

y, z, t , v, u, w]))))

We see the sixth triangular set is nicer now: each one of its polynomials has a constant initial.

We follow with the Vermeer example. The ordering is the usual one for this system.

Define the polynomial system.
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f0 := (w - v) ^ 2 + (u - t) ^ 2 - 1

(32)t
2 − 2u t+ v

2 − 2w v + u
2 + w

2 − 1

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

f1 := t ^ 2 - v ^ 3

(33)t
2 − v

3

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

f2 := 2 * t * (w - v) + 3 * v ^ 2 * (u - t)

(34)
(

−3 v2 − 2 v + 2w
)

t+ 3u v
2

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

f3 := (3 * z * v ^ 2 - 1) * (2 * z * t - 1)

(35)6 v2 t z2 +
(

−2 t− 3 v2
)

z + 1

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z , t , v, u, w]))

lf := [f0 , f1 , f2, f3]

(36)
[

t
2− 2u t+ v

2− 2w v+u
2 +w

2− 1, t2− v
3
,
(

−3 v2 − 2 v + 2w
)

t+3u v
2
, 6 v2 t z2 +

(

−2 t− 3 v2
)

z+1
]

List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x, y, z, t , v, u, w])))

First of all, let us solve this system in the sense of Kalkbrener by means of the REGSET constructor:

zeroSetSplit(lf ,true)$T
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(37)
[{

729 u6 +
(

−1458w3 + 729w2 − 4158w − 1685
)

u
4

+
(

729w6 − 1458w5 − 2619w4 − 4892w3 − 297w2 + 5814w + 427
)

u
2 + 729w8

+ 216w7 − 2900w6 − 2376w5 + 3870w4 + 4072w3 − 1188w2 − 1656w + 529,
(

2187 u4 +
(

−4374w3 − 972w2 − 12474w − 2868
)

u
2 + 2187w6 − 1944w5 − 10125w4 − 4800w3 + 2501w2 + 4968w − 1587

)

v

+
(

1944w3 − 108w2)
u
2 + 972w6 + 3024w5 − 1080w4 + 496w3 + 1116w2

,
(

3 v2 + 2 v − 2w
)

t− 3u v
2
,
(

(4 v − 4w) t− 6u v
2)

z
2 +

(

2 t+ 3 v2
)

z − 1
}]

List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([b1, x, y, z, t , v, u, w])) ,

OrderedVariableList ([b1, x, y, z, t , v, u, w]), NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x,

y, z, t , v, u, w]))))

We have obtained one regular chain (i.e. regular triangular set) with dimension 1. This set is in fact
a characterist set of the (radical of) of the ideal generated by the input system lf. Thus we have only
the generic points of the variety associated with lf (for the elimination ordering given by ls).

So let us get now a full description of this variety. Hence, we solve this system in the sense of Lazard
by means of the REGSET constructor:

zeroSetSplit(lf ,false )$T

(38)
[{

729 u6 +
(

−1458w3 + 729w2 − 4158w − 1685
)

u
4

+
(

729w6 − 1458w5 − 2619w4 − 4892w3 − 297w2 + 5814w + 427
)

u
2 + 729w8

+ 216w7 − 2900w6 − 2376w5 + 3870w4 + 4072w3 − 1188w2 − 1656w + 529,
(

2187 u4 +
(

−4374w3 − 972w2 − 12474w − 2868
)

u
2 + 2187w6 − 1944w5 − 10125w4 − 4800w3 + 2501w2 + 4968w − 1587

)

v

+
(

1944w3 − 108w2
)

u
2 + 972w6 + 3024w5 − 1080w4 + 496w3 + 1116w2

,
(

3 v2 + 2 v − 2w
)

t− 3u v
2
,
(

(4 v − 4w) t− 6u v
2)

z
2 +

(

2 t+ 3 v2
)

z − 1
}

,
{

27w4 + 4w3 − 54w2 − 36w + 23, u, (12w + 2) v − 9w2 − 2w + 9, 6 t2 − 2 v − 3w2 + 2w + 3,

2 t z − 1
}

,
{

59049w6 + 91854w5 − 45198w4 + 145152w3 + 63549w2 + 60922w + 21420,
(

31484448266904 w
5 − 18316865522574 w4 + 23676995746098 w3 + 6657857188965 w2 + 8904703998546 w + 3890631403260

)

u
2

+ 94262810316408 w5 − 82887296576616 w4 + 89801831438784 w3

+ 28141734167208 w2 + 38070359425432 w + 16003865949120,
(

243w2 + 36w + 85
)

v
2 +

(

−81u2 − 162w3 + 36w2 + 154w + 72
)

v − 72w3 + 4w2
,

(

3 v2 + 2 v − 2w
)

t− 3u v
2
,
(

(4 v − 4w) t− 6u v
2
)

z
2 +

(

2 t+ 3 v2
)

z − 1
}

,
{

27w4 +4w3− 54w2 − 36w+23, u, (12w + 2) v− 9w2 − 2w+9, 6 t2 − 2 v− 3w2 +2w+3, 3 v2 z− 1
}]

List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([b1, x, y, z, t , v, u, w])) ,

OrderedVariableList ([b1, x, y, z, t , v, u, w]), NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x,

y, z, t , v, u, w]))))

We retrieve our regular chain of dimension 1 and we get three regular chains of dimension 0 corre-
sponding to the degenerated cases. We want now to simplify these zero-dimensional regular chains by
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using Lazard triangular sets. Moreover, this will allow us to prove that the above decomposition has
no redundant component. N.B. Generally, decompositions computed by the REGSET constructor
do not have redundant components. However, to be sure that no redundant component occurs one
needs to use the SREGSET or LAZM3PK constructors.

So let us solve the input system in the sense of Lazard by means of the LAZM3PK constructor:

zeroSetSplit(lf ,false )$pack

(39)
[{

729 u6 +
(

−1458w3 + 729w2 − 4158w − 1685
)

u
4

+
(

729w6 − 1458w5 − 2619w4 − 4892w3 − 297w2 + 5814w + 427
)

u
2 + 729w8

+ 216w7 − 2900w6 − 2376w5 + 3870w4 + 4072w3 − 1188w2 − 1656w + 529,
(

2187 u4 +
(

−4374w3 − 972w2 − 12474w − 2868
)

u
2 + 2187w6 − 1944w5 − 10125w4 − 4800w3 + 2501w2 + 4968w − 1587

)

v

+
(

1944w3 − 108w2
)

u
2 + 972w6 + 3024w5 − 1080w4 + 496w3 + 1116w2

,
(

3 v2 + 2 v − 2w
)

t− 3u v
2
,
(

(4 v − 4w) t− 6u v
2
)

z
2 +

(

2 t+ 3 v2
)

z − 1
}

,
{

81w2 + 18w + 28, 729 u2 − 1890w − 533, 81 v2 + (−162w + 27) v − 72w − 112,

11881 t+ (972w + 2997) u v + (−11448w − 11536) u, 641237934604288 z2

+(((78614584763904 w + 26785578742272) u+ 236143618655616 w + 70221988585728) v + (358520253138432 w + 101922133759488)

+ (32655103844499 w − 44224572465882) u v + (43213900115457 w − 32432039102070) u
}

,
{

27w4 + 4w3 − 54w2 − 36w + 23, u, 218 v − 162w3 + 3w2 + 160w + 153,

109 t2 − 27w3 − 54w2 + 63w + 80, 1744 z +
(

−1458w3 + 27w2 + 1440w + 505
)

t
}

,
{

27w4 + 4w3 − 54w2 − 36w + 23, u, 218 v − 162w3 + 3w2 + 160w + 153,

109 t2 − 27w3 − 54w2 + 63w + 80, 1308 z + 162w3 − 3w2 − 814w − 153
}

,
{

729w4 + 972w3 − 1026w2 + 1684w + 765, 81 u2 + 72w2 + 16w − 72,

702 v − 162w3 − 225w2 + 40w − 99, 11336 t+
(

324w3 − 603w2 − 1718w − 1557
)

u, 595003968 z2

+
((

−963325386w3 − 898607682w2 + 1516286466 w − 3239166186
)

u− 1579048992w3 − 1796454288 w2 + 2428328160 w − 4368495024

+
(

9713133306 w3 + 9678670317 w2 − 16726834476 w + 28144233593
)

u
}]

List (SquareFreeRegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([b1, x, y, z, t , v, u, w])) ,

OrderedVariableList ([b1, x, y, z, t , v, u, w]), NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([b1, x,

y, z, t , v, u, w]))))

Due to square-free factorization, we obtained now four zero-dimensional regular chains. Moreover, each
of them is normalized (the initials are constant). Note that these zero-dimensional components may
be investigated further with the ZeroDimensionalSolvePackage package constructor.

9.44 LexTriangularPackage

The LexTriangularPackage package constructor provides an implementation of the lexTriangular
algorithm (D. Lazard ”Solving Zero-dimensional Algebraic Systems”, J. of Symbol. Comput., 1992).
This algorithm decomposes a zero-dimensional variety into zero-sets of regular triangular sets. Thus
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the input system must have a finite number of complex solutions. Moreover, this system needs to be
a lexicographical Groebner basis.

This package takes two arguments: the coefficient-ring R of the polynomials, which must be a Gcd-
Domain and their set of variables given by ls a List Symbol. The type of the input polynomials
must be NewSparseMultivariatePolynomial(R,V) where V is OrderedVariableList(ls). The
abbreviation for LexTriangularPackage is LEXTRIPK. The main operations are lexTriangular
and squareFreeLexTriangular. The later provide decompositions by means of square-free regular
triangular sets, built with the SREGSET constructor, whereas the former uses the REGSET con-
structor. Note that these constructors also implement another algorithm for solving algebraic systems
by means of regular triangular sets; in that case no computations of Groebner bases are needed and
the input system may have any dimension (i.e. it may have an infinite number of solutions).

The implementation of the lexTriangular algorithm provided in the LexTriangularPackage con-
structor differs from that reported in ”Computations of gcd over algebraic towers of simple exten-
sions” by M. Moreno Maza and R. Rioboo (in proceedings of AAECC11, Paris, 1995). Indeed, the
squareFreeLexTriangular operation removes all multiplicities of the solutions (i.e. the computed
solutions are pairwise different) and the lexTriangular operation may keep some multiplicities; this
later operation runs generally faster than the former.

The interest of the lexTriangular algorithm is due to the following experimental remark. For some
examples, a triangular decomposition of a zero-dimensional variety can be computed faster via a
lexicographical Groebner basis computation than by using a direct method (like that of SREGSET
and REGSET). This happens typically when the total degree of the system relies essentially on its
smallest variable (like in the Katsura systems). When this is not the case, the direct method may give
better timings (like in the Rose system).

Of course, the direct method can also be applied to a lexicographical Groebner basis. However, the
lexTriangular algorithm takes advantage of the structure of this basis and avoids many unnecessary
computations which are performed by the direct method.

For this purpose of solving algebraic systems with a finite number of solutions, see also the ZeroDi-
mensionalSolvePackage. It allows to use both strategies (the lexTriangular algorithm and the direct
method) for computing either the complex or real roots of a system.

Note that the way of understanding triangular decompositions is detailed in the example of the Reg-
ularTriangularSet constructor.

Since the LEXTRIPK package constructor is limited to zero-dimensional systems, it provides a
zeroDimensional? operation to check whether this requirement holds. There is also a groebner

operation to compute the lexicographical Groebner basis of a set of polynomials with type NewS-
parseMultivariatePolynomial(R,V). The elimination ordering is that given by ls (the greatest
variable being the first element of ls). This basis is computed by the FLGM algorithm (Faugere
et al. ”Efficient Computation of Zero-Dimensional Groebner Bases by Change of Ordering” , J. of
Symbol. Comput., 1993) implemented in the LinGroebnerPackage package constructor. Once a
lexicographical Groebner basis is computed, then one can call the operations lexTriangular and
squareFreeLexTriangular. Note that these operations admit an optional argument to produce nor-
malized triangular sets. There is also a zeroSetSplit operation which does all the job from the input
system; an error is produced if this system is not zero-dimensional.

Let us illustrate the facilities of the LEXTRIPK constructor by a famous example, the cyclic-6 root
system. Define the coefficient ring.

R := Integer
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(4)Integer

Type

Define the list of variables,

ls : List Symbol := [a,b,c,d,e,f]

(5)[a, b, c, d, e, f ]

List (Symbol)

and make it an ordered set.

V := OVAR(ls)

(6)OrderedVariableList([a, b, c, d, e, f ])

Type

Define the polynomial ring.

P := NSMP(R, V)

(7)NewSparseMultivariatePolynomial(Integer,OrderedVariableList([a, b, c, d, e, f ]))

Type

Define the polynomials.

p1: P := a*b*c*d*e*f - 1

(8)f e d c b a− 1

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) )

p2: P := a*b*c*d*e +a*b*c*d*f +a*b*c*e*f +a*b*d*e*f +a*c*d*e*f +b*c*d*e*f
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(9)((((e+ f) d+ f e) c+ f e d) b+ f e d c) a+ f e d c b

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) )

p3: P := a*b*c*d + a*b*c*f + a*b*e*f + a*d*e*f + b*c*d*e + c*d*e*f

(10)(((d+ f) c+ f e) b+ f e d)a+ e d c b+ f e d c

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) )

p4: P := a*b*c + a*b*f + a*e*f + b*c*d + c*d*e + d*e*f

(11)((c+ f) b+ f e)a+ d c b+ e d c+ f e d

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) )

p5: P := a*b + a*f + b*c + c*d + d*e + e*f

(12)(b+ f) a+ c b+ d c+ e d+ f e

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) )

p6: P := a + b + c + d + e + f

(13)a+ b+ c+ d+ e+ f

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) )

lp := [p1 , p2 , p3, p4 , p5 , p6]

(14)
[f e d c b a− 1, ((((e+ f) d+ f e) c+ f e d) b+ f e d c) a+ f e d c b,

(((d+ f) c+ f e) b+ f e d)a+ e d c b+ f e d c, ((c+ f) b+ f e)a+ d c b+ e d c+ f e d,

(b+ f) a+ c b+ d c+ e d+ f e, a+ b+ c+ d+ e+ f ]
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List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) ))

Now call LEXTRIPK .

lextripack := LEXTRIPK (R,ls)

(15)LexTriangularPackage(Integer, [a, b, c, d, e, f ])

Type

Compute the lexicographical Groebner basis of the system. This may take between 5 minutes and one
hour, depending on your machine.

lg := groebner (lp) $lextripack ;

List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) ))

Apply lexTriangular to compute a decomposition into regular triangular sets. This should not take
more than 5 seconds.

lexTriangular(lg ,false)$lextripack

(17)
[{

f
6+1, e6−3 f e

5+3 f2
e
4−4 f3

e
3+3 f4

e
2−3 f5

e−1, 3 d+f
2
e
5−4 f3

e
4+4 f4

e
3−2 f5

e
2−2 e+2 f,

c+f, 3 b+2 f2
e
5−5 f3

e
4+5 f4

e
3−10 f5

e
2−4 e+7 f, a−f

2
e
5+3 f3

e
4−3 f4

e
3+4 f5

e
2+3 e−3 f

}

,
{

f
6 − 1, e− f, d− f, c

2 +4 f c+ f
2
, (c− f) b− f c− 5 f2

, a+ b+ c+ 3 f
}

,
{

f
6 − 1, e− f, d− f, c− f,

b
2 +4 f b+ f

2
, a+ b+4 f

}

,
{

f
6 − 1, e− f, d

2 +4 f d+ f
2
, (d− f) c− f d− 5 f2

, b− f, a+ c+ d+3 f
}

,
{

f
36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1,

(

161718564 f12 − 161718564
)

e
2

+
(

−504205 f31 + 1287737951 f25 + 201539391380 f19 + 253982817368 f13 + 201940704665 f7 + 1574134601 f
)

e

− 2818405 f32 + 7198203911 f26 + 1126548149060 f20 + 1416530563364 f14 + 1127377589345 f8

+ 7988820725 f2
,
(

693772639560 f6 − 693772639560
)

d− 462515093040 f2
e
5

+ 1850060372160 f3
e
4 − 1850060372160 f4

e
3 +

(

−24513299931120 f11 − 23588269745040 f
5
)

e
2

+
(

−890810428 f30 + 2275181044754 f24 + 355937263869776 f
18 + 413736880104344 f

12 + 342849304487996 f
6 + 3704966481878

)

e

− 4163798003 f31 + 10634395752169 f25 + 1664161760192806 f
19 + 2079424391370694 f

13

+ 1668153650635921 f
7 + 10924274392693 f,

(

12614047992 f6 − 12614047992
)

c− 7246825 f31

+ 18508536599 f25 + 2896249516034 f19 + 3581539649666 f13 + 2796477571739 f7 − 48094301893 f,
(

693772639560 f6 − 693772639560
)

b− 925030186080 f2
e
5 + 2312575465200 f3

e
4

− 2312575465200 f4
e
3 +

(

−40007555547960 f11 − 35382404617560 f
5)

e
2

+
(

−3781280823 f30 + 9657492291789 f24 + 1511158913397906 f
18 + 1837290892286154 f

12 + 1487216006594361 f
6 + 8077238712093

− 9736390478 f31 + 24866827916734 f25 + 3891495681905296 f
19 + 4872556418871424 f

13

+ 3904047887269606 f
7 + 27890075838538 f, a+ b+ c+ d+ e+ f

}

,
{

f
6 − 1,

e
2 + 4 f e+ f

2
, (e− f) d− f e− 5 f2

, c− f, b− f, a+ d+ e+ 3 f
}]
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List (RegularChain(Integer , [a, b, c, d, e, f ]) )

Note that the first set of the decomposition is normalized (all initials are integer numbers) but not
the second one (normalized triangular sets are defined in the description of the NormalizedTrian-
gularSetCategory constructor). So apply now lexTriangular to produce normalized triangular
sets.

lts := lexTriangular(lg,true)$lextripack

(18)
[{

f
6+1, e6−3 f e

5+3 f2
e
4−4 f3

e
3+3 f4

e
2−3 f5

e−1, 3 d+f
2
e
5−4 f3

e
4+4 f4

e
3−2 f5

e
2−2 e+2 f,

c+f, 3 b+2 f2
e
5−5 f3

e
4+5 f4

e
3−10 f5

e
2−4 e+7 f, a−f

2
e
5+3 f3

e
4−3 f4

e
3+4 f5

e
2+3 e−3 f

}

,
{

f
6 − 1, e− f, d− f, c

2 + 4 f c+ f
2
, b+ c+ 4 f, a− f

}

,
{

f
6 − 1, e− f, d− f, c− f,

b
2 + 4 f b+ f

2
, a+ b+ 4 f

}

,
{

f
6 − 1, e− f, d

2 + 4 f d+ f
2
, c+ d+ 4 f, b− f, a− f

}

,
{

f
36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1, 1387545279120 e2

+
(

4321823003 f31 − 11037922310209 f
25 − 1727506390124986 f

19 − 2176188913464634 f
13 − 1732620732685741 f

7 − 13506088516033

+ 24177661775 f32 − 61749727185325 f
26 − 9664082618092450 f

20

− 12152237485813570 f
14 − 9672870290826025 f

8 − 68544102808525 f2
, 1387545279120 d

+
(

−1128983050 f30 + 2883434331830 f24 + 451234998755840 f
18 + 562426491685760 f

12 + 447129055314890 f
6 − 165557857270

)

e

− 1816935351 f31 + 4640452214013 f25 + 726247129626942 f
19

+ 912871801716798 f
13 + 726583262666877 f

7 + 4909358645961 f,

1387545279120 c+ 778171189 f31 − 1987468196267 f25 − 310993556954378 f
19

− 383262822316802 f
13 − 300335488637543 f

7 + 5289595037041 f, 1387545279120 b

+
(

1128983050 f30 − 2883434331830 f24 − 451234998755840 f18 − 562426491685760 f12 − 447129055314890 f6 + 165557857270
)

e

− 3283058841 f31 + 8384938292463 f25 + 1312252817452422 f
19

+ 1646579934064638 f
13 + 1306372958656407 f

7 + 4694680112151 f,

1387545279120 a+ 1387545279120 e+ 4321823003 f31 − 11037922310209 f25

− 1727506390124986 f
19 − 2176188913464634 f

13 − 1732620732685741 f
7 − 13506088516033 f

}

,
{

f
6 − 1, e2 + 4 f e+ f

2
, d+ e+ 4 f, c− f, b− f, a− f

}]

List (RegularChain(Integer , [a, b, c, d, e, f ]) )

We check that all initials are constant.

[[init(p) for p in (ts :: List(P))] for ts in lts]

(19)[[1, 3, 1, 3, 1, 1] , [1, 1, 1, 1, 1, 1] , [1, 1, 1, 1, 1, 1] , [1, 1, 1, 1, 1, 1] , [1387545279120,

1387545279120, 1387545279120, 1387545279120, 1387545279120, 1] , [1, 1, 1, 1, 1, 1]]

List ( List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e, f ]) )))
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Note that each triangular set in lts is a lexicographical Groebner basis. Recall that a point belongs to
the variety associated with lp if and only if it belongs to that associated with one triangular set ts in
lts.

By running the squareFreeLexTriangular operation, we retrieve the above decomposition.

squareFreeLexTriangular (lg,true)$lextripack

(20)
[{

f
6+1, e6−3 f e

5+3 f2
e
4−4 f3

e
3+3 f4

e
2−3 f5

e−1, 3 d+f
2
e
5−4 f3

e
4+4 f4

e
3−2 f5

e
2−2 e+2 f,

c+f, 3 b+2 f2
e
5−5 f3

e
4+5 f4

e
3−10 f5

e
2−4 e+7 f, a−f

2
e
5+3 f3

e
4−3 f4

e
3+4 f5

e
2+3 e−3 f

}

,
{

f
6 − 1, e− f, d− f, c

2 + 4 f c+ f
2
, b+ c+ 4 f, a− f

}

,
{

f
6 − 1, e− f, d− f, c− f,

b
2 + 4 f b+ f

2
, a+ b+ 4 f

}

,
{

f
6 − 1, e− f, d

2 + 4 f d+ f
2
, c+ d+ 4 f, b− f, a− f

}

,
{

f
36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1, 1387545279120 e2

+
(

4321823003 f31 − 11037922310209 f
25 − 1727506390124986 f

19 − 2176188913464634 f
13 − 1732620732685741 f

7 − 13506088516033

+ 24177661775 f32 − 61749727185325 f
26 − 9664082618092450 f

20

− 12152237485813570 f
14 − 9672870290826025 f

8 − 68544102808525 f2
, 1387545279120 d

+
(

−1128983050 f30 + 2883434331830 f24 + 451234998755840 f
18 + 562426491685760 f

12 + 447129055314890 f
6 − 165557857270

)

e

− 1816935351 f31 + 4640452214013 f25 + 726247129626942 f
19

+ 912871801716798 f
13 + 726583262666877 f

7 + 4909358645961 f,

1387545279120 c+ 778171189 f31 − 1987468196267 f25 − 310993556954378 f
19

− 383262822316802 f
13 − 300335488637543 f

7 + 5289595037041 f, 1387545279120 b

+
(

1128983050 f30 − 2883434331830 f24 − 451234998755840 f18 − 562426491685760 f12 − 447129055314890 f6 + 165557857270
)

e

− 3283058841 f31 + 8384938292463 f25 + 1312252817452422 f
19

+ 1646579934064638 f
13 + 1306372958656407 f

7 + 4694680112151 f,

1387545279120 a+ 1387545279120 e+ 4321823003 f31 − 11037922310209 f25

− 1727506390124986 f
19 − 2176188913464634 f

13 − 1732620732685741 f
7 − 13506088516033 f

}

,
{

f
6 − 1, e2 + 4 f e+ f

2
, d+ e+ 4 f, c− f, b− f, a− f

}]

List (SquareFreeRegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([a, b, c, d, e, f ]) ) ,

OrderedVariableList ([a, b, c, d, e, f ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([a, b, c, d, e,

f ]) )))

Thus the solutions given by lts are pairwise different. We count them as follows.

reduce (+,[ degree (ts) for ts in lts ])

(21)156

PositiveInteger

We can investigate the triangular decomposition lts by using the ZeroDimensionalSolvePackage.
This requires to add an extra variable (smaller than the others) as follows.
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ls2 : List Symbol := concat (ls ,new () $Symbol )

(22)[a, b, c, d, e, f, %A]

List (Symbol)

Then we call the package.

zdpack := ZDSOLVE (R,ls ,ls2)

(23)ZeroDimensionalSolvePackage(Integer, [a, b, c, d, e, f ] , [a, b, c, d, e, f, %A])

Type

We compute a univariate representation of the variety associated with the input system as follows.

concat [univariateSolve(ts)$zdpack for ts in lts ];

List (Record(complexRoots: SparseUnivariatePolynomial( Integer ) , coordinates : List (Polynomial( Integer ))))

Since the univariateSolve operation may split a regular set, it returns a list. This explains the use
of concat.

Look at the last item of the result. It consists of two parts. For any complex root ? of the univariate
polynomial in the first part, we get a tuple of univariate polynomials (in a, ..., f respectively) by
replacing %A by ? in the second part. Each of these tuples t describes a point of the variety
associated with lp by equaling to zero the polynomials in t.

Note that the way of reading these univariate representations is explained also in the example illus-
trating the ZeroDimensionalSolvePackage constructor.

Now, we compute the points of the variety with real coordinates.

concat [realSolve (ts)$zdpack for ts in lts ];

List ( List (RealClosure(Fraction ( Integer ))))

We obtain 24 points given by lists of elements in the RealClosure of Fraction of R. In each list,
the first value corresponds to the indeterminate f, the second to e and so on. See ZeroDimensional-
SolvePackage to learn more about the realSolve operation.
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9.45 Library

The Library domain provides a simple way to store FriCAS values in a file. This domain is similar
to KeyedAccessFile but fewer declarations are needed and items of different types can be saved
together in the same file.

To create a library, you supply a file name.

stuff := library "/tmp/Neat.stuff "

(4)"/tmp/Neat.stuff"

Library

Now values can be saved by key in the file. The keys should be mnemonic, just as the field names are
for records. They can be given either as strings or symbols.

stuff.int := 32^2

(5)1024

PositiveInteger

stuff ." poly" := x^2 + 1

(6)x
2 + 1

Polynomial( Integer )

stuff.str := "Hello"

(7)"Hello"

String

You obtain the set of available keys using the keys operation.

keys stuff
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(8)["str", "poly", "int"]

List (String )

You extract values by giving the desired key in this way.

stuff.poly

(9)x
2 + 1

Polynomial( Integer )

stuff (" poly")

(10)x
2 + 1

Polynomial( Integer )

When the file is no longer needed, you should remove it from the file system.

)system rm -rf /tmp/Neat.stuff

For more information on related topics, see ‘File’ on page 499, ‘TextFile’ on page 748, and ‘KeyedAccessFile’
on page 562. Issue the system command )show Library to display the full list of operations defined
by Library.

9.46 LieExponentials

This example is in just two variables

a: Symbol := ’a

(4)a

Symbol

b: Symbol := ’b
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(5)b

Symbol

Declarations of domains

coef := Fraction (Integer )

(6)Fraction(Integer)

Type

group := LieExponentials(Symbol , coef , 3)

(7)LieExponentials(Symbol,Fraction(Integer), 3)

Type

lpoly := LiePolynomial(Symbol , coef)

(8)LiePolynomial(Symbol,Fraction(Integer))

Type

poly := XPBWPolynomial(Symbol , coef)

(9)XPBWPolynomial(Symbol,Fraction(Integer))

Type

Calculations

ea := exp (a:: lpoly )$group

(10)e
[a]
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LieExponentials (Symbol, Fraction( Integer ) , 3)

eb := exp (b:: lpoly )$group

(11)e
[b]

LieExponentials (Symbol, Fraction( Integer ) , 3)

g: group := ea*eb

(12)e
[b]

e
1

2
[a b2] e[a b]

e
1

2
[a2 b] e[a]

LieExponentials (Symbol, Fraction( Integer ) , 3)

g :: poly

(13)1 + [a] + [b] +
1

2
[a] [a] + [a b] + [b] [a] +

1

2
[b] [b] +

1

6
[a] [a] [a] +

1

2

[

a
2
b
]

+ [a b] [a] +
1

2

[

a b
2]+

1

2
[b] [a] [a] + [b] [a b] +

1

2
[b] [b] [a] +

1

6
[b] [b] [b]

XPBWPolynomial(Symbol, Fraction(Integer))

log (g)$group

(14)[a] + [b] +
1

2
[a b] +

1

12

[

a
2
b
]

+
1

12

[

a b
2
]

LiePolynomial(Symbol, Fraction( Integer ))

g1: group := inv(g)

(15)e
−[b]

e
−[a]
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LieExponentials (Symbol, Fraction( Integer ) , 3)

g*g1

(16)1

LieExponentials (Symbol, Fraction( Integer ) , 3)

9.47 LiePolynomial

Declaration of domains

RN := Fraction Integer

(4)Fraction(Integer)

Type

Lpoly := LiePolynomial(Symbol ,RN)

(5)LiePolynomial(Symbol,Fraction(Integer))

Type

Dpoly := XDPOLY (Symbol ,RN)

(6)XDistributedPolynomial(Symbol,Fraction(Integer))

Type

Lword := LyndonWord Symbol

(7)LyndonWord(Symbol)
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Type

Initialisation

a:Symbol := ’a

(8)a

Symbol

b:Symbol := ’b

(9)b

Symbol

c:Symbol := ’c

(10)c

Symbol

aa: Lpoly := a

(11)[a]

LiePolynomial(Symbol, Fraction( Integer ))

bb: Lpoly := b

(12)[b]

LiePolynomial(Symbol, Fraction( Integer ))

cc: Lpoly := c
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(13)[c]

LiePolynomial(Symbol, Fraction( Integer ))

p : Lpoly := [aa ,bb]

(14)[a b]

LiePolynomial(Symbol, Fraction( Integer ))

q : Lpoly := [p,bb]

(15)
[

a b
2
]

LiePolynomial(Symbol, Fraction( Integer ))

All the Lyndon words of order 4

liste : List Lword := LyndonWordsList([a,b], 4)

(16)
[

[a] , [b] , [a b] ,
[

a
2
b
]

,
[

a b
2
]

,
[

a
3
b
]

,
[

a
2
b
2
]

,
[

a b
3
]]

List (LyndonWord(Symbol))

r: Lpoly := p + q + 3* LiePoly (liste .4) $Lpoly

(17)[a b] + 3
[

a
2
b
]

+
[

a b
2
]

LiePolynomial(Symbol, Fraction( Integer ))

s:Lpoly := [p,r]

(18)− 3
[

a
2
b a b

]

+
[

a b a b
2
]
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LiePolynomial(Symbol, Fraction( Integer ))

t:Lpoly := s + 2* LiePoly (liste .3) - 5* LiePoly (liste .5)

(19)2 [a b]− 5
[

a b
2
]

− 3
[

a
2
b a b

]

+
[

a b a b
2
]

LiePolynomial(Symbol, Fraction( Integer ))

degree t

(20)5

PositiveInteger

mirror t

(21)− 2 [a b]− 5
[

a b
2]− 3

[

a
2
b a b

]

+
[

a b a b
2]

LiePolynomial(Symbol, Fraction( Integer ))

Jacobi Relation

Jacobi (p: Lpoly , q: Lpoly , r: Lpoly ): Lpoly == [[p,q]$Lpoly , r] + [[q,r]$Lpoly , p] +

[[r,p]$Lpoly , q]

Function declaration Jacobi : (LiePolynomial(Symbol ,Fraction (Integer

)), LiePolynomial(Symbol ,Fraction (Integer )), LiePolynomial(Symbol

,Fraction (Integer ))) -> LiePolynomial(Symbol ,Fraction (Integer ))

has been added to workspace .

Tests

test: Lpoly := Jacobi (a,b,b)

Compiling function Jacobi with type (LiePolynomial(Symbol ,Fraction (

Integer )), LiePolynomial(Symbol ,Fraction (Integer )), LiePolynomial

(Symbol ,Fraction (Integer ))) -> LiePolynomial(Symbol ,Fraction (

Integer ))

(23)0
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LiePolynomial(Symbol, Fraction( Integer ))

test: Lpoly := Jacobi (p,q,r)

(24)0

LiePolynomial(Symbol, Fraction( Integer ))

test: Lpoly := Jacobi (r,s,t)

(25)0

LiePolynomial(Symbol, Fraction( Integer ))

Evaluation

eval(p, a, p)$Lpoly

(26)
[

a b
2
]

LiePolynomial(Symbol, Fraction( Integer ))

eval(p, [a,b], [2* bb, 3*aa]) $Lpoly

(27)− 6 [a b]

LiePolynomial(Symbol, Fraction( Integer ))

r: Lpoly := [p,c]

(28)[a b c] + [a c b]

LiePolynomial(Symbol, Fraction( Integer ))

r1: Lpoly := eval(r, [a,b,c], [bb , cc, aa]) $Lpoly
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(29)− [a b c]

LiePolynomial(Symbol, Fraction( Integer ))

r2: Lpoly := eval(r, [a,b,c], [cc , aa, bb]) $Lpoly

(30)− [a c b]

LiePolynomial(Symbol, Fraction( Integer ))

r + r1 + r2

(31)0

LiePolynomial(Symbol, Fraction( Integer ))

9.48 LinearOrdinaryDifferentialOperator

LinearOrdinaryDifferentialOperator(A, diff) is the domain of linear ordinary differential op-
erators with coefficients in a ring A with a given derivation. Issue the system command )show

LinearOrdinaryDifferentialOperator to display the full list of operations defined by Linear-
OrdinaryDifferentialOperator.

9.48.1 Differential Operators with Series Coefficients

Problem: Find the first few coefficients of exp(x)/x^i of Dop(ϕ) where

Dop := D^3 + G/x^2 * D + H/x^3 - 1

phi := sum(s[i]*exp(x)/x^i, i = 0..)

Solution: Define the differential.

Dx: LODO(EXPR INT , f +-> D(f, x))

Dx := D()
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(2)D

LinearOrdinaryDifferentialOperator (Expression( Integer ) , theMap(∗1;anonymousFunction;2;initial ; internal ))

Now define the differential operator Dop.

Dop := Dx^3 + G/x^2* Dx + H/x^3 - 1

(3)D
3 +

G

x2
D +

−x3 +H

x3

LinearOrdinaryDifferentialOperator (Expression( Integer ) , theMap(∗1;anonymousFunction;2;initial ; internal ))

n == 3

phi == reduce (+,[ subscript (s,[i])*exp(x)/x^i for i in 0..n])

phi1 == Dop (phi) / exp x

phi2 == phi1 *x^(n+3)

phi3 == retract (phi2)@(POLY INT)

pans == phi3 ::UP(x,POLY INT)

pans1 == [coefficient (pans , (n+3-i) :: NNI) for i in 2.. n+1]

leq == solve (pans1 ,[ subscript (s,[i]) for i in 1..n])

Evaluate this for several values of n.

leq

Compiling body of rule n to compute value of type PositiveInteger

Compiling body of rule phi to compute value of type Expression (

Integer )

Compiling body of rule phi1 to compute value of type Expression (

Integer )

Compiling body of rule phi2 to compute value of type Expression (

Integer )

Compiling body of rule phi3 to compute value of type Polynomial (

Integer )

Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial (Integer ))
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Compiling body of rule pans1 to compute value of type List(

Polynomial (Integer ))

Compiling body of rule leq to compute value of type List(List(

Equation (Fraction ( Polynomial (Integer )))))

Compiling function G27 with type Integer -> Boolean

(12)

[[

s1 =
s0 G

3
, s2 =

3 s0 H + s0 G
2 + 6 s0 G

18
, s3 =

(9 s0 G+ 54 s0)H + s0 G
3 + 18 s0 G

2 + 72 s0 G

162

]]

List ( List (Equation(Fraction(Polynomial( Integer )))))

n==4

Compiled code for n has been cleared .

Compiled code for leq has been cleared .

Compiled code for pans1 has been cleared .

Compiled code for phi2 has been cleared .

Compiled code for phi has been cleared .

Compiled code for phi3 has been cleared .

Compiled code for phi1 has been cleared .

Compiled code for pans has been cleared .

1 old definition (s) deleted for function or rule n

leq

Compiling body of rule n to compute value of type PositiveInteger

Compiling body of rule phi to compute value of type Expression (

Integer )

Compiling body of rule phi1 to compute value of type Expression (

Integer )

Compiling body of rule phi2 to compute value of type Expression (

Integer )

Compiling body of rule phi3 to compute value of type Polynomial (

Integer )

Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial (Integer ))

Compiling body of rule pans1 to compute value of type List(

Polynomial (Integer ))

Compiling body of rule leq to compute value of type List(List(

Equation (Fraction ( Polynomial (Integer )))))
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(14)

[[

s1 =
s0 G

3
, s2 =

3 s0 H + s0 G
2 + 6 s0 G

18
, s3 =

(9 s0 G+ 54 s0)H + s0 G
3 + 18 s0 G

2 + 72 s0 G

162
,

s4 =
27 s0 H

2 +
(

18 s0 G
2 + 378 s0 G + 1296 s0

)

H + s0 G
4 + 36 s0 G

3 + 396 s0 G
2 + 1296 s0 G

1944

]]

List ( List (Equation(Fraction(Polynomial( Integer )))))

n==7

Compiled code for n has been cleared .

Compiled code for leq has been cleared .

Compiled code for pans1 has been cleared .

Compiled code for phi2 has been cleared .

Compiled code for phi has been cleared .

Compiled code for phi3 has been cleared .

Compiled code for phi1 has been cleared .

Compiled code for pans has been cleared .

1 old definition (s) deleted for function or rule n

leq

Compiling body of rule n to compute value of type PositiveInteger

Compiling body of rule phi to compute value of type Expression (

Integer )

Compiling body of rule phi1 to compute value of type Expression (

Integer )

Compiling body of rule phi2 to compute value of type Expression (

Integer )

Compiling body of rule phi3 to compute value of type Polynomial (

Integer )

Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial (Integer ))

Compiling body of rule pans1 to compute value of type List(

Polynomial (Integer ))

Compiling body of rule leq to compute value of type List(List(

Equation (Fraction ( Polynomial (Integer )))))
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(16)

[[

s1 =
s0 G

3
, s2 =

3 s0 H + s0 G
2 + 6 s0 G

18
, s3 =

(9 s0 G + 54 s0)H + s0 G
3 + 18 s0 G

2 + 72 s0 G

162
,

s4 =
27 s0 H

2 +
(

18 s0 G
2 + 378 s0 G+ 1296 s0

)

H + s0 G
4 + 36 s0 G

3 + 396 s0 G
2 + 1296 s0 G

1944
,

s5 =
(135 s0 G+ 2268 s0)H

2 +
(

30 s0 G
3 + 1350 s0 G

2 + 16416 s0 G+ 38880 s0
)

H + s0 G
5 + 60 s0 G

4 + 1188 s0 G
3 + 9504 s0 G

2 + 25920

29160

s6 =
405 s0 H

3 +
(

405 s0 G
2 + 18468 s0 G+ 174960 s0

)

H2 +
(

45 s0 G
4 + 3510 s0 G

3 + 88776 s0 G
2 + 777600 s0 G+ 1166400 s0

)

H +

524880

s7 =
(2835 s0 G+ 91854 s0)H

3 +
(

945 s0 G
3 + 81648 s0 G

2 + 2082996 s0 G+ 14171760 s0
)

H2 +
(

63 s0 G
5 + 7560 s0 G

4 + 317520 s0 G

List ( List (Equation(Fraction(Polynomial( Integer )))))

9.49 LinearOrdinaryDifferentialOperator1

LinearOrdinaryDifferentialOperator1(A) is the domain of linear ordinary differential operators
with coefficients in the differential ring A. Issue the system command )show LinearOrdinaryDifferentialOperator1

to display the full list of operations defined by LinearOrdinaryDifferentialOperator1.

9.49.1 Differential Operators with Rational Function Coefficients

This example shows differential operators with rational function coefficients. In this case operator
multiplication is non-commutative and, since the coefficients form a field, an operator division algorithm
exists.

We begin by defining RFZ to be the rational functions in x with integer coefficients and Dx to be the
differential operator for d/dx.

RFZ := Fraction UnivariatePolynomial (’x, Integer )

(1)Fraction(UnivariatePolynomial(x, Integer))

Type

x : RFZ := ’x

(2)x
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Fraction (UnivariatePolynomial (x, Integer ))

Dx : LODO1 RFZ := D()

(3)D

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

Operators are created using the usual arithmetic operations.

b : LODO1 RFZ := 3*x^2* Dx^2 + 2*Dx + 1/x

(4)3x2
D

2 + 2D +
1

x

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

a : LODO1 RFZ := b*(5*x*Dx + 7)

(5)15 x3
D

3 +
(

51x2 + 10 x
)

D
2 + 29D +

7

x

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

Operator multiplication corresponds to functional composition.

p := x^2 + 1/x^2

(6)
x4 + 1

x2

Fraction (UnivariatePolynomial (x, Integer ))

Since operator coefficients depend on x, the multiplication is not commutative.

(a*b - b*a) p
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(7)
−75x4 + 540 x− 75

x4

Fraction (UnivariatePolynomial (x, Integer ))

When the coefficients of operator polynomials come from a field, as in this case, it is possible to
define operator division. Division on the left and division on the right yield different results when the
multiplication is non-commutative.

The results of leftDivide and rightDivide are quotient-remainder pairs satisfying:
leftDivide(a,b)= [q, r] such that a = b*q + r

rightDivide(a,b)= [q, r] such that a = q*b + r

In both cases, the degree of the remainder, r, is less than the degree of b.

ld := leftDivide (a,b)

(8)[quotient = 5xD + 7, remainder = 0]

Record(quotient : LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer ))) , remainder:

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer ))))

a = b * ld.quotient + ld.remainder

(9)15x3
D

3 +
(

51 x2 + 10 x
)

D
2 + 29D +

7

x
= 15x3

D
3 +

(

51 x2 + 10 x
)

D
2 + 29D +

7

x

Equation( LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer ))))

The operations of left and right division are so-called because the quotient is obtained by dividing a

on that side by b.

rd := rightDivide (a,b)

(10)

[

quotient = 5xD + 7, remainder = 10D +
5

x

]

Record(quotient : LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer ))) , remainder:

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer ))))

a = rd.quotient * b + rd.remainder
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(11)15x3
D

3 +
(

51 x2 + 10 x
)

D
2 + 29D +

7

x
= 15x3

D
3 +

(

51 x2 + 10 x
)

D
2 + 29D +

7

x

Equation( LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer ))))

Operations rightQuotient and rightRemainder are available if only one of the quotient or remainder are
of interest to you. This is the quotient from right division.

rightQuotient(a,b)

(12)5xD + 7

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

This is the remainder from right division. The corresponding “left” functions leftQuotient and left-
Remainder are also available.

rightRemainder(a,b)

(13)10D +
5

x

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

For exact division, the operations leftExactQuotient and rightExactQuotient are supplied. These return
the quotient but only if the remainder is zero. The call rightExactQuotient(a,b) would yield an
error.

leftExactQuotient(a,b)

(14)5xD + 7

Union( LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer ))) , ...)

The division operations allow the computation of left and right greatest common divisors (leftGcd and
rightGcd) via remainder sequences, and consequently the computation of left and right least common
multiples (rightLcm and leftLcm).

e := leftGcd (a,b)
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(15)3x2
D

2 + 2D +
1

x

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

Note that a greatest common divisor doesn’t necessarily divide a and b on both sides. Here the left
greatest common divisor does not divide a on the right.

leftRemainder(a, e)

(16)0

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

rightRemainder(a, e)

(17)10D +
5

x

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

Similarly, a least common multiple is not necessarily divisible from both sides.

f := rightLcm (a,b)

(18)15 x3
D

3 +
(

51x2 + 10 x
)

D
2 + 29D +

7

x

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

rightRemainder(f, b)

(19)10D +
5

x

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

leftRemainder(f, b)
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(20)0

LinearOrdinaryDifferentialOperator1 (Fraction (UnivariatePolynomial (x, Integer )))

9.50 LinearOrdinaryDifferentialOperator2

LinearOrdinaryDifferentialOperator2(A, M) is the domain of linear ordinary differential opera-
tors with coefficients in the differential ring A and operating on M, an A-module. This includes the cases
of operators which are polynomials in D acting upon scalar or vector expressions of a single variable.
The coefficients of the operator polynomials can be integers, rational functions, matrices or elements of
other domains. Issue the system command )show LinearOrdinaryDifferentialOperator2 to display
the full list of operations defined by LinearOrdinaryDifferentialOperator2.

9.50.1 Differential Operators with Constant Coefficients

This example shows differential operators with rational number coefficients operating on univariate
polynomials.

We begin by making type assignments so we can conveniently refer to univariate polynomials in x over
the rationals.

Q := Fraction Integer

(1)Fraction(Integer)

Type

PQ := UnivariatePolynomial(’x, Q)

(2)UnivariatePolynomial(x,Fraction(Integer))

Type

x: PQ := ’x

(3)x
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UnivariatePolynomial (x, Fraction ( Integer ))

Now we assign Dx to be the differential operator D corresponding to d/dx.

Dx: LODO2 (Q, PQ) := D()

(4)D

LinearOrdinaryDifferentialOperator2 (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

New operators are created as polynomials in D().

a := Dx + 1

(5)D + 1

LinearOrdinaryDifferentialOperator2 (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

b := a + 1/2*Dx^2 - 1/2

(6)
1

2
D

2 +D +
1

2

LinearOrdinaryDifferentialOperator2 (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

To apply the operator a to the value p the usual function call syntax is used.

p := 4*x^2 + 2/3

(7)4x2 +
2

3

UnivariatePolynomial (x, Fraction ( Integer ))

a p

(8)4 x2 + 8x+
2

3
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UnivariatePolynomial (x, Fraction ( Integer ))

Operator multiplication is defined by the identity (a*b) p = a(b(p))

(a * b) p = a b p

(9)2 x2 + 12x+
37

3
= 2x2 + 12x+

37

3

Equation(UnivariatePolynomial (x, Fraction ( Integer )))

Exponentiation follows from multiplication.

c := (1/9)*b*(a + b)^2

(10)
1

72
D

6 +
5

36
D

5 +
13

24
D

4 +
19

18
D

3 +
79

72
D

2 +
7

12
D +

1

8

LinearOrdinaryDifferentialOperator2 (Fraction ( Integer ) , UnivariatePolynomial (x, Fraction ( Integer )))

Finally, note that operator expressions may be applied directly.

(a^2 - 3/4*b + c) (p + 1)

(11)3x2 +
44

3
x+

541

36

UnivariatePolynomial (x, Fraction ( Integer ))

9.50.2 Differential Operators with Matrix Coefficients Operating on Vec-
tors

This is another example of linear ordinary differential operators with non-commutative multiplication.
Unlike the rational function case, the differential ring of square matrices (of a given dimension) with
univariate polynomial entries does not form a field. Thus the number of operations available is more
limited.

In this section, the operators have three by three matrix coefficients with polynomial entries.

PZ := UnivariatePolynomial (x,Integer )
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(1)UnivariatePolynomial(x, Integer)

Type

x:PZ := ’x

(2)x

UnivariatePolynomial (x, Integer )

Mat := SquareMatrix(3, PZ)

(3)SquareMatrix(3,UnivariatePolynomial(x, Integer))

Type

The operators act on the vectors considered as a Mat-module.

Vect := DPMM(3, PZ , Mat , PZ);

Type

Modo := LODO2(Mat , Vect);

Type

The matrix m is used as a coefficient and the vectors p and q are operated upon.

m:Mat := matrix [[x^2,1,0],[1,x^4,0],[0,0,4* x^2]]

(6)





x2 1 0
1 x4 0
0 0 4 x2





SquareMatrix(3, UnivariatePolynomial (x, Integer ))

p:Vect := directProduct [3*x^2+1 ,2* x ,7*x^3+2*x]
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(7)
[

3x2 + 1, 2 x, 7 x3 + 2 x
]

DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) ,

UnivariatePolynomial (x, Integer ))

q: Vect := m * p

(8)
[

3x4 + x
2 + 2x, 2x5 + 3x2 + 1, 28 x5 + 8x3]

DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) ,

UnivariatePolynomial (x, Integer ))

Now form a few operators.

Dx : Modo := D()

(9)D

LinearOrdinaryDifferentialOperator2 (SquareMatrix(3, UnivariatePolynomial (x, Integer )) , DirectProductMatrixModule(3,

UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) , UnivariatePolynomial (x, Integer

)))

a : Modo := Dx + m

(10)D +





x2 1 0
1 x4 0
0 0 4x2





LinearOrdinaryDifferentialOperator2 (SquareMatrix(3, UnivariatePolynomial (x, Integer )) , DirectProductMatrixModule(3,

UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) , UnivariatePolynomial (x, Integer

)))

b : Modo := m*Dx + 1

(11)





x2 1 0
1 x4 0
0 0 4x2



 D +





1 0 0
0 1 0
0 0 1
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LinearOrdinaryDifferentialOperator2 (SquareMatrix(3, UnivariatePolynomial (x, Integer )) , DirectProductMatrixModule(3,

UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) , UnivariatePolynomial (x, Integer

)))

c := a*b

(12)





x2 1 0
1 x4 0
0 0 4 x2



 D
2 +





x4 + 2x+ 2 x4 + x2 0
x4 + x2 x8 + 4x3 + 2 0

0 0 16 x4 + 8x+ 1



 D +





x2 1 0
1 x4 0
0 0 4 x2





LinearOrdinaryDifferentialOperator2 (SquareMatrix(3, UnivariatePolynomial (x, Integer )) , DirectProductMatrixModule(3,

UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) , UnivariatePolynomial (x, Integer

)))

These operators can be applied to vector values.

a p

(13)
[

3x4 + x
2 + 8x, 2x5 + 3x2 + 3, 28 x5 + 8x3 + 21x2 + 2

]

DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) ,

UnivariatePolynomial (x, Integer ))

b p

(14)
[

6x3 + 3x2 + 3, 2x4 + 8x, 84 x4 + 7x3 + 8x2 + 2x
]

DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) ,

UnivariatePolynomial (x, Integer ))

(a + b + c) (p + q)

(15)

[

10 x8 + 12 x7 + 16x6 + 30 x5 + 85x4 + 94 x3 + 40x2 + 40 x+ 17,

10 x12 + 10 x9 + 12x8 + 92 x7 + 6x6 + 32 x5 + 72x4 + 28 x3 + 49x2 + 32 x+ 19,

2240 x8 + 224 x7 + 1280 x6 + 3508 x5 + 492 x4 + 751 x3 + 98 x2 + 18x+ 4
]
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DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer ) , SquareMatrix(3, UnivariatePolynomial (x, Integer )) ,

UnivariatePolynomial (x, Integer ))

9.51 List

A list is a finite collection of elements in a specified order that can contain duplicates. A list is a
convenient structure to work with because it is easy to add or remove elements and the length need
not be constant. There are many different kinds of lists in FriCAS, but the default types (and those
used most often) are created by the List constructor. For example, there are objects of type List
Integer, List Float and List Polynomial Fraction Integer. Indeed, you can even have List List
List Boolean (that is, lists of lists of lists of Boolean values). You can have lists of any type of FriCAS
object.

9.51.1 Creating Lists

The easiest way to create a list with, for example, the elements 2, 4, 5, 6 is to enclose the elements
with square brackets and separate the elements with commas. The spaces after the commas are
optional, but they do improve the readability.

[2, 4, 5, 6]

(1)[2, 4, 5, 6]

List ( PositiveInteger )

To create a list with the single element 1, you can use either [1] or the operation list.

[1]

(2)[1]

List ( PositiveInteger )

list (1)

(3)[1]
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List ( PositiveInteger )

Once created, two lists k and m can be concatenated by issuing append(k,m). append does not physically
join the lists, but rather produces a new list with the elements coming from the two arguments.

append ([1,2,3],[5 ,6 ,7])

(4)[1, 2, 3, 5, 6, 7]

List ( PositiveInteger )

Use cons to append an element onto the front of a list.

cons (10 ,[9 ,8 ,7])

(5)[10, 9, 8, 7]

List ( PositiveInteger )

9.51.2 Accessing List Elements

To determine whether a list has any elements, use the operation empty?.

empty? [x+1]

(1)false

Boolean

Alternatively, equality with explicit empty list [] can be tested.

(rest ([1]) = []) @Boolean

(2)true

Boolean

We’ll use this in some of the following examples.

k := [4,3,7,3,8,5,9,2]
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(3)[4, 3, 7, 3, 8, 5, 9, 2]

List ( PositiveInteger )

Each of the next four expressions extracts the first element of k.

first k

(4)4

PositiveInteger

k.first

(5)4

PositiveInteger

k.1

(6)4

PositiveInteger

k(1)

(7)4

PositiveInteger

The last two forms generalize to k.i and k(i), respectively, where 1 ≤ i ≤ n and n equals the length
of k. This length is calculated by #.

n := #k
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(8)8

PositiveInteger

Performing an operation such as k.i is sometimes referred to as indexing into k or elting into k. The
latter phrase comes about because the name of the operation that extracts elements is called elt. That
is, k.3 is just alternative syntax for elt(k,3). It is important to remember that list indices begin with
1. If we issue k := [1,3,2,9,5] then k.4 returns 9. It is an error to use an index that is not in the
range from 1 to the length of the list.

The last element of a list is extracted by any of the following three expressions.

last k

(9)2

PositiveInteger

k.last

(10)2

PositiveInteger

This form computes the index of the last element and then extracts the element from the list.

k.(#k)

(11)2

PositiveInteger

9.51.3 Changing List Elements

We’ll use this in some of the following examples.

k := [4,3,7,3,8,5,9,2]
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(1)[4, 3, 7, 3, 8, 5, 9, 2]

List ( PositiveInteger )

List elements are reset by using the k.i form on the left-hand side of an assignment. This expression
resets the first element of k to 999.

k.1 := 999

(2)999

PositiveInteger

As with indexing into a list, it is an error to use an index that is not within the proper bounds. Here
you see that k was modified.

k

(3)[999, 3, 7, 3, 8, 5, 9, 2]

List ( PositiveInteger )

The operation that performs the assignment of an element to a particular position in a list is called
setelt!. This operation is destructive in that it changes the list. In the above example, the assignment
returned the value 999 and k was modified. For this reason, lists are called mutable objects: it is
possible to change part of a list (mutate it) rather than always returning a new list reflecting the
intended modifications. Moreover, since lists can share structure, changes to one list can sometimes
affect others.

k := [1,2]

(4)[1, 2]

List ( PositiveInteger )

m := cons(0,k)

(5)[0, 1, 2]
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List ( Integer )

Change the second element of m.

m.2 := 99

(6)99

PositiveInteger

See, m was altered.

m

(7)[0, 99, 2]

List ( Integer )

But what about k? It changed too!

k

(8)[99, 2]

List ( PositiveInteger )

9.51.4 Other Functions

An operation that is used frequently in list processing is that which returns all elements in a list after
the first element.

k := [1,2,3]

(1)[1, 2, 3]

List ( PositiveInteger )

Use the rest operation to do this.

rest k
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(2)[2, 3]

List ( PositiveInteger )

To remove duplicate elements in a list k, use removeDuplicates.

removeDuplicates [4,3,4,3,5,3,4]

(3)[4, 3, 5]

List ( PositiveInteger )

To get a list with elements in the order opposite to those in a list k, use reverse.

reverse [1,2,3,4,5,6]

(4)[6, 5, 4, 3, 2, 1]

List ( PositiveInteger )

To test whether an element is in a list, use member?: member?(a,k) returns true or false depending
on whether a is in k or not.

member ?(1/2 ,[3/4 ,5/6 ,1/2])

(5)true

Boolean

member ?(1/12 ,[3/4 ,5/6 ,1/2])

(6)false

Boolean

As an exercise, the reader should determine how to get a list containing all but the last of the elements
in a given non-empty list k.4

4reverse(rest(reverse(k))) works.
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9.51.5 Dot, Dot

Certain lists are used so often that FriCAS provides an easy way of constructing them. If n and m

are integers, then expand [n..m] creates a list containing n, n+1, ... m. If n > m then the list is
empty. It is actually permissible to leave off the m in the dot-dot construction (see below).

The dot-dot notation can be used more than once in a list construction and with specific elements
being given. Items separated by dots are called segments.

[1..3 ,10 ,20..23]

(1)[1 . . 3, 10 . . 10, 20 . . 23]

List (Segment(PositiveInteger ))

Segments can be expanded into the range of items between the endpoints by using expand.

expand [1..3 ,10 ,20..23]

(2)[1, 2, 3, 10, 20, 21, 22, 23]

List ( Integer )

What happens if we leave off a number on the right-hand side of ..?

expand [1..]

(3)[1, 2, 3, 4, 5, 6, 7, . . .]

Stream(Integer)

What is created in this case is a Stream which is a generalization of a list. See ‘Stream’ on page 728
for more information.

9.52 LLLReduction

The package LLLReduction implements LLL reduction. We show how to use it to find equation
satisfied by imaginary part of fifth primitive root of 1.

digits (24)
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(4)20

PositiveInteger

ii := imag(exp (2.0*% i*%pi/5))

(5)0.951056516295153572116439

Float

lf := [ii^i for i in 0..4]

(6)[1.0, 0.951056516295153572116439, 0.904508497187473712051147,

0.860238700294483461379506, 0.818135621484342140063933]

List (Float)

rel := find_relation(lf, 20) $LLLReduction

(7)[−5, 0, 20, 0, −16]

List ( Integer )

pol := reduce (_+, [ci*x^i for ci in rel for i in 0..4])

(8)− 16x4 + 20 x2 − 5

Polynomial( Integer )

eval(pol , x = ii)

(9)0.0
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Polynomial(Float)

9.53 LyndonWord

Initialisations

a:Symbol :=’a

(4)a

Symbol

b:Symbol :=’b

(5)b

Symbol

c:Symbol :=’c

(6)c

Symbol

lword := LyndonWord (Symbol )

(7)LyndonWord(Symbol)

Type

magma := FreeMagma (Symbol )

(8)FreeMagma(Symbol)
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Type

word := FreeMonoid (Symbol )

(9)FreeMonoid(Symbol)

Type

All Lyndon words of with a, b, c to order 3

LyndonWordsList1([a,b,c],3) $lword

(10)
[

[[a] , [b] , [c]] , [[a b] , [a c] , [b c]] ,
[[

a
2
b
]

,
[

a
2
c
]

,
[

a b
2
]

, [a b c] , [a c b] ,
[

a c
2
]

,
[

b
2
c
]

,
[

b c
2
]]]

OneDimensionalArray(List(LyndonWord(Symbol)))

All Lyndon words of with a, b, c to order 3 in flat list

LyndonWordsList([a,b,c],3) $lword

(11)
[

[a] , [b] , [c] , [a b] , [a c] , [b c] ,
[

a
2
b
]

,
[

a
2
c
]

,
[

a b
2]

, [a b c] , [a c b] ,
[

a c
2]

,
[

b
2
c
]

,
[

b c
2]]

List (LyndonWord(Symbol))

All Lyndon words of with a, b to order 5

lw := LyndonWordsList([a,b],5) $lword

(12)
[

[a] , [b] , [a b] ,
[

a
2
b
]

,
[

a b
2]

,
[

a
3
b
]

,
[

a
2
b
2]

,
[

a b
3]

,
[

a
4
b
]

,
[

a
3
b
2]

,
[

a
2
b a b

]

,
[

a
2
b
3]

,
[

a b a b
2]

,
[

a b
4]]

List (LyndonWord(Symbol))

w1 : word := lw.4 :: word

(13)a
2
b
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FreeMonoid(Symbol)

w2 : word := lw.5 :: word

(14)a b
2

FreeMonoid(Symbol)

Let’s try factoring

factor (a:: word)$lword

(15)[[a]]

List (LyndonWord(Symbol))

factor (w1*w2)$lword

(16)
[[

a
2
b a b

2]]

List (LyndonWord(Symbol))

factor (w2*w2)$lword

(17)
[[

a b
2]

,
[

a b
2]]

List (LyndonWord(Symbol))

factor (w2*w1)$lword

(18)
[[

a b
2
]

,
[

a
2
b
]]

List (LyndonWord(Symbol))

Checks and coercions

lyndon ?(w1)$lword
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(19)true

Boolean

lyndon ?(w1*w2)$lword

(20)true

Boolean

lyndon ?(w2*w1)$lword

(21)false

Boolean

lyndonIfCan (w1)$lword

(22)
[

a
2
b
]

Union(LyndonWord(Symbol), ...)

lyndonIfCan (w2*w1)$lword

(23)"failed"

Union(” failed ”, ...)

lyndon (w1)$lword

(24)
[

a
2
b
]
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LyndonWord(Symbol)

lyndon (w1*w2)$lword

(25)
[

a
2
b a b

2]

LyndonWord(Symbol)

9.54 MakeFunction

It is sometimes useful to be able to define a function given by the result of a calculation. Suppose
that you have obtained the following expression after several computations and that you now want to
tabulate the numerical values of f for x between -1 and +1 with increment 0.1.

expr := (x - exp x + 1)^2 * (sin(x^2) * x + 1)^3

(4)

(

x
3 (ex)2 +

(

−2x4 − 2x3
)

e
x + x

5 + 2x4 + x
3
)

(

sin
(

x
2
))3

+
(

3x2 (ex)2 +
(

−6x3 − 6x2)
e
x + 3x4 + 6x3 + 3 x2

)

(

sin
(

x
2))2

+
(

3x (ex)2 +
(

−6x2 − 6x
)

e
x + 3 x3 + 6x2 + 3x

)

sin
(

x
2)+ (ex)2 + (−2x− 2) ex + x

2 + 2x+ 1

Expression( Integer )

You could, of course, use the function eval within a loop and evaluate expr twenty-one times, but
this would be quite slow. A better way is to create a numerical function f such that f(x) is defined
by the expression expr above, but without retyping expr! The package MakeFunction provides the
operation function which does exactly this. Issue this to create the function f(x) given by expr.

function (expr , f, x)

(5)f

Symbol

To tabulate expr, we can now quickly evaluate f 21 times.

tbl := [f(0.1 * i - 1) for i in 0..20];

Compiling function f with type Float -> Float
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List (Float)

Use the list [x1,...,xn] as the third argument to function to create a multivariate function f(x1

,...,xn).

e := (x - y + 1)^2 * (x^2 * y + 1)^2

(7)x
4
y
4 +

(

−2x5 − 2x4 + 2x2)
y
3 +

(

x
6 + 2 x5 + x

4 − 4 x3 − 4x2 + 1
)

y
2

+
(

2x4 + 4x3 + 2 x2 − 2x− 2
)

y + x
2 + 2x+ 1

Polynomial( Integer )

function (e, g, [x, y])

(8)g

Symbol

In the case of just two variables, they can be given as arguments without making them into a list.

function (e, h, x, y)

(9)h

Symbol

Note that the functions created by function are not limited to floating point numbers, but can be
applied to any type for which they are defined.

m1 := squareMatrix [[1, 2], [3, 4]]

(10)

[

1 2
3 4

]

SquareMatrix(2, Integer )

m2 := squareMatrix [[1, 0], [-1, 1]]
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(11)

[

1 0
−1 1

]

SquareMatrix(2, Integer )

h(m1 , m2)

Compiling function h with type (SquareMatrix(2, Integer ),

SquareMatrix(2, Integer )) -> SquareMatrix(2, Integer )

(12)

[

−7836 8960
−17132 19588

]

SquareMatrix(2, Integer )

For more information, see Section 6.14 on page 195. Issue the system command )show MakeFunction

to display the full list of operations defined by MakeFunction.

9.55 MappingPackage1

Function are objects of type Mapping. In this section we demonstrate some library operations from
the packages MappingPackage1, MappingPackage2, and MappingPackage3 that manipulate
and create functions. Some terminology: a nullary function takes no arguments, a unary function
takes one argument, and a binary function takes two arguments.

We begin by creating an example function that raises a rational number to an integer exponent.

power(q: FRAC INT , n: INT): FRAC INT == q^n

Function declaration power : ( Fraction (Integer ), Integer ) ->

Fraction (Integer ) has been added to workspace .

power (2,3)

Compiling function power with type (Fraction (Integer ), Integer ) ->

Fraction (Integer )

(5)8

Fraction ( Integer )

The twist operation transposes the arguments of a binary function. Here rewop(a, b) is power(b, a).

rewop := twist power
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(6)theMap(twist)

(( Integer , Fraction ( Integer )) → Fraction ( Integer ))

This is 23.

rewop (3, 2)

(7)8

Fraction ( Integer )

Now we define square in terms of power.

square : FRAC INT -> FRAC INT

The curryRight operation creates a unary function from a binary one by providing a constant argument
on the right.

square := curryRight (power , 2)

(9)theMap(curryRight)

(Fraction ( Integer ) → Fraction ( Integer ))

Likewise, the curryLeft operation provides a constant argument on the left.

square 4

(10)16

Fraction ( Integer )

The constantRight operation creates (in a trivial way) a binary function from a unary one: constantRight
(f) is the function g such that g(a,b)= f(a).

squirrel := constantRight(square )$MAPPKG3 (FRAC INT ,FRAC INT ,FRAC INT)

(11)theMap(constantRight)
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(( Fraction ( Integer ) , Fraction ( Integer )) → Fraction ( Integer ))

Likewise, constantLeft(f) is the function g such that g(a,b)= f(b).

squirrel (1/2, 1/3)

(12)
1

4

Fraction ( Integer )

The curry operation makes a unary function nullary.

sixteen := curry(square , 4/1)

(13)theMap(curry)

(() → Fraction ( Integer ))

sixteen ()

(14)16

Fraction ( Integer )

The * operation constructs composed functions.

square2 := square *square

(15)theMap(∗)

(Fraction ( Integer ) → Fraction ( Integer ))

square2 3

(16)81
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Fraction ( Integer )

Use the ^ operation to create functions that are n-fold iterations of other functions.

sc(x: FRAC INT): FRAC INT == x + 1

Function declaration sc : Fraction (Integer ) -> Fraction (Integer ) has

been added to workspace .

This is a list of Mapping objects.

incfns := [sc^i for i in 0..10]

Compiling function sc with type Fraction (Integer ) -> Fraction (

Integer )

(18)
[

theMap(∧), theMap(∧), theMap(∧), theMap(∧), theMap(∧), theMap(∧),

theMap(∧), theMap(∧), theMap(∧), theMap(∧), theMap(∧)
]

List (( Fraction ( Integer ) → Fraction ( Integer )))

This is a list of applications of those functions.

[f 4 for f in incfns ]

(19)[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

List (Fraction ( Integer ))

Use the recur operation for recursion: g := recur f means g(n,x)== f(n,f(n-1,...f(1,x))).

times(n:NNI , i:INT ):INT == n*i

Function declaration times : ( NonNegativeInteger , Integer ) ->

Integer has been added to workspace .

r := recur(times)

Compiling function times with type (NonNegativeInteger , Integer ) ->

Integer

(21)theMap(recur)
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((NonNegativeInteger, Integer ) → Integer )

This is a factorial function.

fact := curryRight (r, 1)

(22)theMap(curryRight)

(NonNegativeInteger → Integer )

fact 4

(23)24

PositiveInteger

Constructed functions can be used within other functions.

mto2ton (m, n) ==

raiser := square ^n

raiser m

This is 32
3

.

mto2ton (3, 3)

Compiling function mto2ton with type (PositiveInteger ,

PositiveInteger) -> Fraction (Integer )

(25)6561

Fraction ( Integer )

Here shiftfib is a unary function that modifies its argument.

shiftfib (r: List INT) : INT ==

t := r.1

r.1 := r.2

r.2 := r.2 + t

t

Function declaration shiftfib : List(Integer ) -> Integer has been

added to workspace .

By currying over the argument we get a function with private state.

fibinit : List INT := [0, 1]
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(27)[0, 1]

List ( Integer )

fibs := curry(shiftfib , fibinit )

Compiling function shiftfib with type List(Integer ) -> Integer

(28)theMap(curry)

(() → Integer )

[fibs() for i in 0..30]

(29)[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,

6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040]

List ( Integer )

9.56 Matrix

The Matrix domain provides arithmetic operations on matrices and standard functions from linear
algebra. This domain is similar to the TwoDimensionalArray domain, except that the entries for
Matrix must belong to a Ring.

9.56.1 Creating Matrices

There are many ways to create a matrix from a collection of values or from existing matrices.

If the matrix has almost all items equal to the same value, use new to create a matrix filled with that
value and then reset the entries that are different.

m : Matrix (Integer ) := new (3,3,0)

(1)





0 0 0
0 0 0
0 0 0
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Matrix( Integer )

To change the entry in the second row, third column to 5, use setelt!.

setelt !(m, 2, 3, 5)

(2)5

PositiveInteger

An alternative syntax is to use assignment.

m(1,2) := 10

(3)10

PositiveInteger

The matrix was destructively modified.

m

(4)





0 10 0
0 0 5
0 0 0





Matrix( Integer )

If you already have the matrix entries as a list of lists, use matrix.

matrix [[1,2,3,4],[0,9,8 ,7]]

(5)

[

1 2 3 4
0 9 8 7

]

Matrix(NonNegativeInteger)

If the matrix is diagonal, use diagonalMatrix.

dm := diagonalMatrix [1,x^2,x^3,x^4,x^5]
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(6)













1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
0 0 0 0 x5













Matrix(Polynomial( Integer ))

Use setRow! and setColumn! to change a row or column of a matrix.

setRow !(dm ,5, vector [1,1,1,1,1])

(7)













1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
1 1 1 1 1













Matrix(Polynomial( Integer ))

setColumn !(dm ,2, vector [y,y,y,y,y])

(8)













1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1













Matrix(Polynomial( Integer ))

Use copy to make a copy of a matrix.

cdm := copy(dm)

(9)













1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1
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Matrix(Polynomial( Integer ))

This is useful if you intend to modify a matrix destructively but want a copy of the original.

setelt !(dm , 4, 1, 1 - x^7)

(10)− x
7 + 1

Polynomial( Integer )

[dm ,cdm]

(11)

























1 y 0 0 0
0 y 0 0 0
0 y x3 0 0

−x7 + 1 y 0 x4 0
1 y 1 1 1













,













1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1

























List (Matrix(Polynomial( Integer )))

Use subMatrix to extract part of an existing matrix. The syntax is subMatrix(m, firstrow, lastrow,
firstcol, lastcol).

subMatrix (dm ,2,3,2,4)

(12)

[

y 0 0
y x3 0

]

Matrix(Polynomial( Integer ))

To change a submatrix, use setsubMatrix!.

d := diagonalMatrix [1.2 , -1.3 ,1.4 , -1.5]

(13)









1.2 0.0 0.0 0.0
0.0 −1.3 0.0 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5











9.56. MATRIX 631

Matrix(Float)

If e is too big to fit where you specify, an error message is displayed. Use subMatrix to extract part of
e, if necessary.

e := matrix [[6.7 ,9.11] ,[ -31.33 ,67.19]]

(14)

[

6.7 9.11
−31.33 67.19

]

Matrix(Float)

This changes the submatrix of d whose upper left corner is at the first row and second column and
whose size is that of e.

setsubMatrix!(d,1,2,e)

(15)









1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5









Matrix(Float)

d

(16)









1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5









Matrix(Float)

Matrices can be joined either horizontally or vertically to make new matrices.

a := matrix [[1/2 ,1/3 ,1/4] ,[1/5 ,1/6 ,1/7]]

(17)

[

1
2

1
3

1
4

1
5

1
6

1
7

]
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Matrix(Fraction ( Integer ))

b := matrix [[3/5 ,3/7 ,3/11] ,[3/13 ,3/17 ,3/19]]

(18)

[

3
5

3
7

3
11

3
13

3
17

3
19

]

Matrix(Fraction ( Integer ))

Use horizConcat to append them side to side. The two matrices must have the same number of rows.

horizConcat (a,b)

(19)

[

1
2

1
3

1
4

3
5

3
7

3
11

1
5

1
6

1
7

3
13

3
17

3
19

]

Matrix(Fraction ( Integer ))

Use vertConcat to stack one upon the other. The two matrices must have the same number of columns.

vab := vertConcat (a,b)

(20)









1
2

1
3

1
4

1
5

1
6

1
7

3
5

3
7

3
11

3
13

3
17

3
19









Matrix(Fraction ( Integer ))

The operation transpose is used to create a new matrix by reflection across the main diagonal.

transpose vab

(21)





1
2

1
5

3
5

3
13

1
3

1
6

3
7

3
17

1
4

1
7

3
11

3
19





Matrix(Fraction ( Integer ))
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9.56.2 Operations on Matrices

FriCAS provides both left and right scalar multiplication.

m := matrix [[1 ,2] ,[3 ,4]]

(1)

[

1 2
3 4

]

Matrix( Integer )

4 * m * (-5)

(2)

[

−20 −40
−60 −80

]

Matrix( Integer )

You can add, subtract, and multiply matrices provided, of course, that the matrices have compatible
dimensions. If not, an error message is displayed.

n := matrix ([[1,0,-2],[-3,5 ,1]])

(3)

[

1 0 −2
−3 5 1

]

Matrix( Integer )

This following product is defined but n * m is not.

m * n

(4)

[

−5 10 0
−9 20 −2

]

Matrix( Integer )

The operations nrows and ncols return the number of rows and columns of a matrix. You can extract
a row or a column of a matrix using the operations row and column. The object returned is a Vector.
Here is the third column of the matrix n.

vec := column (n,3)
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(5)[−2, 1]

Vector( Integer )

You can multiply a matrix on the left by a “row vector” and on the right by a “column vector.”

vec * m

(6)[1, 0]

Vector( Integer )

Of course, the dimensions of the vector and the matrix must be compatible or an error message is
returned.

m * vec

(7)[0, −2]

Vector( Integer )

The operation inverse computes the inverse of a matrix if the matrix is invertible, and returns "failed"
if not. This Hilbert matrix is invertible.

hilb := matrix ([[1/( i + j) for i in 1..3] for j in 1..3])

(8)





1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6





Matrix(Fraction ( Integer ))

inverse (hilb)

(9)





72 −240 180
−240 900 −720
180 −720 600
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Union(Matrix(Fraction( Integer )) , ...)

This matrix is not invertible.

mm := matrix ([[1,2,3,4], [5,6,7,8], [9,10,11,12], [13 ,14 ,15 ,16]])

(10)









1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16









Matrix( Integer )

inverse (mm)

(11)"failed"

Union(” failed ”, ...)

The operation determinant computes the determinant of a matrix provided that the entries of the
matrix belong to a CommutativeRing. The above matrix mm is not invertible and, hence, must
have determinant 0.

determinant (mm)

(12)0

NonNegativeInteger

The operation trace computes the trace of a square matrix.

trace(mm)

(13)34

PositiveInteger

The operation rank computes the rank of a matrix: the maximal number of linearly independent rows
or columns.

rank(mm)
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(14)2

PositiveInteger

The operation nullity computes the nullity of a matrix: the dimension of its null space.

nullity (mm)

(15)2

PositiveInteger

The operation nullSpace returns a list containing a basis for the null space of a matrix. Note that the
nullity is the number of elements in a basis for the null space.

nullSpace (mm)

(16)[[1, −2, 1, 0] , [2, −3, 0, 1]]

List (Vector( Integer ))

The operation rowEchelon returns the row echelon form of a matrix. It is easy to see that the rank of
this matrix is two and that its nullity is also two.

rowEchelon (mm)

(17)









1 2 3 4
0 4 8 12
0 0 0 0
0 0 0 0









Matrix( Integer )

For more information on related topics, see Section 1.7 on page 49, Section 8.4 on page 307, Section
9.27.4 on page 515, ‘Permanent’ on page 665, ‘Vector’ on page 765, ‘OneDimensionalArray’ on page
646, and ‘TwoDimensionalArray’ on page 750. Issue the system command )show Matrix to display
the full list of operations defined by Matrix.
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9.57 Multiset

The domain Multiset(R) is similar to Set(R) except that multiplicities (counts of duplications) are
maintained and displayed. Use the operation multiset to create multisets from lists. All the standard
operations from sets are available for multisets. An element with multiplicity greater than one has the
multiplicity displayed first, then a colon, and then the element.

Create a multiset of integers.

s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]

(4){1, 2 : 2, 3 : 3, 4 : 4, 2 : 5, 6, 7, 10}

Multiset ( PositiveInteger )

The operation insert! adds an element to a multiset.

insert !(3,s)

(5){1, 2 : 2, 4 : 3, 4 : 4, 2 : 5, 6, 7, 10}

Multiset ( PositiveInteger )

Use remove! to remove an element. If a third argument is present, it specifies how many instances to
remove. Otherwise all instances of the element are removed. Display the resulting multiset.

remove !(3,s,1); s

(6){1, 2 : 2, 3 : 3, 4 : 4, 2 : 5, 6, 7, 10}

Multiset ( PositiveInteger )

remove !(5,s); s

(7){1, 2 : 2, 3 : 3, 4 : 4, 6, 7, 10}

Multiset ( PositiveInteger )

The operation count returns the number of copies of a given value.

count (5,s)
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(8)0

NonNegativeInteger

A second multiset.

t := multiset [2,2,2,-9]

(9){3 : 2, −9}

Multiset ( Integer )

The union of two multisets is additive.

U := union(s,t)

(10){10, 7, 6, 4 : 4, 3 : 3, 5 : 2, 1, −9}

Multiset ( Integer )

The intersect operation gives the elements that are in common, with additive multiplicity.

I := intersect (s,t)

(11){5 : 2}

Multiset ( Integer )

The difference of s and t consists of the elements that s has but t does not. Elements are regarded as
indistinguishable, so that if s and t have any element in common, the difference does not contain that
element.

difference (s,t)

(12){10, 7, 6, 4 : 4, 3 : 3, 1}

Multiset ( Integer )

The symmetricDifference is the union of difference(s, t) and difference(t, s).

S := symmetricDifference (s,t)
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(13){1, 3 : 3, 4 : 4, 6, 7, 10, −9}

Multiset ( Integer )

Check that the union of the symmetricDifference and the intersect equals the union of the elements.

(U = union(S,I))@Boolean

(14)true

Boolean

Check some inclusion relations.

t1 := multiset [1,2,2,3]; [t1 < t, t1 < s, t < s, t1 <= s]

(15)[false, true, false, true]

List (Boolean)

9.58 MultivariatePolynomial

The domain constructor MultivariatePolynomial is similar to Polynomial except that it specifies
the variables to be used. Most functions available for Polynomial are available for Multivariate-
Polynomial. The abbreviation for MultivariatePolynomial is MPOLY. The type expressions

MultivariatePolynomial([x,y],Integer) and MPOLY([x,y],INT)

refer to the domain of multivariate polynomials in the variables x and y where the coefficients are
restricted to be integers. The first variable specified is the main variable and the display of the
polynomial reflects this. This polynomial appears with terms in descending powers of the variable
x.

m : MPOLY ([x,y],INT) := (x^2 - x*y^3 +3*y)^2

(4)x
4 − 2 y3

x
3 +

(

y
6 + 6 y

)

x
2 − 6 y4

x+ 9 y2
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MultivariatePolynomial ([ x, y ], Integer )

It is easy to see a different variable ordering by doing a conversion.

m :: MPOLY ([y,x],INT)

(5)x
2
y
6 − 6x y

4 − 2x3
y
3 + 9 y2 + 6x2

y + x
4

MultivariatePolynomial ([ y, x ], Integer )

You can use other, unspecified variables, by using Polynomial in the coefficient type of MPOLY.

p : MPOLY ([x,y],POLY INT )

p := (a^2*x - b*y^2 + 1)^2

(7)a
4
x
2 +

(

−2 a2
b y

2 + 2 a2
)

x+ b
2
y
4 − 2 b y2 + 1

MultivariatePolynomial ([ x, y ], Polynomial( Integer ))

Conversions can be used to re-express such polynomials in terms of the other variables. For example,
you can first push all the variables into a polynomial with integer coefficients.

p :: POLY INT

(8)b
2
y
4 +

(

−2 a2
b x− 2 b

)

y
2 + a

4
x
2 + 2 a2

x+ 1

Polynomial( Integer )

Now pull out the variables of interest.

% :: MPOLY ([a,b],POLY INT)

(9)x
2
a
4 +

(

−2x y
2
b+ 2 x

)

a
2 + y

4
b
2 − 2 y2

b+ 1

MultivariatePolynomial ([a, b ], Polynomial( Integer ))
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Restriction:

FriCAS does not allow you to create types where MultivariatePolynomial is con-
tained in the coefficient type of Polynomial. Therefore, MPOLY([x,y],POLY INT) is
legal but POLY MPOLY([x,y],INT) is not.

Multivariate polynomials may be combined with univariate polynomials to create types with special
structures.

q : UP(x, FRAC MPOLY ([y,z],INT))

This is a polynomial in x whose coefficients are quotients of polynomials in y and z.

q := (x^2 - x*(z+1)/y +2) ^2

(11)x
4 +

−2 z − 2

y
x
3 +

4 y2 + z2 + 2 z + 1

y2
x
2 +

−4 z − 4

y
x+ 4

UnivariatePolynomial (x, Fraction (MultivariatePolynomial ([ y, z ], Integer )))

Use conversions for structural rearrangements. z does not appear in a denominator and so it can be
made the main variable.

q :: UP(z, FRAC MPOLY ([x,y],INT))

(12)
x2

y2
z
2 +

−2 y x3 + 2x2 − 4 y x

y2
z +

y2 x4 − 2 y x3 +
(

4 y2 + 1
)

x2 − 4 y x+ 4 y2

y2

UnivariatePolynomial (z , Fraction (MultivariatePolynomial ([ x, y ], Integer )))

Or you can make a multivariate polynomial in x and z whose coefficients are fractions in polynomials
in y.

q :: MPOLY ([x,z], FRAC UP(y,INT))

(13)x
4 +

(

−2

y
z − 2

y

)

x
3 +

(

1

y2
z
2 +

2

y2
z +

4 y2 + 1

y2

)

x
2 +

(

−4

y
z − 4

y

)

x+ 4

MultivariatePolynomial ([ x, z ], Fraction (UnivariatePolynomial (y, Integer )))

A conversion like q :: MPOLY([x,y], FRAC UP(z,INT)) is not possible in this example because y

appears in the denominator of a fraction. As you can see, FriCAS provides extraordinary flexibility in
the manipulation and display of expressions via its conversion facility.
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For more information on related topics, see ‘Polynomial’ on page 666, ‘UnivariatePolynomial’ on
page 755, and ‘DistributedMultivariatePolynomial’ on page 475. Issue the system command )show

MultivariatePolynomial to display the full list of operations defined by MultivariatePolynomial.

9.59 None

TheNone domain is not very useful for interactive work but it is provided nevertheless for completeness
of the FriCAS type system. Probably the only place you will ever see it is if you enter an empty list
with no type information.

[]

(4)[]

List (None)

Such an empty list can be converted into an empty list of any other type.

[] :: List Float

(5)[]

List (Float)

If you wish to produce an empty list of a particular type directly, such as List NonNegativeInteger,
do it this way.

[] $List(NonNegativeInteger)

(6)[]

List (NonNegativeInteger)

9.60 Octonion

The Octonions, also called the Cayley-Dixon algebra, defined over a commutative ring are an eight-
dimensional non-associative algebra. Their construction from quaternions is similar to the construction
of quaternions from complex numbers (see ‘Quaternion’ on page 676). As Octonion creates an
eight-dimensional algebra, you have to give eight components to construct an octonion.
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oci1 := octon (1,2,3,4,5,6,7,8)

(4)1 + 2 i+ 3 j + 4 k + 5E + 6 I + 7 J + 8K

Octonion(Integer)

oci2 := octon (7,2,3,-4,5,6,-7,0)

(5)7 + 2 i+ 3 j − 4 k + 5E + 6 I − 7J

Octonion(Integer)

Or you can use two quaternions to create an octonion.

oci3 := octon(quatern (-7,-12,3,-10) , quatern (5,6,9,0))

(6)− 7− 12 i+ 3 j − 10 k + 5E + 6 I + 9 J

Octonion(Integer)

You can easily demonstrate the non-associativity of multiplication.

(oci1 * oci2) * oci3 - oci1 * (oci2 * oci3)

(7)2696 i− 2928 j − 4072 k + 16E − 1192 I + 832 J + 2616K

Octonion(Integer)

As with the quaternions, we have a real part, the imaginary parts i, j, k, and four additional imaginary
parts E, I, J and K. These parts correspond to the canonical basis (1,i,j,k,E,I,J,K). For each
basis element there is a component operation to extract the coefficient of the basis element for a given
octonion.

[real oci1 , imagi oci1 , imagj oci1 , imagk oci1 , imagE oci1 , imagI oci1 , imagJ oci1 ,

imagK oci1]

(8)[1, 2, 3, 4, 5, 6, 7, 8]



644 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

List ( PositiveInteger )

A basis with respect to the quaternions is given by (1,E). However, you might ask, what then are the
commuting rules? To answer this, we create some generic elements. We do this in FriCAS by simply
changing the ground ring from Integer to Polynomial Integer.

q : Quaternion Polynomial Integer := quatern (q1 , qi , qj, qk)

(9)q1 + qi i+ qj j + qk k

Quaternion(Polynomial(Integer ))

E : Octonion Polynomial Integer := octon (0,0,0,0,1,0,0,0)

(10)E

Octonion(Polynomial(Integer))

Note that quaternions are automatically converted to octonions in the obvious way.

q * E

(11)q1E + qi I + qj J + qkK

Octonion(Polynomial(Integer))

E * q

(12)q1E − qi I − qj J − qkK

Octonion(Polynomial(Integer))

q * 1$(Octonion Polynomial Integer )

(13)q1 + qi i+ qj j + qk k
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Octonion(Polynomial(Integer))

1$(Octonion Polynomial Integer ) * q

(14)q1 + qi i+ qj j + qk k

Octonion(Polynomial(Integer))

Finally, we check that the norm, defined as the sum of the squares of the coefficients, is a multiplicative
map.

o : Octonion Polynomial Integer := octon(o1, oi , oj , ok, oE , oI , oJ, oK)

(15)o1 + oi i+ oj j + ok k + oE E + oI I + oJ J + oK K

Octonion(Polynomial(Integer))

norm o

(16)ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

Polynomial( Integer )

p : Octonion Polynomial Integer := octon(p1, pi , pj , pk, pE , pI , pJ, pK)

(17)p1 + pi i+ pj j + pk k + pE E + pI I + pJ J + pK K

Octonion(Polynomial(Integer))

Since the result is 0, the norm is multiplicative.

norm(o*p)-norm(p)*norm(p)
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(18)− pk
4

+
(

−2 pj2 − 2 pi2 − 2 pK2 − 2 pJ2 − 2 pI2 − 2 pE2 − 2 p12 + ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

)

pk
2

− pj
4

+
(

−2 pi2 − 2 pK2 − 2 pJ2 − 2 pI2 − 2 pE2 − 2 p12 + ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

)

pj
2

− pi
4 +

(

−2 pK2 − 2 pJ2 − 2 pI2 − 2 pE2 − 2 p12 + ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

)

pi
2

− pK
4 +

(

−2 pJ2 − 2 pI2 − 2 pE2 − 2 p12 + ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

)

pK
2

− pJ
4 +

(

−2 pI2 − 2 pE2 − 2 p12 + ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

)

pJ
2

− pI
4 +

(

−2 pE2 − 2 p12 + ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

)

pI
2

− pE
4 +

(

−2 p12 + ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

)

pE
2

− p14 +
(

ok
2 + oj

2 + oi
2 + oK

2 + oJ
2 + oI

2 + oE
2 + o12

)

p12

Polynomial( Integer )

Issue the system command )show Octonion to display the full list of operations defined by Octonion.

9.61 OneDimensionalArray

The OneDimensionalArray domain is used for storing data in a one-dimensional indexed data
structure. Such an array is a homogeneous data structure in that all the entries of the array must
belong to the same FriCAS domain. Each array has a fixed length specified by the user and arrays
are not extensible. The indexing of one-dimensional arrays is one-based. This means that the “first”
element of an array is given the index 1. See also ‘Vector’ on page 765 and ‘FlexibleArray’ on page
506. To create a one-dimensional array, apply the operation oneDimensionalArray to a list.

oneDimensionalArray [i^2 for i in 1..10]

(4)[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

OneDimensionalArray(PositiveInteger )

Another approach is to first create a, a one-dimensional array of 10 0’s. OneDimensionalArray has
the convenient abbreviation ARRAY1.

a : ARRAY1 INT := new (10 ,0)

(5)[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
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OneDimensionalArray(Integer)

Set each ith element to i, then display the result.

for i in 1..10 repeat a.i := i; a

(6)[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

OneDimensionalArray(Integer)

Square each element by mapping the function i 7→ i2 onto each element.

map !(i +-> i ^ 2,a); a

(7)[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

OneDimensionalArray(Integer)

Reverse the elements in place.

reverse ! a

(8)[100, 81, 64, 49, 36, 25, 16, 9, 4, 1]

OneDimensionalArray(Integer)

Swap the 4th and 5th element.

swap!(a,4,5) ; a

(9)[100, 81, 64, 36, 49, 25, 16, 9, 4, 1]

OneDimensionalArray(Integer)

Sort the elements in place.

sort! a
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(10)[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

OneDimensionalArray(Integer)

Create a new one-dimensional array b containing the last 5 elements of a.

b := a(6..10)

(11)[36, 49, 64, 81, 100]

OneDimensionalArray(Integer)

Replace the first 5 elements of a with those of b.

copyInto !(a,b ,1)

(12)[36, 49, 64, 81, 100, 36, 49, 64, 81, 100]

OneDimensionalArray(Integer)

9.62 Operator

Given any ring R, the ring of the Integer-linear operators over R is called Operator(R). To create
an operator over R, first create a basic operator using the operation operator, and then convert it to
Operator(R) for the R you want. We choose R to be the two by two matrices over the integers.

R := SQMATRIX (2, INT)

(4)SquareMatrix(2, Integer)

Type

Create the operator tilde on R.

t := operator (" tilde ") :: OP(R)



9.62. OPERATOR 649

(5)tilde

Operator(SquareMatrix(2, Integer ))

Since Operator is unexposed we must either package-call operations from it, or expose it explicitly.
For convenience we will do the latter. Expose Operator.

)set expose add constructor Operator

Operator is now explicitly exposed in frame initial

To attach an evaluation function (from R to R) to an operator over R, use evaluate(op, f) where op
is an operator over R and f is a function R → R. This needs to be done only once when the operator is
defined. Note that f must be Integer-linear (that is, f(ax+y)= a f(x)+ f(y) for any integer a, and
any x and y in R). We now attach the transpose map to the above operator t.

evaluate (t, m +-> transpose m)

(6)tilde

Operator(SquareMatrix(2, Integer ))

Operators can be manipulated formally as in any ring: + is the pointwise addition and * is composition.
Any element x of R can be converted to an operator opx over R, and the evaluation function of opx is
left-multiplication by x. Multiplying on the left by this matrix swaps the two rows.

s : R := matrix [[0, 1], [1, 0]]

(7)

[

0 1
1 0

]

SquareMatrix(2, Integer )

Can you guess what is the action of the following operator?

rho := t * s

(8)tilde

[

0 1
1 0

]
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Operator(SquareMatrix(2, Integer ))

Hint: applying rho four times gives the identity, so rho^4-1 should return 0 when applied to any two
by two matrix.

z := rho ^4 - 1

(9)− 1 + tilde

[

0 1
1 0

]

tilde

[

0 1
1 0

]

tilde

[

0 1
1 0

]

tilde

[

0 1
1 0

]

Operator(SquareMatrix(2, Integer ))

Now check with this matrix.

m:R := matrix [[1, 2], [3, 4]]

(10)

[

1 2
3 4

]

SquareMatrix(2, Integer )

z m

(11)

[

0 0
0 0

]

SquareMatrix(2, Integer )

As you have probably guessed by now, rho acts on matrices by rotating the elements clockwise.

rho m

(12)

[

3 1
4 2

]

SquareMatrix(2, Integer )

rho rho m



9.62. OPERATOR 651

(13)

[

4 3
2 1

]

SquareMatrix(2, Integer )

(rho ^3) m

(14)

[

2 4
1 3

]

SquareMatrix(2, Integer )

Do the swapping of rows and transposition commute? We can check by computing their bracket.

b := t * s - s * t

(15)−
[

0 1
1 0

]

tilde+ tilde

[

0 1
1 0

]

Operator(SquareMatrix(2, Integer ))

Now apply it to m.

b m

(16)

[

1 −3
3 −1

]

SquareMatrix(2, Integer )

Next we demonstrate how to define a differential operator on a polynomial ring. This is the recursive
definition of the n-th Legendre polynomial.

L n ==

n = 0 => 1

n = 1 => x

(2*n-1) /n * x * L(n-1) - (n-1)/n * L(n-2)

Create the differential operator d
dx on polynomials in x over the rational numbers.

dx := operator ("D") :: OP(POLY FRAC INT)



652 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(18)D

Operator(Polynomial(Fraction( Integer )))

Now attach the map to it.

evaluate (dx, p +-> D(p, ’x))

(19)D

Operator(Polynomial(Fraction( Integer )))

This is the differential equation satisfied by the n-th Legendre polynomial.

E n == (1 - x^2) * dx^2 - 2 * x * dx + n*(n+1)

Now we verify this for n = 15. Here is the polynomial.

L 15

Compiling function L with type Integer -> Polynomial (Fraction (

Integer ))

Compiling function L as a recurrence relation .

9694845

2048
x
15 − 35102025

2048
x
13 +

50702925

2048
x
11 − 37182145

2048
x
9 +

14549535

2048
x
7 − 2909907

2048
x
5 +

255255

2048
x
3 − 6435

2048
x

(21)

Polynomial(Fraction ( Integer ))

Here is the operator.

E 15

Compiling function E with type PositiveInteger -> Operator (

Polynomial (Fraction (Integer )))

(22)240− 2xD +
(

−x
2 + 1

)

D
2
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Operator(Polynomial(Fraction( Integer )))

Here is the evaluation.

(E 15) (L 15)

(23)0

Polynomial(Fraction ( Integer ))

9.63 OrderedVariableList

The domain OrderedVariableList provides symbols which are restricted to a particular list and have
a definite ordering. Those two features are specified by a List Symbol object that is the argument to
the domain. This is a sample ordering of three symbols.

ls:List Symbol :=[’x,’a,’z]

(4)[x, a, z]

List (Symbol)

Let’s build the domain

Z:= OVAR ls

(5)OrderedVariableList([x, a, z])

Type

How many variables does it have?

size()$Z

(6)3
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NonNegativeInteger

They are (in the imposed order)

lv:=[ index(i::PI)$Z for i in 1.. size()$Z]

Compiling function G9 with type Integer -> Boolean

Compiling function G11 with type NonNegativeInteger -> Boolean

(7)[x, a, z]

List ( OrderedVariableList ([x, a, z ]) )

Check that the ordering is right

sorted ?(>,lv)

(8)true

Boolean

9.64 OrderlyDifferentialPolynomial

Many systems of differential equations may be transformed to equivalent systems of ordinary differ-
ential equations where the equations are expressed polynomially in terms of the unknown functions.
In FriCAS, the domain constructors OrderlyDifferentialPolynomial (abbreviated ODPOL) and
SequentialDifferentialPolynomial (abbreviation SDPOL) implement two domains of ordinary dif-
ferential polynomials over any differential ring. In the simplest case, this differential ring is usually
either the ring of integers, or the field of rational numbers. However, FriCAS can handle ordinary
differential polynomials over a field of rational functions in a single indeterminate.

The two domains ODPOL and SDPOL are almost identical, the only difference being the choice of a
different ranking, which is an ordering of the derivatives of the indeterminates. The first domain uses
an orderly ranking, that is, derivatives of higher order are ranked higher, and derivatives of the same
order are ranked alphabetically. The second domain uses a sequential ranking, where derivatives are
ordered first alphabetically by the differential indeterminates, and then by order. A more general do-
main constructor, DifferentialSparseMultivariatePolynomial (abbreviation DSMP) allows both
a user-provided list of differential indeterminates as well as a user-defined ranking. We shall illus-
trate ODPOL(FRAC INT), which constructs a domain of ordinary differential polynomials in an
arbitrary number of differential indeterminates with rational numbers as coefficients.

dpol:= ODPOL (FRAC INT )
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(4)OrderlyDifferentialPolynomial(Fraction(Integer))

Type

A differential indeterminate w may be viewed as an infinite sequence of algebraic indeterminates, which
are the derivatives of w. To facilitate referencing these, FriCAS provides the operation makeVariable to
convert an element of type Symbol to a map from the natural numbers to the differential polynomial
ring.

w := makeVariable(’w)$dpol

(5)theMap(makeVariable)

(NonNegativeInteger → OrderlyDifferentialPolynomial (Fraction ( Integer )))

z := makeVariable(’z)$dpol

(6)theMap(makeVariable)

(NonNegativeInteger → OrderlyDifferentialPolynomial (Fraction ( Integer )))

The fifth derivative of w can be obtained by applying the map w to the number 5. Note that the order
of differentiation is given as a subscript (except when the order is 0).

w.5

(7)w5

OrderlyDifferentialPolynomial (Fraction ( Integer ))

w 0

(8)w

OrderlyDifferentialPolynomial (Fraction ( Integer ))

The first five derivatives of z can be generated by a list.

[z.i for i in 1..5]
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(9)[z1, z2, z3, z4, z5]

List ( OrderlyDifferentialPolynomial (Fraction ( Integer )))

The usual arithmetic can be used to form a differential polynomial from the derivatives.

f:= w.4 - w.1 * w.1 * z.3

(10)w4 − (w1)
2
z3

OrderlyDifferentialPolynomial (Fraction ( Integer ))

g:=(z.1) ^3 * (z.2) ^2 - w.2

(11)(z1)
3 (z2)

2 − w2

OrderlyDifferentialPolynomial (Fraction ( Integer ))

The operation D computes the derivative of any differential polynomial.

D(f)

(12)w5 − (w1)
2
z4 − 2w1 w2 z3

OrderlyDifferentialPolynomial (Fraction ( Integer ))

The same operation can compute higher derivatives, like the fourth derivative.

D(f,4)

(13)w8 − (w1)
2
z7 − 8w1 w2 z6 +

(

−12w1 w3 − 12 (w2)
2
)

z5 − 2w1 z3 w5

+ (−8w1 w4 − 24w2 w3) z4 − 8w2 z3 w4 − 6 (w3)
2
z3

OrderlyDifferentialPolynomial (Fraction ( Integer ))

The operation makeVariable creates a map to facilitate referencing the derivatives of f, similar to the
map w.

df:= makeVariable(f)$dpol
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(14)theMap(makeVariable)

(NonNegativeInteger → OrderlyDifferentialPolynomial (Fraction ( Integer )))

The fourth derivative of f may be referenced easily.

df.4

(15)w8 − (w1)
2
z7 − 8w1 w2 z6 +

(

−12w1 w3 − 12 (w2)
2)

z5 − 2w1 z3 w5

+ (−8w1 w4 − 24w2 w3) z4 − 8w2 z3 w4 − 6 (w3)
2
z3

OrderlyDifferentialPolynomial (Fraction ( Integer ))

The operation order returns the order of a differential polynomial, or the order in a specified differential
indeterminate.

order(g)

(16)2

PositiveInteger

order(g, ’w)

(17)2

PositiveInteger

The operation differentialVariables returns a list of differential indeterminates occurring in a differential
polynomial.

differentialVariables (g)

(18)[z, w]

List (Symbol)

The operation degree returns the degree, or the degree in the differential indeterminate specified.

degree (g)
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(19)(z2)
2 (z1)

3

IndexedExponents( OrderlyDifferentialVariable (Symbol))

degree (g, ’w)

(20)1

PositiveInteger

The operation weights returns a list of weights of differential monomials appearing in differential poly-
nomial, or a list of weights in a specified differential indeterminate.

weights (g)

(21)[7, 2]

List (NonNegativeInteger)

weights (g,’w)

(22)[2]

List (NonNegativeInteger)

The operation weight returns the maximum weight of all differential monomials appearing in the
differential polynomial.

weight (g)

(23)7

PositiveInteger

A differential polynomial is isobaric if the weights of all differential monomials appearing in it are
equal.

isobaric ?(g)
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(24)false

Boolean

To substitute differentially, use eval. Note that we must coerce ’w to Symbol, since in ODPOL,
differential indeterminates belong to the domain Symbol. Compare this result to the next, which
substitutes algebraically (no substitution is done since w.0 does not appear in g).

eval(g,[’w:: Symbol ],[f])

(25)− w6 + (w1)
2
z5 + 4w1 w2 z4 +

(

2w1 w3 + 2 (w2)
2
)

z3 + (z1)
3 (z2)

2

OrderlyDifferentialPolynomial (Fraction ( Integer ))

eval(g,variables (w.0) ,[f])

(26)(z1)
3 (z2)

2 − w2

OrderlyDifferentialPolynomial (Fraction ( Integer ))

Since OrderlyDifferentialPolynomial belongs to PolynomialCategory, all the operations defined
in the latter category, or in packages for the latter category, are available.

monomials (g)

(27)
[

(z1)
3 (z2)

2
, −w2

]

List ( OrderlyDifferentialPolynomial (Fraction ( Integer )))

variables (g)

(28)[z2, w2, z1]

List ( OrderlyDifferentialVariable (Symbol))

gcd (f,g)
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(29)1

OrderlyDifferentialPolynomial (Fraction ( Integer ))

groebner ([f,g])

(30)
[

w4 − (w1)
2
z3, (z1)

3 (z2)
2 − w2

]

List ( OrderlyDifferentialPolynomial (Fraction ( Integer )))

The next three operations are essential for elimination procedures in differential polynomial rings. The
operation leader returns the leader of a differential polynomial, which is the highest ranked derivative
of the differential indeterminates that occurs.

lg:= leader (g)

(31)z2

OrderlyDifferentialVariable (Symbol)

The operation separant returns the separant of a differential polynomial, which is the partial derivative
with respect to the leader.

sg:= separant (g)

(32)2 (z1)
3
z2

OrderlyDifferentialPolynomial (Fraction ( Integer ))

The operation initial returns the initial, which is the leading coefficient when the given differential
polynomial is expressed as a polynomial in the leader.

ig:= initial (g)

(33)(z1)
3
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OrderlyDifferentialPolynomial (Fraction ( Integer ))

Using these three operations, it is possible to reduce f modulo the differential ideal generated by g.
The general scheme is to first reduce the order, then reduce the degree in the leader. First, eliminate
z.3 using the derivative of g.

g1 := D g

(34)2 (z1)
3
z2 z3 − w3 + 3 (z1)

2 (z2)
3

OrderlyDifferentialPolynomial (Fraction ( Integer ))

Find its leader.

lg1 := leader g1

(35)z3

OrderlyDifferentialVariable (Symbol)

Differentiate f partially with respect to this leader.

pdf :=D(f, lg1)

(36)− (w1)
2

OrderlyDifferentialPolynomial (Fraction ( Integer ))

Compute the partial remainder of f with respect to g.

prf :=sg * f- pdf * g1

(37)2 (z1)
3
z2 w4 − (w1)

2
w3 + 3 (w1)

2 (z1)
2 (z2)

3

OrderlyDifferentialPolynomial (Fraction ( Integer ))

Note that high powers of lg still appear in prf. Compute the leading coefficient of prf as a polynomial
in the leader of g.

lcf := leadingCoefficient univariate (prf , lg)
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(38)3 (w1)
2 (z1)

2

OrderlyDifferentialPolynomial (Fraction ( Integer ))

Finally, continue eliminating the high powers of lg appearing in prf to obtain the (pseudo) remainder
of f modulo g and its derivatives.

ig * prf - lcf * g * lg

(39)2 (z1)
6
z2 w4 − (w1)

2 (z1)
3
w3 + 3 (w1)

2 (z1)
2
w2 z2

OrderlyDifferentialPolynomial (Fraction ( Integer ))

Issue the system command )show OrderlyDifferentialPolyomial to display the full list of opera-
tions defined byOrderlyDifferentialPolyomial. Issue the system command )show SequentialDifferentialPolynomi

to display the full list of operations defined by SequentialDifferentialPolynomial.

9.65 PartialFraction

A partial fraction is a decomposition of a quotient into a sum of quotients where the denominators of the
summands are powers of primes.5 For example, the rational number 1/6 is decomposed into 1/2 -1/3

. You can compute partial fractions of quotients of objects from domains belonging to the category
EuclideanDomain. For example, Integer, Complex Integer, and UnivariatePolynomial(x,
Fraction Integer) all belong to EuclideanDomain. In the examples following, we demonstrate
how to decompose quotients of each of these kinds of object into partial fractions. Issue the system
command )show PartialFraction to display the full list of operations defined by PartialFraction.

It is necessary that we know how to factor the denominator when we want to compute a partial
fraction. Although the interpreter can often do this automatically, it may be necessary for you to
include a call to factor. In these examples, it is not necessary to factor the denominators explicitly.
The main operation for computing partial fractions is called partialFraction and we use this to compute
a decomposition of 1 / 10!. The first argument to partialFraction is the numerator of the quotient and
the second argument is the factored denominator.

partialFraction(1, factorial 10)

(4)
159

28
− 23

34
− 12

52
+

1

7

5Most people first encounter partial fractions when they are learning integral calculus. For a technical discussion of
partial fractions, see, for example, Lang’s Algebra.
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PartialFraction ( Integer )

Since the denominators are powers of primes, it may be possible to expand the numerators further
with respect to those primes. Use the operation padicFraction to do this.

f := padicFraction(%)

(5)
1

2
+

1

24
+

1

25
+

1

26
+

1

27
+

1

28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1

7

PartialFraction ( Integer )

The operation compactFraction returns an expanded fraction into the usual form. The compacted
version is used internally for computational efficiency.

compactFraction(f)

(6)
159

28
− 23

34
− 12

52
+

1

7

PartialFraction ( Integer )

You can add, subtract, multiply and divide partial fractions. In addition, you can extract the parts
of the decomposition. numberOfFractionalTerms computes the number of terms in the fractional part.
This does not include the whole part of the fraction, which you get by calling wholePart. In this
example, the whole part is just 0.

numberOfFractionalTerms (f)

(7)12

PositiveInteger

The operation fractionalTerms returns the individual terms in the decomposition. Notice that the
object returned is a list of Record(num : R, den : Factored(R)), you can extract the numerator
and denominator from this object.

fractionalTerms(f).3

(8)
[

num = 1, den = 25
]
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Record(num: Integer, den: Factored( Integer ))

Given two gaussian integers (see ‘Complex’ on page 447), you can decompose their quotient into a
partial fraction.

partialFraction(1,- 13 + 14 * %i)

(9)− 1

1 + 2 i
+

4

3 + 8 i

PartialFraction (Complex(Integer))

To convert back to a quotient, simply use a conversion.

% :: Fraction Complex Integer

(10)− i

14 + 13 i

Fraction (Complex(Integer))

To conclude this section, we compute the decomposition of

1

(x+ 1)(x+ 2)2(x+ 3)3(x+ 4)4

The polynomials in this object have type UnivariatePolynomial(x, Fraction Integer). We use
the primeFactor operation (see ‘Factored’ on page 490) to create the denominator in factored form
directly.

u : FR UP(x, FRAC INT ) := reduce (*,[ primeFactor (x+i,i) for i in 1..4])

(11)(x+ 1) (x+ 2)2 (x+ 3)3 (x+ 4)4

Factored(UnivariatePolynomial (x, Fraction ( Integer )))

These are the compact and expanded partial fractions for the quotient.

partialFraction(1,u)

(12)
1

648

x+ 1
+

1
4
x+ 7

16

(x+ 2)2
+

− 17
8
x2 − 12 x− 139

8

(x+ 3)3
+

607
324

x3 + 10115
432

x2 + 391
4

x+ 44179
324

(x+ 4)4
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PartialFraction (UnivariatePolynomial (x, Fraction ( Integer )))

padicFraction %

(13)
1

648

x+ 1
+

1
4

x+ 2
−

1
16

(x+ 2)2
−

17
8

x+ 3
+

3
4

(x+ 3)2
−

1
2

(x+ 3)3
+

607
324

x+ 4
+

403
432

(x+ 4)2
+

13
36

(x+ 4)3
+

1
12

(x+ 4)4

PartialFraction (UnivariatePolynomial (x, Fraction ( Integer )))

All see ‘FullPartialFractionExpansion’ on page 524 for examples of factor-free conversion of quo-
tients to full partial fractions.

9.66 Permanent

The package Permanent provides the function permanent for square matrices. The permanent of a
square matrix can be computed in the same way as the determinant by expansion of minors except that
for the permanent the sign for each element is 1, rather than being 1 if the row plus column indices
is positive and -1 otherwise. This function is much more difficult to compute efficiently than the
determinant. An example of the use of permanent is the calculation of the nth derangement number,
defined to be the number of different possibilities for n couples to dance but never with their own
spouse. Consider an n by n matrix with entries 0 on the diagonal and 1 elsewhere. Think of the rows
as one-half of each couple (for example, the males) and the columns the other half. The permanent of
such a matrix gives the desired derangement number.

kn n ==

r : MATRIX INT := new(n,n ,1)

for i in 1..n repeat

r(i, i) := 0

r

Here are some derangement numbers, which you see grow quite fast.

permanent (kn(5) :: SQMATRIX (5, INT))

Compiling function kn with type PositiveInteger -> Matrix (Integer )

(5)44

PositiveInteger

[permanent (kn(n) :: SQMATRIX (n,INT)) for n in 1..13]
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Cannot compile conversion for types involving local variables . In

particular , could not compile the expression involving ::

SQMATRIX (n,INT)

FriCAS will attempt to step through and interpret the code.

(6)[0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932]

List (NonNegativeInteger)

9.67 Polynomial

The domain constructor Polynomial (abbreviation: POLY) provides polynomials with an arbitrary
number of unspecified variables.

It is used to create the default polynomial domains in FriCAS. Here the coefficients are integers.

x + 1

(4)x+ 1

Polynomial( Integer )

Here the coefficients have type Float.

z - 2.3

(5)z − 2.3

Polynomial(Float)

And here we have a polynomial in two variables with coefficients which have type Fraction Integer.

y^2 - z + 3/4

(6)− z + y
2 +

3

4
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Polynomial(Fraction ( Integer ))

The representation of objects of domains created by Polynomial is that of recursive univariate poly-
nomials.6 This recursive structure is sometimes obvious from the display of a polynomial.

y ^2 + x*y + y

(7)y
2 + (x+ 1) y

Polynomial( Integer )

In this example, you see that the polynomial is stored as a polynomial in y with coefficients that are
polynomials in x with integer coefficients. In fact, you really don’t need to worry about the representa-
tion unless you are working on an advanced application where it is critical. The polynomial types cre-
ated from DistributedMultivariatePolynomial and NewDistributedMultivariatePolynomial
(discussed in ‘DistributedMultivariatePolynomial’ on page 475) are stored and displayed in a non-
recursive manner. You see a “flat” display of the above polynomial by converting to one of those
types.

% :: DMP ([y,x],INT )

(8)y
2 + y x+ y

DistributedMultivariatePolynomial ([ y, x ], Integer )

We will demonstrate many of the polynomial facilities by using two polynomials with integer coeffi-
cients. By default, the interpreter expands polynomial expressions, even if they are written in a
factored format.

p := (y -1) ^2 * x * z

(9)
(

x y
2 − 2x y + x

)

z

Polynomial( Integer )

See ‘Factored’ on page 490 to see how to create objects in factored form directly.

q := (y -1) * x * (z+5)

6The term univariate means “one variable.” multivariate means “possibly more than one variable.”
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(10)(x y − x) z + 5x y − 5x

Polynomial( Integer )

The fully factored form can be recovered by using factor.

factor (q)

(11)x (y − 1) (z + 5)

Factored(Polynomial( Integer ))

This is the same name used for the operation to factor integers. Such reuse of names is called overloading
and makes it much easier to think of solving problems in general ways. FriCAS facilities for factoring
polynomials created with Polynomial are currently restricted to the integer and rational number
coefficient cases. There are more complete facilities for factoring univariate polynomials: see Section
8.2 on page 298.

The standard arithmetic operations are available for polynomials.

p - q^2

(12)
(

−x
2
y
2 + 2 x2

y − x
2
)

z
2 +

((

−10x2 + x
)

y
2 +

(

20x2 − 2 x
)

y − 10x2 + x
)

z − 25 x2
y
2 + 50x2

y − 25x2

Polynomial( Integer )

The operation gcd is used to compute the greatest common divisor of two polynomials.

gcd (p,q)

(13)x y − x

Polynomial( Integer )

In the case of p and q, the gcd is obvious from their definitions. We factor the gcd to show this
relationship better.

factor %
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(14)x (y − 1)

Factored(Polynomial( Integer ))

The least common multiple is computed by using lcm.

lcm (p,q)

(15)
(

x y
2 − 2x y + x

)

z
2 +

(

5x y2 − 10 x y + 5 x
)

z

Polynomial( Integer )

Use content to compute the greatest common divisor of the coefficients of the polynomial.

content p

(16)1

PositiveInteger

Many of the operations on polynomials require you to specify a variable. For example, resultant requires
you to give the variable in which the polynomials should be expressed. This computes the resultant
of the values of p and q, considering them as polynomials in the variable z. They do not share a root
when thought of as polynomials in z.

resultant (p,q,z)

(17)5x2
y
3 − 15 x2

y
2 + 15x2

y − 5x2

Polynomial( Integer )

This value is 0 because as polynomials in x the polynomials have a common root.

resultant (p,q,x)

(18)0
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Polynomial( Integer )

The data type used for the variables created by Polynomial is Symbol. As mentioned above, the
representation used by Polynomial is recursive and so there is a main variable for nonconstant poly-
nomials. The operation mainVariable returns this variable. The return type is actually a union of
Symbol and "failed".

mainVariable p

(19)z

Union(Symbol, ...)

The latter branch of the union is be used if the polynomial has no variables, that is, is a constant.

mainVariable(1 :: POLY INT)

(20)"failed"

Union(” failed ”, ...)

You can also use the predicate ground? to test whether a polynomial is in fact a member of its ground
ring.

ground ? p

(21)false

Boolean

ground ?(1 :: POLY INT )

(22)true

Boolean

The complete list of variables actually used in a particular polynomial is returned by variables. For
constant polynomials, this list is empty.

variables p
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(23)[z, y, x]

List (Symbol)

The degree operation returns the degree of a polynomial in a specific variable.

degree (p,x)

(24)1

PositiveInteger

degree (p,y)

(25)2

PositiveInteger

degree (p,z)

(26)1

PositiveInteger

If you give a list of variables for the second argument, a list of the degrees in those variables is returned.

degree (p,[x,y,z])

(27)[1, 2, 1]

List (NonNegativeInteger)

The minimum degree of a variable in a polynomial is computed using minimumDegree.

minimumDegree(p,z)
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(28)1

PositiveInteger

The total degree of a polynomial is returned by totalDegree.

totalDegree p

(29)4

PositiveInteger

It is often convenient to think of a polynomial as a leading monomial plus the remaining terms.

leadingMonomial p

(30)x y
2
z

Polynomial( Integer )

The reductum operation returns a polynomial consisting of the sum of the monomials after the first.

reductum p

(31)(−2x y + x) z

Polynomial( Integer )

These have the obvious relationship that the original polynomial is equal to the leading monomial plus
the reductum.

p - leadingMonomial p - reductum p

(32)0

Polynomial( Integer )

The value returned by leadingMonomial includes the coefficient of that term. This is extracted by using
leadingCoefficient on the original polynomial.

leadingCoefficient p
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(33)1

PositiveInteger

The operation eval is used to substitute a value for a variable in a polynomial.

p

(34)
(

x y
2 − 2x y + x

)

z

Polynomial( Integer )

This value may be another variable, a constant or a polynomial.

eval(p,x,w)

(35)
(

w y
2 − 2w y + w

)

z

Polynomial( Integer )

eval(p,x,1)

(36)
(

y
2 − 2 y + 1

)

z

Polynomial( Integer )

Actually, all the things being substituted are just polynomials, some more trivial than others.

eval(p,x,y^2 - 1)

(37)
(

y
4 − 2 y3 + 2 y − 1

)

z

Polynomial( Integer )

Derivatives are computed using the D operation.

D(p,x)
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(38)
(

y
2 − 2 y + 1

)

z

Polynomial( Integer )

The first argument is the polynomial and the second is the variable.

D(p,y)

(39)(2 x y − 2x) z

Polynomial( Integer )

Even if the polynomial has only one variable, you must specify it.

D(p,z)

(40)x y
2 − 2 x y + x

Polynomial( Integer )

Integration of polynomials is similar and the integrate operation is used.

Integration requires that the coefficients support division. Consequently, FriCAS converts polynomials
over the integers to polynomials over the rational numbers before integrating them.

integrate (p,y)

(41)

(

1

3
x y

3 − x y
2 + x y

)

z

Polynomial(Fraction ( Integer ))

It is not possible, in general, to divide two polynomials. In our example using polynomials over the
integers, the operation monicDivide divides a polynomial by a monic polynomial (that is, a polynomial
with leading coefficient equal to 1). The result is a record of the quotient and remainder of the division.
You must specify the variable in which to express the polynomial.

qr := monicDivide (p,x+1,x)
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(42)
[

quotient =
(

y
2 − 2 y + 1

)

z, remainder =
(

−y
2 + 2 y − 1

)

z
]

Record(quotient : Polynomial( Integer ) , remainder: Polynomial( Integer ))

The selectors of the components of the record are quotient and remainder. Issue this to extract the
remainder.

qr.remainder

(43)
(

−y
2 + 2 y − 1

)

z

Polynomial( Integer )

Now that we can extract the components, we can demonstrate the relationship among them and the
arguments to our original expression qr := monicDivide(p,x+1,x).

p - ((x+1) * qr.quotient + qr. remainder )

(44)0

Polynomial( Integer )

If the / operator is used with polynomials, a fraction object is created. In this example, the result is
an object of type Fraction Polynomial Integer.

p/q

(45)
(y − 1) z

z + 5

Fraction (Polynomial( Integer ))

If you use rational numbers as polynomial coefficients, the resulting object is of type Polynomial
Fraction Integer.

(2/3) * x^2 - y + 4/5

(46)− y +
2

3
x
2 +

4

5
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Polynomial(Fraction ( Integer ))

This can be converted to a fraction of polynomials and back again, if required.

% :: FRAC POLY INT

(47)
−15 y + 10 x2 + 12

15

Fraction (Polynomial( Integer ))

% :: POLY FRAC INT

(48)− y +
2

3
x
2 +

4

5

Polynomial(Fraction ( Integer ))

To convert the coefficients to floating point, map the numeric operation on the coefficients of the
polynomial.

map (numeric ,%)

(49)− 1.0 y + 0.66666666666666666667 x
2 + 0.8

Polynomial(Float)

For more information on related topics, see ‘UnivariatePolynomial’ on page 755, ‘MultivariatePolynomial’
on page 639, and ‘DistributedMultivariatePolynomial’ on page 475. You can also issue the system
command )show Polynomial to display the full list of operations defined by Polynomial.

9.68 Quaternion

The domain constructor Quaternion implements Hamilton quaternions over commutative rings. For
information on related topics, see ‘GeneralQuaternion’ on page 528, ‘Complex’ on page 447 and
‘Octonion’ on page 642. You can also issue the system command )show Quaternion to display the
full list of operations defined by Quaternion.

The basic operation for creating quaternions is quatern. This is a quaternion over the rational numbers.

q := quatern (2/11 , -8 ,3/4 ,1)
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(4)
2

11
− 8 i+

3

4
j + k

Quaternion(Fraction( Integer ))

The four arguments are the real part, the i imaginary part, the j imaginary part, and the k imaginary
part, respectively.

[real q, imagI q, imagJ q, imagK q]

(5)

[

2

11
, −8,

3

4
, 1

]

List (Fraction ( Integer ))

Because q is over the rationals (and nonzero), you can invert it.

inv q

(6)
352

126993
+

15488

126993
i− 484

42331
j − 1936

126993
k

Quaternion(Fraction( Integer ))

The usual arithmetic (ring) operations are available

q^6

(7)− 2029490709319345

7256313856
− 48251690851

1288408
i+

144755072553

41229056
j +

48251690851

10307264
k

Quaternion(Fraction( Integer ))

r := quatern (-2,3,23/9,-89) ; q + r

(8)− 20

11
− 5 i+

119

36
j − 88 k
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Quaternion(Fraction( Integer ))

In general, multiplication is not commutative.

q * r - r * q

(9)− 2495

18
i− 1418 j − 817

18
k

Quaternion(Fraction( Integer ))

There are no predefined constants for the imaginary i, j, and k parts, but you can easily define them.

i := quatern (0,1,0,0); j := quatern (0,0,1,0); k := quatern (0,0,0,1)

(10)k

Quaternion(Integer )

These satisfy the normal identities.

[i*i, j*j, k*k, i*j, j*k, k*i, q*i]

(11)

[

−1, −1, −1, k, i, j, 8 +
2

11
i+ j − 3

4
k

]

List (Quaternion(Fraction( Integer )))

The norm is the quaternion times its conjugate.

norm q

(12)
126993

1936

Fraction ( Integer )

conjugate q
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(13)
2

11
+ 8 i− 3

4
j − k

Quaternion(Fraction( Integer ))

q * %

(14)
126993

1936

Quaternion(Fraction( Integer ))

9.69 RadixExpansion

It possible to expand numbers in general bases.

Here we expand 111 in base 5. This means 102 + 101 + 100 = 4 · 52 + 2 · 51 + 50.

111:: RadixExpansion (5)

(4)421

RadixExpansion(5)

You can expand fractions to form repeating expansions.

(5/24) :: RadixExpansion (2)

(5)0.00110

RadixExpansion(2)

(5/24) :: RadixExpansion (3)

(6)0.012
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RadixExpansion(3)

(5/24) :: RadixExpansion (8)

(7)0.152

RadixExpansion(8)

(5/24) :: RadixExpansion (10)

(8)0.2083

RadixExpansion(10)

For bases from 11 to 36 the letters A through Z are used.

(5/24) :: RadixExpansion (12)

(9)0.26

RadixExpansion(12)

(5/24) :: RadixExpansion (16)

(10)0.35

RadixExpansion(16)

(5/24) :: RadixExpansion (36)

(11)0.7I

RadixExpansion(36)

For bases greater than 36, the ragits are separated by blanks.

(5/24) :: RadixExpansion (38)
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(12)0 . 7 34 31 25 12

RadixExpansion(38)

The RadixExpansion type provides operations to obtain the individual ragits. Here is a rational
number in base 8.

a := (76543/210) :: RadixExpansion(8)

(13)554.37307

RadixExpansion(8)

The operation wholeRagits returns a list of the ragits for the integral part of the number.

w := wholeRagits a

(14)[5, 5, 4]

List ( Integer )

The operations prefixRagits and cycleRagits return lists of the initial and repeating ragits in the fractional
part of the number.

f0 := prefixRagits a

(15)[3]

List ( Integer )

f1 := cycleRagits a

(16)[7, 3, 0, 7]

List ( Integer )

You can construct any radix expansion by giving the whole, prefix and cycle parts. The declaration is
necessary to let FriCAS know the base of the ragits.

u:RadixExpansion (8) := wholeRadix (w)+fractRadix (f0 ,f1)
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(17)554.37307

RadixExpansion(8)

If there is no repeating part, then the list [0] should be used.

v: RadixExpansion(12) := fractRadix ([1,2,3,11], [0])

(18)0.123B0

RadixExpansion(12)

If you are not interested in the repeating nature of the expansion, an infinite stream of ragits can be
obtained using fractRagits.

fractRagits (u)

(19)
[

3, 7, 3, 0, 7, 7
]

Stream(Integer)

Of course, it’s possible to recover the fraction representation:

a :: Fraction (Integer )

(20)
76543

210

Fraction ( Integer )

Issue the system command )show RadixExpansion to display the full list of operations defined by
RadixExpansion. More examples of expansions are available in ‘DecimalExpansion’ on page 467,
‘BinaryExpansion’ on page 412, and ‘HexadecimalExpansion’ on page 539.

9.70 RealClosure

The Real Closure 1.0 package provided by Renaud Rioboo (Renaud.Rioboo@lip6.fr) consists of different
packages, categories and domains :
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• The packageRealPolynomialUtilitiesPackagewhich needs a Field F and aUnivariatePoly-
nomialCategory domain with coefficients in F. It computes some simple functions such as Sturm
and Sylvester sequences (sturmSequence, sylvesterSequence).

• The category RealRootCharacterizationCategory provides abstract functions to work with
”real roots” of univariate polynomials. These resemble variables with some functionality needed
to compute important operations.

• The category RealClosedField provides common operations available over real closed fields.
These include finding all the roots of a univariate polynomial, taking square (and higher) roots,
...

• The domain RightOpenIntervalRootCharacterization is the main code that provides the
functionality of RealRootCharacterizationCategory for the case of archimedean fields. Ab-
stract roots are encoded with a left closed right open interval containing the root together with
a defining polynomial for the root.

• The RealClosure domain is the end-user code. It provides usual arithmetic with real algebraic
numbers, along with the functionality of a real closed field. It also provides functions to approx-
imate a real algebraic number by an element of the base field. This approximation may either
be absolute (approximate) or relative (relativeApprox).

CAVEATS

Since real algebraic expressions are stored as depending on ”real roots” which are managed like vari-
ables, there is an ordering on these. This ordering is dynamical in the sense that any new algebraic
takes precedence over older ones. In particular every creation function raises a new ”real root”. This
has the effect that when you type something like sqrt(2)+ sqrt(2) you have two new variables which
happen to be equal. To avoid this name the expression such as in s2 := sqrt(2); s2 + s2

Also note that computing times depend strongly on the ordering you implicitly provide. Please provide
algebraics in the order which seems most natural to you.

LIMITATIONS

This packages uses algorithms which are published in [1] and [2] which are based on field arithmetics,
in particular for polynomial gcd related algorithms. This can be quite slow for high degree polynomials
and subresultants methods usually work best. Beta versions of the package try to use these techniques
in a better way and work significantly faster. These are mostly based on unpublished algorithms and
cannot be distributed. Please contact the author if you have a particular problem to solve or want to
use these versions.

Be aware that approximations behave as post-processing and that all computations are done exactly.
They can thus be quite time consuming when depending on several ”real roots”.

REFERENCES

[1] R. Rioboo : Real Algebraic Closure of an ordered Field : Implementation in Axiom. In proceedings
of the ISSAC’92 Conference, Berkeley 1992 pp. 206-215.

[2] Z. Ligatsikas, R. Rioboo, M. F. Roy : Generic computation of the real closure of an ordered field.
In Mathematics and Computers in Simulation Volume 42, Issue 4-6, November 1996.

EXAMPLES

We shall work with the real closure of the ordered field of rational numbers.

Ran := RECLOS (FRAC INT)
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(4)RealClosure(Fraction(Integer))

Type

Some simple signs for square roots, these correspond to an extension of degree 16 of the rational
numbers. Examples provided by J. Abbot.

fourSquares (a:Ran ,b:Ran ,c:Ran ,d:Ran ):Ran == sqrt(a)+sqrt(b) - sqrt(c)-sqrt(d)

Function declaration fourSquares : (RealClosure (Fraction (Integer )),

RealClosure (Fraction (Integer )), RealClosure (Fraction (Integer )),

RealClosure (Fraction (Integer ))) -> RealClosure (Fraction (Integer ))

has been added to workspace .

These produce values very close to zero.

squareDiff1 := fourSquares (73 ,548 ,60 ,586)

Compiling function fourSquares with type (RealClosure (Fraction (

Integer )), RealClosure (Fraction (Integer )), RealClosure (Fraction (

Integer )), RealClosure (Fraction (Integer ))) -> RealClosure (

Fraction (Integer ))

(6)−
√
586−

√
60 +

√
548 +

√
73

RealClosure(Fraction ( Integer ))

recip( squareDiff1 )

(7)

((

54602
√
548 + 149602

√
73
)√

60 + 49502
√
73

√
548 + 9900895

)√
586

+
(

154702
√
73

√
548 + 30941947

)√
60 + 10238421

√
548 + 28051871

√
73

Union(RealClosure(Fraction ( Integer )) , ...)

sign(squareDiff1 )

(8)1

PositiveInteger

squareDiff2 := fourSquares (165 ,778 ,86 ,990)
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(9)−
√
990 −

√
86 +

√
778 +

√
165

RealClosure(Fraction ( Integer ))

recip( squareDiff2 )

(10)

((

556778
√
778 + 1209010

√
165
)√

86 + 401966
√
165

√
778 + 144019431

)√
990

+
(

1363822
√
165

√
778 + 488640503

)√
86 + 162460913

√
778 + 352774119

√
165

Union(RealClosure(Fraction ( Integer )) , ...)

sign(squareDiff2 )

(11)1

PositiveInteger

squareDiff3 := fourSquares (217 ,708 ,226 ,692)

(12)−
√
692 −

√
226 +

√
708 +

√
217

RealClosure(Fraction ( Integer ))

recip( squareDiff3 )

(13)

((

−34102
√
708− 61598

√
217
)√

226− 34802
√
217

√
708 − 13641141

)√
692

+
(

−60898
√
217

√
708− 23869841

)√
226− 13486123

√
708− 24359809

√
217

Union(RealClosure(Fraction ( Integer )) , ...)

sign(squareDiff3 )
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(14)− 1

Integer

squareDiff4 := fourSquares (155 ,836 ,162 ,820)

(15)−
√
820 −

√
162 +

√
836 +

√
155

RealClosure(Fraction ( Integer ))

recip( squareDiff4 )

(16)

((

−37078
√
836− 86110

√
155
)√

162− 37906
√
155

√
836 − 13645107

)√
820

+
(

−85282
√
155

√
836− 30699151

)√
162− 13513901

√
836− 31384703

√
155

Union(RealClosure(Fraction ( Integer )) , ...)

sign(squareDiff4 )

(17)− 1

Integer

squareDiff5 := fourSquares (591 ,772 ,552 ,818)

(18)−
√
818 −

√
552 +

√
772 +

√
591

RealClosure(Fraction ( Integer ))

recip( squareDiff5 )

(19)

((

70922
√
772 + 81058

√
591
)√

552 + 68542
√
591

√
772 + 46297673

)√
818

+
(

83438
√
591

√
772 + 56359389

)√
552 + 47657051

√
772 + 54468081

√
591
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Union(RealClosure(Fraction ( Integer )) , ...)

sign(squareDiff5 )

(20)1

PositiveInteger

squareDiff6 := fourSquares (434 ,1053 ,412 ,1088)

(21)−
√
1088 −

√
412 +

√
1053 +

√
434

RealClosure(Fraction ( Integer ))

recip( squareDiff6 )

(22)

((

115442
√
1053 + 179818

√
434
)√

412 + 112478
√
434

√
1053 + 76037291

)√
1088

+
(

182782
√
434

√
1053 + 123564147

)√
412 + 77290639

√
1053 + 120391609

√
434

Union(RealClosure(Fraction ( Integer )) , ...)

sign(squareDiff6 )

(23)1

PositiveInteger

squareDiff7 := fourSquares (514 ,1049 ,446 ,1152)

(24)−
√
1152 −

√
446 +

√
1049 +

√
514

RealClosure(Fraction ( Integer ))

recip( squareDiff7 )
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(25)

((

349522
√
1049 + 499322

√
514
)√

446 + 325582
√
514

√
1049 + 239072537

)√
1152

+
(

523262
√
514

√
1049 + 384227549

)√
446 + 250534873

√
1049 + 357910443

√
514

Union(RealClosure(Fraction ( Integer )) , ...)

sign(squareDiff7 )

(26)1

PositiveInteger

squareDiff8 := fourSquares (190 ,1751 ,208 ,1698)

(27)−
√
1698 −

√
208 +

√
1751 +

√
190

RealClosure(Fraction ( Integer ))

recip( squareDiff8 )

(28)

((

−214702
√
1751 − 651782

√
190
)√

208− 224642
√
190

√
1751− 129571901

)√
1698

+
(

−641842
√
190

√
1751 − 370209881

)√
208− 127595865

√
1751− 387349387

√
190

Union(RealClosure(Fraction ( Integer )) , ...)

sign(squareDiff8 )

(29)− 1

Integer

This should give three digits of precision

relativeApprox(squareDiff8 ,10^( -3)):: Float
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(30)− 0.23405277715937700123E − 10

Float

The sum of these 4 roots is 0

l := allRootsOf ((x^2-2) ^2-2) $Ran

(31)[%A33, %A34, %A35, %A36]

List (RealClosure(Fraction ( Integer )))

Check that they are all roots of the same polynomial

removeDuplicates map( mainDefiningPolynomial ,l)

(32)
[

?
4 − 4 ?2 + 2

]

List (Union(SparseUnivariatePolynomial(RealClosure(Fraction ( Integer ))) , ” failed ”))

We can see at a glance that they are separate roots

map (mainCharacterization ,l)

(33)[[− 2, −1[, [− 1, 0[, [0, 1[, [1, 2[]

List (Union(RightOpenIntervalRootCharacterization(RealClosure(Fraction ( Integer )) , SparseUnivariatePolynomial (

RealClosure(Fraction ( Integer )))) , ” failed ”))

Check the sum and product

[reduce (+,l),reduce (*,l) -2]

(34)[0, 0]

List (RealClosure(Fraction ( Integer )))

A more complicated test that involve an extension of degree 256. This is a way of checking nested
radical identities.

(s2 , s5 , s10 ) := (sqrt (2) $Ran , sqrt (5) $Ran , sqrt (10) $Ran)
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(35)
√
10

RealClosure(Fraction ( Integer ))

eq1 :=sqrt(s10 +3)*sqrt(s5 +2) - sqrt(s10 -3) *sqrt(s5 -2) = sqrt (10*s2 +10)

(36)−
√√

10− 3

√√
5− 2 +

√√
10 + 3

√√
5 + 2 =

√

10
√
2 + 10

Equation(RealClosure(Fraction ( Integer )))

eq1 :: Boolean

(37)true

Boolean

eq2 :=sqrt(s5+2) *sqrt(s2+1) - sqrt(s5 -2)*sqrt(s2 -1) = sqrt (2* s10 +2)

(38)−
√√

5− 2

√√
2− 1 +

√√
5 + 2

√√
2 + 1 =

√

2
√
10 + 2

Equation(RealClosure(Fraction ( Integer )))

eq2 :: Boolean

(39)true

Boolean

Some more examples from J. M. Arnaudies

s3 := sqrt (3) $Ran

(40)
√
3



9.70. REALCLOSURE 691

RealClosure(Fraction ( Integer ))

s7:= sqrt (7) $Ran

(41)
√
7

RealClosure(Fraction ( Integer ))

e1 := sqrt (2*s7 -3* s3 ,3)

(42)
3

√

2
√
7− 3

√
3

RealClosure(Fraction ( Integer ))

e2 := sqrt (2* s7+3* s3 ,3)

(43)
3

√

2
√
7 + 3

√
3

RealClosure(Fraction ( Integer ))

This should be null

e2-e1-s3

(44)0

RealClosure(Fraction ( Integer ))

A quartic polynomial

pol : UP(x,Ran) := x^4+(7/3) *x^2+30* x -(100/3)

(45)x
4 +

7

3
x
2 + 30 x− 100

3
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UnivariatePolynomial (x, RealClosure(Fraction ( Integer )))

Add some cubic roots

r1 := sqrt (7633) $Ran

(46)
√
7633

RealClosure(Fraction ( Integer ))

alpha := sqrt (5*r1 -436 ,3) /3

(47)
1

3

3

√

5
√
7633 − 436

RealClosure(Fraction ( Integer ))

beta := -sqrt (5* r1 +436 ,3) /3

(48)− 1

3

3

√

5
√
7633 + 436

RealClosure(Fraction ( Integer ))

this should be null

pol .( alpha+beta -1/3)

(49)0

RealClosure(Fraction ( Integer ))

A quintic polynomial

qol : UP(x,Ran) := x^5+10* x^3+20* x+22

(50)x
5 + 10x3 + 20 x+ 22
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UnivariatePolynomial (x, RealClosure(Fraction ( Integer )))

Add some cubic roots

r2 := sqrt (153) $Ran

(51)
√
153

RealClosure(Fraction ( Integer ))

alpha2 := sqrt(r2 -11 ,5)

(52)
5

√√
153 − 11

RealClosure(Fraction ( Integer ))

beta2 := -sqrt(r2+11 ,5)

(53)− 5

√√
153 + 11

RealClosure(Fraction ( Integer ))

this should be null

qol (alpha2 +beta2)

(54)0

RealClosure(Fraction ( Integer ))

Finally, some examples from the book Computer Algebra by Davenport, Siret and Tournier (page 77).
The last one is due to Ramanujan.

dst1:= sqrt (9+4* s2)=1+2* s2
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(55)

√

4
√
2 + 9 = 2

√
2 + 1

Equation(RealClosure(Fraction ( Integer )))

dst1:: Boolean

(56)true

Boolean

s6:Ran :=sqrt 6

(57)
√
6

RealClosure(Fraction ( Integer ))

dst2:= sqrt (5+2* s6)+sqrt (5-2* s6) = 2*s3

(58)

√

−2
√
6 + 5 +

√

2
√
6 + 5 = 2

√
3

Equation(RealClosure(Fraction ( Integer )))

dst2:: Boolean

(59)true

Boolean

s29 :Ran := sqrt 29

(60)
√
29
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RealClosure(Fraction ( Integer ))

dst4:= sqrt (16 -2* s29 +2* sqrt (55 -10* s29)) = sqrt (22+2* s5)-sqrt (11+2* s29)+s5

(61)

√

2

√

−10
√
29 + 55− 2

√
29 + 16 = −

√

2
√
29 + 11 +

√

2
√
5 + 22 +

√
5

Equation(RealClosure(Fraction ( Integer )))

dst4:: Boolean

(62)true

Boolean

dst6:= sqrt ((112+70* s2)+(46+34* s2)*s5) = (5+4* s2)+(3+s2)*s5

(63)

√

(

34
√
2 + 46

)√
5 + 70

√
2 + 112 =

(√
2 + 3

)√
5 + 4

√
2 + 5

Equation(RealClosure(Fraction ( Integer )))

dst6:: Boolean

(64)true

Boolean

f3:Ran :=sqrt (3,5)

(65)
5
√
3

RealClosure(Fraction ( Integer ))

f25 :Ran := sqrt (1/25 ,5)
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(66)
5

√

1

25

RealClosure(Fraction ( Integer ))

f32 :Ran := sqrt (32/5 ,5)

(67)
5

√

32

5

RealClosure(Fraction ( Integer ))

f27 :Ran := sqrt (27/5 ,5)

(68)
5

√

27

5

RealClosure(Fraction ( Integer ))

dst5:= sqrt((f32 -f27 ,3)) = f25 *(1+f3 -f3^2)

(69)
3

√

− 5

√

27

5
+

5

√

32

5
=
(

− 5
√
3
2
+

5
√
3 + 1

)

5

√

1

25

Equation(RealClosure(Fraction ( Integer )))

dst5:: Boolean

(70)true

Boolean
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9.71 RegularTriangularSet

The RegularTriangularSet domain constructor implements regular triangular sets. These particular
triangular sets were introduced by M. Kalkbrener (1991) in his PhD Thesis under the name regular
chains. Regular chains and their related concepts are presented in the paper ”On the Theories of
Triangular sets” By P. Aubry, D. Lazard and M. Moreno Maza (to appear in the Journal of Symbolic
Computation). The RegularTriangularSet constructor also provides a new method (by the third
author) for solving polynomial system by means of regular chains. This method has two ways of
solving. One has the same specifications as Kalkbrener’s algorithm (1991) and the other is closer to
Lazard’s method (Discr. App. Math, 1991). Moreover, this new method removes redundant component
from the decompositions when this is not too expensive. This is always the case with square-free
regular chains. So if you want to obtain decompositions without redundant components just use the
SquareFreeRegularTriangularSet domain constructor or the LazardSetSolvingPackage package
constructor. See also the LexTriangularPackage and ZeroDimensionalSolvePackage for the case
of algebraic systems with a finite number of (complex) solutions.

One of the main features of regular triangular sets is that they naturally define towers of simple
extensions of a field. This allows to perform with multivariate polynomials the same kind of operations
as one can do in an EuclideanDomain.

The RegularTriangularSet constructor takes four arguments. The first one, R, is the coefficient ring
of the polynomials; it must belong to the category GcdDomain. The second one, E, is the exponent
monoid of the polynomials; it must belong to the category OrderedAbelianMonoidSup. the third
one, V, is the ordered set of variables; it must belong to the category OrderedSet. The last one is
the polynomial ring; it must belong to the category RecursivePolynomialCategory(R,E,V). The
abbreviation forRegularTriangularSet isREGSET. See also the constructorRegularChain which
only takes two arguments, the coefficient ring and the ordered set of variables; in that case, polynomials
are necessarily built with the NewSparseMultivariatePolynomial domain constructor.

We shall explain now how to use the constructor REGSET and how to read the decomposition of a
polynomial system by means of regular sets.

Let us give some examples. We start with an easy one (Donati-Traverso) in order to understand the two
ways of solving polynomial systems provided by the REGSET constructor. Define the coefficient
ring.

R := Integer

(4)Integer

Type

Define the list of variables,

ls : List Symbol := [x,y,z,t]

(5)[x, y, z, t]
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List (Symbol)

and make it an ordered set;

V := OVAR(ls)

(6)OrderedVariableList([x, y, z, t])

Type

then define the exponent monoid.

E := IndexedExponents V

(7)IndexedExponents(OrderedVariableList([x, y, z, t]))

Type

Define the polynomial ring.

P := NSMP(R, V)

(8)NewSparseMultivariatePolynomial(Integer,OrderedVariableList([x, y, z, t]))

Type

Let the variables be polynomial.

x: P := ’x

(9)x

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

y: P := ’y

(10)y
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NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

z: P := ’z

(11)z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

t: P := ’t

(12)t

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

Now call the RegularTriangularSet domain constructor.

T := REGSET (R,E,V,P)

(13)RegularTriangularSet(Integer, IndexedExponents(OrderedVariableList([x, y, z, t])),OrderedVariableList([x, y, z, t]),NewSparseMultiv

Type

Define a polynomial system.

p1 := x ^ 31 - x ^ 6 - x - y

(14)x
31 − x

6 − x− y

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

p2 := x ^ 8 - z

(15)x
8 − z
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NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

p3 := x ^ 10 - t

(16)x
10 − t

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

lp := [p1 , p2 , p3]

(17)
[

x
31 − x

6 − x− y, x
8 − z, x

10 − t
]

List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z, t ]) ))

First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lp)$T

(18)
[{

z
5 − t

4
, t z y

2 + 2 z3 y − t
8 + 2 t5 + t

3 − t
2
,
(

t
4 − t

)

x− t y − z
2
}]

List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) , OrderedVariableList ([ x, y, z

, t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )))

And now in the sense of Lazard (or Wu and other authors).

lts := zeroSetSplit(lp ,false)$T

(19)
[{

z
5 − t

4
, t z y

2 + 2 z3 y − t
8 + 2 t5 + t

3 − t
2
,
(

t
4 − t

)

x− t y − z
2}

,
{

t
3 − 1, z5 − t, t z y

2 + 2 z3 y + 1, z x2 − t
}

, {t, z, y, x}
]

List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) , OrderedVariableList ([ x, y, z

, t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )))

We can see that the first decomposition is a subset of the second. So how can both be correct ?

Recall first that polynomials from a domain of the category RecursivePolynomialCategory are
regarded as univariate polynomials in their main variable. For instance the second polynomial in the
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first set of each decomposition has main variable y and its initial (i.e. its leading coefficient w.r.t. its
main variable) is t z.

Now let us explain how to read the second decomposition. Note that the non-constant initials of the
first set are t4 − t and tz. Then the solutions described by this first set are the common zeros of its
polynomials that do not cancel the polynomials t4 − t and tyz. Now the solutions of the input system
lp satisfying these equations are described by the second and the third sets of the decomposition.
Thus, in some sense, they can be considered as degenerated solutions. The solutions given by the first
set are called the generic points of the system; they give the general form of the solutions. The first
decomposition only provides these generic points. This latter decomposition is useful when they are
many degenerated solutions (which is sometimes hard to compute) and when one is only interested in
general information, like the dimension of the input system.

We can get the dimensions of each component of a decomposition as follows.

[coHeight (ts) for ts in lts]

(20)[1, 0, 0]

List (NonNegativeInteger)

Thus the first set has dimension one. Indeed t can take any value, except 0 or any third root of 1,
whereas z is completely determined from t, y is given by z and t, and finally x is given by the other
three variables. In the second and the third sets of the second decomposition the four variables are
completely determined and thus these sets have dimension zero.

We give now the precise specifications of each decomposition. This assume some mathematical knowl-
edge. However, for the non-expert user, the above explanations will be sufficient to understand the
other features of the RSEGSET constructor.

The input system lp is decomposed in the sense of Kalkbrener as finitely many regular sets T1,...,Ts
such that the radical ideal generated by lp is the intersection of the radicals of the saturated ideals
of T1,...,Ts. In other words, the affine variety associated with lp is the union of the closures (w.r.t.
Zarisky topology) of the regular-zeros sets of T1,...,Ts.

N. B. The prime ideals associated with the radical of the saturated ideal of a regular triangular set
have all the same dimension; moreover these prime ideals can be given by characteristic sets with the
same main variables. Thus a decomposition in the sense of Kalkbrener is unmixed dimensional. Then
it can be viewed as a lazy decomposition into prime ideals (some of these prime ideals being merged
into unmixed dimensional ideals).

Now we explain the other way of solving by means of regular triangular sets. The input system lp is
decomposed in the sense of Lazard as finitely many regular triangular sets T1,...,Ts such that the affine
variety associated with lp is the union of the regular-zeros sets of T1,...,Ts. Thus a decomposition in
the sense of Lazard is also a decomposition in the sense of Kalkbrener; the converse is false as we have
seen before.

When the input system has a finite number of solutions, both ways of solving provide similar decom-
positions as we shall see with this second example (Caprasse).

Define a polynomial system.

f1 := y^2*z+2*x*y*t-2*x-z
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(21)(2 t y − 2) x+ z y
2 − z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

f2 := -x^3*z+ 4*x*y^2* z+ 4*x^2*y*t+ 2*y^3* t+ 4*x^2- 10*y^2+ 4*x*z- 10*y*t+ 2

(22)− z x
3 + (4 t y + 4) x2 +

(

4 z y2 + 4 z
)

x+ 2 t y3 − 10 y2 − 10 t y + 2

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

f3 := 2*y*z*t+x*t^2-x-2*z

(23)
(

t
2 − 1

)

x+ 2 t z y − 2 z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

f4 := -x*z^3+ 4*y*z^2* t+ 4*x*z*t^2+ 2*y*t^3+ 4*x*z+ 4*z^2 -10* y*t- 10*t^2+2

(24)
(

−z
3 +

(

4 t2 + 4
)

z
)

x+
(

4 t z2 + 2 t3 − 10 t
)

y + 4 z2 − 10 t2 + 2

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

lf := [f1 , f2 , f3, f4]

(25)
[

(2 t y − 2) x+ z y
2 − z, −z x

3 + (4 t y + 4) x2 +
(

4 z y2 + 4 z
)

x+ 2 t y3 − 10 y2 − 10 t y + 2,
(

t
2 − 1

)

x+ 2 t z y − 2 z,
(

−z
3 +

(

4 t2 + 4
)

z
)

x+
(

4 t z2 + 2 t3 − 10 t
)

y + 4 z2 − 10 t2 + 2
]

List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z, t ]) ))

First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lf)$T
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(26)
[{

t
2 − 1, z8 − 16 z6 + 256 z2 − 256, t y − 1,

(

z
3 − 8 z

)

x− 8 z2 + 16
}

,
{

3 t2 + 1, z2 − 7 t2 − 1,

y + t, x+ z
}

,
{

t
8 − 10 t6 + 10 t2 − 1, z,

(

t
3 − 5 t

)

y − 5 t2 + 1, x
}

,
{

t
2 + 3, z2 − 4, y + t, x− z

}]

List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) , OrderedVariableList ([ x, y, z

, t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )))

And now in the sense of Lazard (or Wu and other authors).

lts2 := zeroSetSplit(lf,false)$T

(27)
[{

t
8 − 10 t6 + 10 t2 − 1, z,

(

t
3 − 5 t

)

y − 5 t2 + 1, x
}

,
{

t
2 − 1, z8 − 16 z6 + 256 z2 − 256, t y − 1,

(

z
3 − 8 z

)

x− 8 z2 + 16
}

,
{

3 t2 + 1, z2 − 7 t2 − 1, y + t, x+ z
}

,
{

t
2 + 3, z2 − 4, y + t, x− z

}]

List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) , OrderedVariableList ([ x, y, z

, t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )))

Up to the ordering of the components, both decompositions are identical.

Let us check that each component has a finite number of solutions.

[coHeight (ts) for ts in lts2]

(28)[0, 0, 0, 0]

List (NonNegativeInteger)

Let us count the degrees of each component,

degrees := [degree (ts) for ts in lts2]

(29)[8, 16, 4, 4]

List (NonNegativeInteger)

and compute their sum.

reduce (+, degrees )
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(30)32

PositiveInteger

We study now the options of the zeroSetSplit operation. As we have seen yet, there is an optional second
argument which is a boolean value. If this value is true (this is the default) then the decomposition is
computed in the sense of Kalkbrener, otherwise it is computed in the sense of Lazard.

There is a second boolean optional argument that can be used (in that case the first optional argument
must be present). This second option allows you to get some information during the computations.

Therefore, we need to understand a little what is going on during the computations. An important
feature of the algorithm is that the intermediate computations are managed in some sense like the
processes of a Unix system. Indeed, each intermediate computation may generate other intermediate
computations and the management of all these computations is a crucial task for the efficiency. Thus
any intermediate computation may be suspended, killed or resumed, depending on algebraic consid-
erations that determine priorities for these processes. The goal is of course to go as fast as possible
towards the final decomposition which means to avoid as much as possible unnecessary computations.

To follow the computations, one needs to set to true the second argument. Then a lot of numbers
and letters are displayed. Between a [ and a ] one has the state of the processes at a given time. Just
after [ one can see the number of processes. Then each process is represented by two numbers between
< and >. A process consists of a list of polynomial ps and a triangular set ts; its goal is to compute
the common zeros of ps that belong to the regular-zeros set of ts. After the processes, the number
between pipes gives the total number of polynomials in all the sets ps. Finally, the number between
braces gives the number of components of a decomposition that are already computed. This number
may decrease.

Let us take a third example (Czapor-Geddes-Wang) to see how these informations are displayed.

Define a polynomial system.

u : R := 2

(31)2

Integer

q1 := 2*(u -1) ^2+ 2*(x-z*x+z^2)+ y^2*(x-1) ^2- 2*u*x+ 2*y*t*(1-x)*(x-z)+ 2*u*z*t*(t-y)+

u^2*t^2*(1 -2*z)+ 2*u*t^2*(z-x)+ 2*u*t*y*(z -1)+ 2*u*z*x*(y+1)+ (u^2-2*u)*z^2* t^2+

2*u^2* z^2+ 4*u*(1-u)*z+ t^2*(z-x)^2

(32)
(

y
2 − 2 t y + t

2)
x
2 +

(

−2 y2 + ((2 t+ 4) z + 2 t) y +
(

−2 t2 + 2
)

z − 4 t2 − 2
)

x

+ y
2 + (−2 t z − 4 t) y +

(

t
2 + 10

)

z
2 − 8 z + 4 t2 + 2



9.71. REGULARTRIANGULARSET 705

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

q2 := t*(2*z+1) *(x-z)+ y*(z+2) *(1-x)+ u*(u -2)*t+ u*(1 -2* u)*z*t+ u*y*(x+u-z*x-1) +

u*(u+1)*z^2* t

(33)(−3 z y + 2 t z + t) x+ (z + 4) y + 4 t z2 − 7 t z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

q3 := -u^2*(z -1) ^2+ 2*z*(z-x) -2*(x-1)

(34)(−2 z − 2) x− 2 z2 + 8 z − 2

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

q4 := u^2+4*(z-x^2) +3* y^2*(x -1) ^2- 3*t^2*(z-x)^2

+3* u^2*t^2*(z-1) ^2+u^2*z*(z -2) +6*u*t*y*(z+x+z*x-1)

(35)
(

3 y2 − 3 t2 − 4
)

x
2 +

(

−6 y2 + (12 t z + 12 t) y + 6 t2 z
)

x+ 3 y2

+ (12 t z − 12 t) y +
(

9 t2 + 4
)

z
2 +

(

−24 t2 − 4
)

z + 12 t2 + 4

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

lq := [q1 , q2 , q3, q4]

(36)

[(

y
2 − 2 t y + t

2
)

x
2 +

(

−2 y2 + ((2 t+ 4) z + 2 t) y +
(

−2 t2 + 2
)

z − 4 t2 − 2
)

x+ y
2

+ (−2 t z − 4 t) y +
(

t
2 + 10

)

z
2 − 8 z + 4 t2 + 2, (−3 z y + 2 t z + t)x+ (z + 4) y + 4 t z2 − 7 t z,

(−2 z − 2) x− 2 z2 + 8 z − 2,
(

3 y2 − 3 t2 − 4
)

x
2 +

(

−6 y2 + (12 t z + 12 t) y + 6 t2 z
)

x

+ 3 y2 + (12 t z − 12 t) y +
(

9 t2 + 4
)

z
2 +

(

−24 t2 − 4
)

z + 12 t2 + 4
]

List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z, t ]) ))

Let us try the information option. N.B. The timing should be between 1 and 10 minutes, depending
on your machine.

zeroSetSplit(lq ,true ,true)$T;
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List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) , OrderedVariableList ([ x, y, z

, t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )))

Between a sequence of processes, thus between a ] and a [ you can see capital letters W, G, I and
lower case letters i, w. Each time a capital letter appears a non-trivial computation has be performed
and its result is put in a hash-table. Each time a lower case letter appears a needed result has been
found in an hash-table. The use of these hash-tables generally speed up the computations. However, on
very large systems, it may happen that these hash-tables become too big to be handled by your FriCAS
configuration. Then in these exceptional cases, you may prefer getting a result (even if it takes a long
time) than getting nothing. Hence you need to know how to prevent the RSEGSET constructor from
using these hash-tables. In that case you will be using the zeroSetSplit with five arguments. The first
one is the input system lp as above. The second one is a boolean value hash? which is true iff you
want to use hash-tables. The third one is boolean value clos? which is true iff you want to solve your
system in the sense of Kalkbrener, the other way remaining that of Lazard. The fourth argument is
boolean value info? which is true iff you want to display information during the computations. The
last one is boolean value prep? which is true iff you want to use some heuristics that are performed on
the input system before starting the real algorithm. The value of this flag is true when you are using
zeroSetSplit with less than five arguments. Note that there is no available signature for zeroSetSplit
with four arguments.

We finish this section by some remarks about both ways of solving, in the sense of Kalkbrener or in the
sense of Lazard. For problems with a finite number of solutions, there are theoretically equivalent and
the resulting decompositions are identical, up to the ordering of the components. However, when solving
in the sense of Lazard, the algorithm behaves differently. In that case, it becomes more incremental
than in the sense of Kalkbrener. That means the polynomials of the input system are considered one
after another whereas in the sense of Kalkbrener the input system is treated more globally.

This makes an important difference in positive dimension. Indeed when solving in the sense of Kalk-
brener, the Primeidealkettensatz of Krull is used. That means any regular triangular containing more
polynomials than the input system can be deleted. This is not possible when solving in the sense of
Lazard. This explains why Kalkbrener’s decompositions usually contain less components than those
of Lazard. However, it may happen with some examples that the incremental process (that cannot be
used when solving in the sense of Kalkbrener) provide a more efficient way of solving than the global
one even if the Primeidealkettensatz is used. Thus just try both, with the various options, before
concluding that you cannot solve your favorite system with zeroSetSplit. There exist more options at
the development level that are not currently available in this public version. So you are welcome to
contact marc@nag.co.uk for more information and help.

9.72 RomanNumeral

The Roman numeral package was added to FriCAS in MCMLXXXVI for use in denoting higher order
derivatives.

For example, let f be a symbolic operator.

f := operator ’f
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(4)f

BasicOperator

This is the seventh derivative of f with respect to x.

D(f x,x ,7)

(5)f
(vii)(x)

Expression( Integer )

You can have integers printed as Roman numerals by declaring variables to be of typeRomanNumeral
(abbreviation ROMAN).

a := roman (1978 - 1965)

(6)XIII

RomanNumeral

This package now has a small but devoted group of followers that claim this domain has shown its
efficacy in many other contexts. They claim that Roman numerals are every bit as useful as ordinary
integers. In a sense, they are correct, because Roman numerals form a ring and you can therefore
construct polynomials with Roman numeral coefficients, matrices over Roman numerals, etc..

x : UTS(ROMAN ,’x ,0) := x

(7)x

UnivariateTaylorSeries (RomanNumeral, x, 0)

Was Fibonacci Italian or ROMAN?

recip (1 - x - x^2)

(8)I + x+ II x
2 + III x

3 + V x
4 + V III x

5 +XIII x
6 +XXI x

7 +O
(

x
8)
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Union( UnivariateTaylorSeries (RomanNumeral, x, 0), ...)

You can also construct fractions with Roman numeral numerators and denominators, as this matrix
Hilberticus illustrates.

m : MATRIX FRAC ROMAN

m := matrix [[1/(i + j) for i in 1..3] for j in 1..3]

(10)





I
II

I
III

I
IV

I
III

I
IV

I
V

I
IV

I
V

I
V I





Matrix(Fraction (RomanNumeral))

Note that the inverse of the matrix has integral ROMAN entries.

inverse m

(11)





LXXII −CCXL CLXXX

−CCXL CM −DCCXX

CLXXX −DCCXX DC





Union(Matrix(Fraction(RomanNumeral)), ...)

Unfortunately, the spoil-sports say that the fun stops when the numbers get big—mostly because the
Romans didn’t establish conventions about representing very large numbers.

y := factorial 10

(12)3628800

PositiveInteger

You work it out!

roman y

(13)((((I))))((((I))))((((I)))) (((I)))(((I)))(((I)))(((I)))(((I)))(((I))) ((I))((I)) MMMMMMMMDCCC
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RomanNumeral

Issue the system command )show RomanNumeral to display the full list of operations defined by Ro-
manNumeral.

9.73 Segment

The Segment domain provides a generalized interval type.

Segments are created using the “..” construct by indicating the (included) end points.

s := 3..10

(4)3 . . 10

Segment(PositiveInteger )

The first end point is called the low and the second is called high.

low (s)

(5)3

PositiveInteger

These names are used even though the end points might belong to an unordered set.

high(s)

(6)10

PositiveInteger

In addition to the end points, each segment has an integer “increment.” An increment can be specified
using the “by” construct.

t := 10..3 by -2
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(7)10 . . 3 by − 2

Segment(PositiveInteger )

This part can be obtained using the incr function.

incr(s)

(8)1

PositiveInteger

Unless otherwise specified, the increment is 1.

incr(t)

(9)− 2

Integer

A single value can be converted to a segment with equal end points. This happens if segments and
single values are mixed in a list.

l := [1..3 , 5, 9, 15..11 by -1]

(10)[1 . . 3, 5 . . 5, 9 . . 9, 15 . . 11 by − 1]

List (Segment(PositiveInteger ))

If the underlying type is an ordered ring, it is possible to perform additional operations. The expand
operation creates a list of points in a segment.

expand (s)

(11)[3, 4, 5, 6, 7, 8, 9, 10]

List ( Integer )

If k > 0, then expand(l..h by k) creates the list [l, l+k, ..., lN] where lN <= h < lN+k. If
k < 0, then lN >= h > lN+k.

expand (t)
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(12)[10, 8, 6, 4]

List ( Integer )

It is also possible to expand a list of segments. This is equivalent to appending lists obtained by
expanding each segment individually.

expand (l)

(13)[1, 2, 3, 5, 9, 15, 14, 13, 12, 11]

List ( Integer )

For more information on related topics, see ‘SegmentBinding’ on page 711 and ‘UniversalSegment’
on page 763. Issue the system command )show Segment to display the full list of operations defined
by Segment.

9.74 SegmentBinding

The SegmentBinding type is used to indicate a range for a named symbol.

First give the symbol, then an “=” and finally a segment of values.

x = a..b

(4)x = (a . . b)

SegmentBinding(Symbol)

This is used to provide a convenient syntax for arguments to certain operations.

sum (i^2, i = 0..n)

(5)
2n3 + 3n2 + n

6

Fraction (Polynomial( Integer ))
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The draw operation uses a SegmentBinding argument as a range of coordinates. This is an example
of a two-dimensional parametrized plot; other draw options use more than one SegmentBinding
argument.

draw(x^2, x = -2..2)

0.00 1.60-1.60

0.80

1.60

2.40

3.20

4.00

The left-hand side must be of type Symbol but the right-hand side can be a segment over any type.

sb := y = 1/2..3/2

(6)y =

((

1

2

)

. .

(

3

2

))

SegmentBinding(Fraction(Integer))

The left- and right-hand sides can be obtained using the variable and segment operations.

variable (sb)

(7)y

Symbol

segment (sb)

(8)

(

1

2

)

. .

(

3

2

)
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Segment(Fraction(Integer))

For more information on related topics, see ‘Segment’ on page 709 and ‘UniversalSegment’ on page
763. Issue the system command )show SegmentBinding to display the full list of operations defined
by SegmentBinding.

9.75 Set

The Set domain allows one to represent explicit finite sets of values. These are similar to lists, but
duplicate elements are not allowed. Sets can be created by giving a fixed set of values . . .

s := set [x^2-1, y^2-1, z^2-1]

(4)
{

x
2 − 1, y2 − 1, z2 − 1

}

Set(Polynomial( Integer ))

or by using a collect form, just as for lists. In either case, the set is formed from a finite collection of
values.

t := set [x^i - i+1 for i in 2..10 | prime? i]

(5)
{

x
2 − 1, x3 − 2, x5 − 4, x7 − 6

}

Set(Polynomial( Integer ))

The basic operations on sets are intersect, union, difference, and symmetricDifference.

i := intersect (s,t)

(6)
{

x
2 − 1

}

Set(Polynomial( Integer ))

u := union(s,t)
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(7)
{

x
2 − 1, y2 − 1, z2 − 1, x3 − 2, x5 − 4, x7 − 6

}

Set(Polynomial( Integer ))

The set difference(s,t) contains those members of s which are not in t.

difference (s,t)

(8)
{

y
2 − 1, z2 − 1

}

Set(Polynomial( Integer ))

The set symmetricDifference(s,t) contains those elements which are in s or t but not in both.

symmetricDifference(s,t)

(9)
{

y
2 − 1, z2 − 1, x3 − 2, x5 − 4, x7 − 6

}

Set(Polynomial( Integer ))

Set membership is tested using the member? operation.

member ?(y, s)

(10)false

Boolean

member ?(( y+1) *(y -1) , s)

(11)true

Boolean

The subset? function determines whether one set is a subset of another.

subset ?(i, s)
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(12)true

Boolean

subset ?(u, s)

(13)false

Boolean

When the base type is finite, the absolute complement of a set is defined. This finds the set of all
multiplicative generators of PrimeField 11—the integers mod 11.

gs := set [g for i in 1..11 | primitive ?(g := i::PF 11)]

(14){2, 6, 7, 8}

Set(PrimeField(11))

The following values are not generators.

complement gs

(15){1, 3, 4, 5, 9, 10, 0}

Set(PrimeField(11))

Often the members of a set are computed individually; in addition, values can be inserted or removed
from a set over the course of a computation. There are two ways to do this:

a := set [i^2 for i in 1..5]

(16){1, 4, 9, 16, 25}

Set( PositiveInteger )

One is to view a set as a data structure and to apply updating operations.

insert !(32, a)
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(17){1, 4, 9, 16, 25, 32}

Set( PositiveInteger )

remove !(25, a)

(18){1, 4, 9, 16, 32}

Set( PositiveInteger )

a

(19){1, 4, 9, 16, 32}

Set( PositiveInteger )

The other way is to view a set as a mathematical entity and to create new sets from old.

b := b0 := set [i^2 for i in 1..5]

(20){1, 4, 9, 16, 25}

Set( PositiveInteger )

b := union(b, {32})

(21){1, 4, 9, 16, 25, 32}

Set( PositiveInteger )

b := difference (b, {25})

(22){1, 4, 9, 16, 32}
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Set( PositiveInteger )

b0

(23){1, 4, 9, 16, 25}

Set( PositiveInteger )

For more information about lists, see ‘List’ on page 607. Issue the system command )show Set to
display the full list of operations defined by Set.

9.76 SingleInteger

The SingleInteger domain is intended to provide support in FriCAS for machine integer arithmetic.
It is generally much faster than (bignum) Integer arithmetic but suffers from a limited range of values.
Since FriCAS can be implemented on top of various dialects of Lisp, the actual representation of small
integers may not correspond exactly to the host machines integer representation.

The underlying Lisp primitives treat machine-word sized computations specially.

You can discover the minimum and maximum values in your implementation by using min and max.

min () $SingleInteger

(4)− 4611686018427387904

SingleInteger

max () $SingleInteger

(5)4611686018427387903

SingleInteger

To avoid confusion with Integer, which is the default type for integers, you usually need to work with
declared variables (Section 2.3 on page 86) . . .

a := 1234 :: SingleInteger
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(6)1234

SingleInteger

or use package calling (Section 2.9 on page 105).

b := 124 $SingleInteger

(7)124

SingleInteger

You can add, multiply and subtract SingleInteger objects, and ask for the greatest common divisor
(gcd).

gcd (a,b)

(8)2

SingleInteger

The least common multiple (lcm) is also available.

lcm (a,b)

(9)76508

SingleInteger

Operations mulmod, addmod, submod, and invmod are similar—they provide arithmetic modulo a given
small integer. Here is 5 * 6 mod 13.

mulmod (5,6,13) $SingleInteger

(10)4

SingleInteger

To reduce a small integer modulo a prime, use positiveRemainder.

positiveRemainder (37 ,13) $SingleInteger
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(11)11

SingleInteger

Operations And, Or, xor, and Not provide bit level operations on small integers.

And (3,4) $SingleInteger

(12)0

SingleInteger

Use shift(int,numToShift) to shift bits, where i is shifted left if numToShift is positive, right if
negative.

shift (1,4) $SingleInteger

(13)16

SingleInteger

shift (31,-1) $SingleInteger

(14)15

SingleInteger

Many other operations are available for small integers, including many of those provided for Integer.
To see the other operations, use the Browse HyperDoc facility (Section 14 on page 865). Issue the sys-
tem command )show SingleInteger to display the full list of operations defined by SingleInteger..

9.77 SparseTable

The SparseTable domain provides a general purpose table type with default entries. Here we create
a table to save strings under integer keys. The value "Try again!" is returned if no other value has
been stored for a key.

t: SparseTable (Integer , String , "Try again !") := table ()
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(4)table()

SparseTable( Integer , String , Try again!)

Entries can be stored in the table.

t.3 := "Number three"

(5)"Number three"

String

t.4 := "Number four"

(6)"Number four"

String

These values can be retrieved as usual, but if a look up fails the default entry will be returned.

t.3

(7)"Number three"

String

t.2

(8)"Try again!"

String

To see which values are explicitly stored, the keys and entries functions can be used.

keys t
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(9)[4, 3]

List ( Integer )

entries t

(10)["Number four", "Number three"]

List (String )

If a specific table representation is required, the GeneralSparseTable constructor should be used.
The domain SparseTable(K, E, dflt) is equivalent to GeneralSparseTable(K,E, Table(K,E),
dflt). For more information, see ‘Table’ on page 743 and ‘GeneralSparseTable’ on page 531. Issue the
system command )show SparseTable to display the full list of operations defined by SparseTable.

9.78 SquareFreeRegularTriangularSet

The SquareFreeRegularTriangularSet domain constructor implements square-free regular trian-
gular sets. See the RegularTriangularSet domain constructor for general regular triangular sets.
Let T be a regular triangular set consisting of polynomials t1, ..., tm ordered by increasing main vari-
ables. The regular triangular set T is square-free if T is empty or if t1, ..., tm-1 is square-free and
if the polynomial tm is square-free as a univariate polynomial with coefficients in the tower of simple
extensions associated with t1, ..., tm-1.

The main interest of square-free regular triangular sets is that their associated towers of simple exten-
sions are product of fields. Consequently, the saturated ideal of a square-free regular triangular set is
radical. This property simplifies some of the operations related to regular triangular sets. However,
building square-free regular triangular sets is generally more expensive than building general regular
triangular sets.

As theRegularTriangularSet domain constructor, the SquareFreeRegularTriangularSet domain
constructor also implements a method for solving polynomial systems by means of regular triangular
sets. This is in fact the same method with some adaptations to take into account the fact that the
computed regular chains are square-free. Note that it is also possible to pass from a decomposition
into general regular triangular sets to a decomposition into square-free regular triangular sets. This
conversion is used internally by the LazardSetSolvingPackage package constructor.

N.B. When solving polynomial systems with the SquareFreeRegularTriangularSet domain con-
structor or the LazardSetSolvingPackage package constructor, decompositions have no redundant
components. See also LexTriangularPackage and ZeroDimensionalSolvePackage for the case of
algebraic systems with a finite number of (complex) solutions.

We shall explain now how to use the constructor SquareFreeRegularTriangularSet.
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This constructor takes four arguments. The first one, R, is the coefficient ring of the polynomials;
it must belong to the category GcdDomain. The second one, E, is the exponent monoid of the
polynomials; it must belong to the category OrderedAbelianMonoidSup. the third one, V, is the
ordered set of variables; it must belong to the category OrderedSet. The last one is the polynomial
ring; it must belong to the category RecursivePolynomialCategory(R,E,V). The abbreviation for
SquareFreeRegularTriangularSet is SREGSET.

Note that the way of understanding triangular decompositions is detailed in the example of the Reg-
ularTriangularSet constructor.

Let us illustrate the use of this constructor with one example (Donati-Traverso). Define the coefficient
ring.

R := Integer

(4)Integer

Type

Define the list of variables,

ls : List Symbol := [x,y,z,t]

(5)[x, y, z, t]

List (Symbol)

and make it an ordered set;

V := OVAR(ls)

(6)OrderedVariableList([x, y, z, t])

Type

then define the exponent monoid.

E := IndexedExponents V

(7)IndexedExponents(OrderedVariableList([x, y, z, t]))
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Type

Define the polynomial ring.

P := NSMP(R, V)

(8)NewSparseMultivariatePolynomial(Integer,OrderedVariableList([x, y, z, t]))

Type

Let the variables be polynomial.

x: P := ’x

(9)x

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

y: P := ’y

(10)y

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

z: P := ’z

(11)z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

t: P := ’t

(12)t

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

Now call the SquareFreeRegularTriangularSet domain constructor.

ST := SREGSET (R,E,V,P)
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(13)SquareFreeRegularTriangularSet(Integer, IndexedExponents(OrderedVariableList([x, y, z, t])),OrderedVariableList([x, y, z, t]),NewSparseMultiv

Type

Define a polynomial system.

p1 := x ^ 31 - x ^ 6 - x - y

(14)x
31 − x

6 − x− y

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

p2 := x ^ 8 - z

(15)x
8 − z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

p3 := x ^ 10 - t

(16)x
10 − t

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

lp := [p1 , p2 , p3]

(17)
[

x
31 − x

6 − x− y, x
8 − z, x

10 − t
]

List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z, t ]) ))

First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lp)$ST
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(18)
[{

z
5 − t

4
, t z y

2 + 2 z3 y − t
8 + 2 t5 + t

3 − t
2
,
(

t
4 − t

)

x− t y − z
2
}]

List (SquareFreeRegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) ,

OrderedVariableList ([ x, y, z, t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z , t ]) )))

And now in the sense of Lazard (or Wu and other authors).

zeroSetSplit(lp ,false )$ST

(19)
[{

z
5 − t

4
, t z y

2 + 2 z3 y − t
8 + 2 t5 + t

3 − t
2
,
(

t
4 − t

)

x− t y − z
2}

,
{

t
3 − 1, z5 − t, t y + z

2
, z x

2 − t
}

, {t, z, y, x}
]

List (SquareFreeRegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) ,

OrderedVariableList ([ x, y, z, t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z , t ]) )))

Now to see the difference with the RegularTriangularSet domain constructor, we define:

T := REGSET (R,E,V,P)

(20)RegularTriangularSet(Integer, IndexedExponents(OrderedVariableList([x, y, z, t])),OrderedVariableList([x, y, z, t]),NewSparseMultiv

Type

and compute:

lts := zeroSetSplit(lp ,false)$T

(21)
[{

z
5 − t

4
, t z y

2 + 2 z3 y − t
8 + 2 t5 + t

3 − t
2
,
(

t
4 − t

)

x− t y − z
2}

,
{

t
3 − 1, z5 − t, t z y

2 + 2 z3 y + 1, z x2 − t
}

, {t, z, y, x}
]

List ( RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) , OrderedVariableList ([ x, y, z

, t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )))

If you look at the second set in both decompositions in the sense of Lazard, you will see that the
polynomial with main variable y is not the same.

Let us understand what has happened. We define:

ts := lts .2
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(22)
{

t
3 − 1, z5 − t, t z y

2 + 2 z3 y + 1, z x2 − t
}

RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) , OrderedVariableList ([ x, y, z, t ])

, NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z , t ]) ))

pol := select (ts ,’y)$T

(23)t z y
2 + 2 z3 y + 1

Union(NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z, t ]) ) , ...)

tower := collectUnder(ts ,’y)$T

(24)
{

t
3 − 1, z5 − t

}

RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([ x, y, z, t ]) ) , OrderedVariableList ([ x, y, z, t ])

, NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z , t ]) ))

pack := RegularTriangularSetGcdPackage (R,E,V,P,T)

(25)RegularTriangularSetGcdPackage(Integer, IndexedExponents(OrderedVariableList([x, y, z, t])),OrderedVariableList([x, y, z, t]),

Type

Then we compute:

toseSquareFreePart(pol ,tower)$pack

(26)
[[

val = t y + z
2
, tower =

{

t
3 − 1, z5 − t

}]]

List (Record(val : NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z , t ]) ) , tower:

RegularTriangularSet ( Integer , IndexedExponents(OrderedVariableList ([x, y, z , t ]) ) , OrderedVariableList ([ x, y, z, t ]) ,

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z, t ]) ))))
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9.79 SquareMatrix

The top level matrix type in FriCAS is Matrix (see ‘Matrix’ on page 627), which provides basic
arithmetic and linear algebra functions. However, since the matrices can be of any size it is not true
that any pair can be added or multiplied. Thus Matrix has little algebraic structure.

Sometimes you want to use matrices as coefficients for polynomials or in other algebraic contexts. In
this case, SquareMatrix should be used. The domain SquareMatrix(n,R) gives the ring of n by n

square matrices over R.

Since SquareMatrix is not normally exposed at the top level, you must expose it before it can be
used.

)set expose add constructor SquareMatrix

SquareMatrix is now explicitly exposed in frame initial

Once SQMATRIX has been exposed, values can be created using the squareMatrix function.

m := squareMatrix [[1,-%i],[%i ,4]]

(4)

[

1 −i

i 4

]

SquareMatrix(2, Complex(Integer))

The usual arithmetic operations are available.

m*m - m

(5)

[

1 −4 i
4 i 13

]

SquareMatrix(2, Complex(Integer))

Square matrices can be used where ring elements are required. For example, here is a matrix with
matrix entries.

mm := squareMatrix [[m, 1], [1-m, m^2]]

(6)









[

1 −i

i 4

] [

1 0
0 1

]

[

0 i

−i −3

] [

2 −5 i
5 i 17

]
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SquareMatrix(2, SquareMatrix(2, Complex(Integer)))

Or you can construct a polynomial with square matrix coefficients.

p := (x + m)^2

(7)x
2 +

[

2 −2 i
2 i 8

]

x+

[

2 −5 i
5 i 17

]

Polynomial(SquareMatrix(2, Complex(Integer)))

This value can be converted to a square matrix with polynomial coefficients.

p:: SquareMatrix(2, ?)

(8)

[

x2 + 2x+ 2 −2 i x− 5 i
2 i x+ 5 i x2 + 8x+ 17

]

SquareMatrix(2, Polynomial(Complex(Integer)))

For more information on related topics, see Section 2.2.4 on page 84, Section 2.11 on page 110, and
‘Matrix’ on page 627. Issue the system command )show SquareMatrix to display the full list of
operations defined by SquareMatrix.

9.80 Stream

A Stream object is represented as a list whose last element contains the wherewithal to create the
next element, should it ever be required. Let ints be the infinite stream of non-negative integers.

ints := [i for i in 0..]

(4)[0, 1, 2, 3, 4, 5, 6, . . .]

Stream(NonNegativeInteger)

By default, ten stream elements are calculated. This number may be changed to something else by the
system command )set streams calculate. For the display purposes of this book, we have chosen
a smaller value. More generally, you can construct a stream by specifying its initial value and a
function which, when given an element, creates the next element.
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f : List INT -> List INT

f x == [x.1 + x.2, x.1]

fibs := [i.2 for i in [stream (f, [1, 1]) ]]

Compiling function f with type List(Integer ) -> List(Integer )

(7)[1, 1, 2, 3, 5, 8, 13, . . .]

Stream(Integer)

You can create the stream of odd non-negative integers by either filtering them from the integers, or
by evaluating an expression for each integer.

[i for i in ints | odd? i]

(8)[1, 3, 5, 7, 9, 11, 13, . . .]

Stream(NonNegativeInteger)

odds := [2*i+1 for i in ints]

(9)[1, 3, 5, 7, 9, 11, 13, . . .]

Stream(NonNegativeInteger)

You can accumulate the initial segments of a stream using the scan operation.

scan(0,+, odds)

(10)[1, 4, 9, 16, 25, 36, 49, . . .]

Stream(NonNegativeInteger)

The corresponding elements of two or more streams can be combined in this way.

[i*j for i in ints for j in odds]
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(11)[0, 3, 10, 21, 36, 55, 78, . . .]

Stream(NonNegativeInteger)

map (*, ints ,odds)

(12)[0, 3, 10, 21, 36, 55, 78, . . .]

Stream(NonNegativeInteger)

Many operations similar to those applicable to lists are available for streams.

first ints

(13)0

NonNegativeInteger

rest ints

(14)[1, 2, 3, 4, 5, 6, 7, . . .]

Stream(NonNegativeInteger)

fibs 20

(15)6765

PositiveInteger

The packages StreamFunctions1, StreamFunctions2 and StreamFunctions3 export some useful
stream manipulation operations. For more information, see Section 5.5 on page 164, Section 8.9 on
page 326, ‘ContinuedFraction’ on page 450, and ‘List’ on page 607. Issue the system command
)show Stream to display the full list of operations defined by Stream.
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9.81 String

The type String provides character strings. Character strings provide all the operations for a one-
dimensional array of characters, plus additional operations for manipulating text. For more information
on related topics, see ‘Character’ on page 433 and ‘CharacterClass’ on page 435. You can also issue
the system command )show String to display the full list of operations defined by String.

String values can be created using double quotes.

hello := "Hello , I’m FriCAS !"

(4)"Hello, I’m FriCAS!"

String

Note, however, that double quotes and underscores must be preceded by an extra underscore.

said := "Jane said , _"Look!_""

(5)"Jane said, "Look!""

String

saw := "She saw exactly one underscore : __."

(6)"She saw exactly one underscore: ."

String

It is also possible to use new to create a string of any size filled with a given character. Since there are
many new functions it is necessary to indicate the desired type.

gasp: String := new (32, char "x")

(7)"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

String

The length of a string is given by #.

#gasp
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(8)32

PositiveInteger

Indexing operations allow characters to be extracted or replaced in strings. For any string s, indices
lie in the range 1..#s.

hello .2

(9)e

Character

Indexing is really just the application of a string to a subscript, so any application syntax works.

hello 2

(10)e

Character

hello (2)

(11)e

Character

If it is important not to modify a given string, it should be copied before any updating operations are
used.

hullo := copy hello

(12)"Hello, I’m FriCAS!"

String

hullo .2 := char "u"; [hello , hullo]
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(13)["Hello, I’m FriCAS!", "Hullo, I’m FriCAS!"]

List (String )

Operations are provided to split and join strings. The concat operation allows several strings to be
joined together.

saidsaw := concat [" alpha "," ---”,”omega”]

(14)"alpha---omega"

String

There is a version of concat that works with two strings.

concat (" hello "," goodbye ")

(15)"hello goodbye"

String

Juxtaposition can also be used to concatenate strings.

"This " "is " "several " "strings " "concatenated."

(16)"This is several strings concatenated."

String

Substrings are obtained by giving an index range.

hello (1..5)

(17)"Hello"

String

hello (8..)
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(18)"I’m FriCAS!"

String

A string can be split into several substrings by giving a separation character or character class.

split(hello , char " ")

(19)["Hello,", "I’m", "FriCAS!"]

List (String )

other := complement alphanumeric();

CharacterClass

split(saidsaw , other)

(21)["alpha", "omega"]

List (String )

Unwanted characters can be trimmed from the beginning or end of a string using the operations trim,
leftTrim and rightTrim.

trim ("## ++ relax ++ ##", char "#")

(22)" ++ relax ++ "

String

Each of these functions takes a string and a second argument to specify the characters to be discarded.

trim ("## ++ relax ++ ##", other )

(23)"relax"
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String

The second argument can be given either as a single character or as a character class.

leftTrim ("## ++ relax ++ ##", other )

(24)"relax ++ ##"

String

rightTrim ("## ++ relax ++ ##", other )

(25)"## ++ relax"

String

Strings can be changed to upper case or lower case using the operations upperCase, upperCase!, lower-
Case and lowerCase!.

upperCase hello

(26)"HELLO, I’M FRICAS!"

String

The versions with the exclamation mark change the original string, while the others produce a copy.

lowerCase hello

(27)"hello, i’m fricas!"

String

Some basic string matching is provided. The function prefix? tests whether one string is an initial
prefix of another.

prefix ?(" He", "Hello ")
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(28)true

Boolean

prefix ?(" Her ", "Hello ")

(29)false

Boolean

A similar function, suffix?, tests for suffixes.

suffix ?("", "Hello ")

(30)true

Boolean

suffix ?(" LO", "Hello ")

(31)false

Boolean

The function substring? tests for a substring given a starting position.

substring ?(" ll", "Hello", 3)

(32)true

Boolean

substring ?(" ll", "Hello", 4)

(33)false
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Boolean

A number of position functions locate things in strings. If the first argument to position is a string,
then position(s,t,i) finds the location of s as a substring of t starting the search at position i.

n := position ("nd", " underground ", 1)

(34)2

PositiveInteger

n := position ("nd", " underground ", n+1)

(35)10

PositiveInteger

If s is not found, then 0 is returned (minIndex(s)-1 in IndexedString).

n := position ("nd", " underground ", n+1)

(36)0

NonNegativeInteger

To search for a specific character or a member of a character class, a different first argument is used.

position (char "d", "underground ", 1)

(37)3

PositiveInteger

position (hexDigit (), "underground ", 1)

(38)3
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PositiveInteger

9.82 StringTable

This domain provides a table type in which the keys are known to be strings so special techniques
can be used. Other than performance, the type StringTable(S) should behave exactly the same way
as Table(String,S). See ‘Table’ on page 743 for general information about tables. Issue the system
command )show StringTable to display the full list of operations defined by StringTable.

This creates a new table whose keys are strings.

t: StringTable (Integer ) := table ()

(4)table()

StringTable ( Integer )

The value associated with each string key is the number of characters in the string.

for s in split ("My name is Ian Watt.", char " ")

repeat

t.s := #s

for key in keys t repeat output [key , t.key]

9.83 Symbol

Symbols are one of the basic types manipulated by FriCAS. The Symbol domain provides ways to
create symbols of many varieties. Issue the system command )show Symbol to display the full list of
operations defined by Symbol.

The simplest way to create a symbol is to “single quote” an identifier.

X: Symbol := ’x

(4)x

Symbol

This gives the symbol even if x has been assigned a value. If x has not been assigned a value, then it
is possible to omit the quote.
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XX: Symbol := x

(5)x

Symbol

Declarations must be used when working with symbols, because otherwise the interpreter tries to place
values in a more specialized type Variable.

A := ’a

(6)a

Variable (a)

B := b

(7)b

Variable (b)

The normal way of entering polynomials uses this fact.

x^2 + 1

(8)x
2 + 1

Polynomial( Integer )

Another convenient way to create symbols is to convert a string. This is useful when the name is to
be constructed by a program.

"Hello ":: Symbol

(9)Hello
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Symbol

Sometimes it is necessary to generate new unique symbols, for example, to name constants of integra-
tion. The expression new() generates a symbol starting with %.

new () $Symbol

(10)%A

Symbol

Successive calls to new produce different symbols.

new () $Symbol

(11)%B

Symbol

The expression new("s") produces a symbol starting with %s.

new ("xyz ") $Symbol

(12)%xyz0

Symbol

A symbol can be adorned in various ways. The most basic thing is applying a symbol to a list of
subscripts.

X[i,j]

(13)xi, j

Symbol

Somewhat less pretty is to attach subscripts, superscripts or arguments.

U := subscript (u, [1,2,1,2])
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(14)u1, 2, 1, 2

Symbol

V := superscript (v, [n])

(15)v
n

Symbol

P := argscript (p, [t])

(16)p(t)

Symbol

It is possible to test whether a symbol has scripts using the scripted? test.

scripted ? U

(17)true

Boolean

scripted ? X

(18)false

Boolean

If a symbol is not scripted, then it may be converted to a string.

string X

(19)"x"
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String

The basic parts can always be extracted using the name and scripts operations.

name U

(20)u

Symbol

scripts U

(21)[sub = [1, 2, 1, 2] , sup = [] , presup = [] , presub = [] , args = []]

Record(sub: List (OutputForm), sup: List (OutputForm), presup: List (OutputForm), presub: List (OutputForm), args: List (

OutputForm))

name X

(22)x

Symbol

scripts X

(23)[sub = [] , sup = [] , presup = [] , presub = [] , args = []]

Record(sub: List (OutputForm), sup: List (OutputForm), presup: List (OutputForm), presub: List (OutputForm), args: List (

OutputForm))

The most general form is obtained using the script operation. This operation takes an argument which
is a list containing, in this order, lists of subscripts, superscripts, presuperscripts, presubscripts and
arguments to a symbol.

M := script (Mammoth , [[i,j],[k,l],[0,1],[2],[ u,v,w]])
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(24)Mammoth
0, 1 k, l

2 i, j (u, v, w)

Symbol

scripts M

(25)[sub = [i, j] , sup = [k, l] , presup = [0, 1] , presub = [2] , args = [u, v, w]]

Record(sub: List (OutputForm), sup: List (OutputForm), presup: List (OutputForm), presub: List (OutputForm), args: List (

OutputForm))

If trailing lists of scripts are omitted, they are assumed to be empty.

N := script (Nut , [[i,j],[k,l] ,[0 ,1]])

(26)Nut
0, 1 k, l

i, j

Symbol

scripts N

(27)[sub = [i, j] , sup = [k, l] , presup = [0, 1] , presub = [] , args = []]

Record(sub: List (OutputForm), sup: List (OutputForm), presup: List (OutputForm), presub: List (OutputForm), args: List (

OutputForm))

9.84 Table

The Table constructor provides a general structure for associative storage. This type provides hash
tables in which data objects can be saved according to keys of any type. For a given table, specific
types must be chosen for the keys and entries.

In this example the keys to the table are polynomials with integer coefficients. The entries in the table
are strings.

t: Table(Polynomial Integer , String ) := table ()
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(4)table()

Table(Polynomial( Integer ) , String )

To save an entry in the table, the setelt! operation is used. This can be called directly, giving the table
a key and an entry.

setelt !(t, x^2 - 1, "Easy to factor ")

(5)"Easy to factor"

String

Alternatively, you can use assignment syntax.

t(x^3 + 1) := "Harder to factor "

(6)"Harder to factor"

String

t(x) := "The easiest to factor "

(7)"The easiest to factor"

String

Entries are retrieved from the table by calling the elt operation.

elt (t, x)

(8)"The easiest to factor"

String

This operation is called when a table is “applied” to a key using this or the following syntax.

t.x
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(9)"The easiest to factor"

String

t x

(10)"The easiest to factor"

String

Parentheses are used only for grouping. They are needed if the key is an infixed expression.

t.(x^2 - 1)

(11)"Easy to factor"

String

Note that the elt operation is used only when the key is known to be in the table—otherwise an error
is generated.

t (x^3 + 1)

(12)"Harder to factor"

String

You can get a list of all the keys to a table using the keys operation.

keys t

(13)
[

x, x
3 + 1, x2 − 1

]

List (Polynomial( Integer ))

If you wish to test whether a key is in a table, the search operation is used. This operation returns
either an entry or "failed".

search (x, t)
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(14)"The easiest to factor"

Union(String , ...)

search (x^2, t)

(15)"failed"

Union(” failed ”, ...)

The return type is a union so the success of the search can be tested using case.

search (x^2, t) case "failed "

(16)true

Boolean

The remove! operation is used to delete values from a table.

remove !(x^2-1, t)

(17)"Easy to factor"

Union(String , ...)

If an entry exists under the key, then it is returned. Otherwise remove! returns "failed".

remove !(x-1, t)

(18)"failed"

Union(” failed ”, ...)

The number of key-entry pairs can be found using the # operation.

#t
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(19)2

PositiveInteger

Just as keys returns a list of keys to the table, a list of all the entries can be obtained using the members
operation.

members t

(20)["The easiest to factor", "Harder to factor"]

List (String )

A number of useful operations take functions and map them on to the table to compute the result.
Here we count the entries which have "Hard" as a prefix.

count(s: String +-> prefix ?(" Hard", s), t)

(21)1

PositiveInteger

Other table types are provided to support various needs.

• AssociationList gives a list with a table view. This allows new entries to be appended onto
the front of the list to cover up old entries. This is useful when table entries need to be stacked
or when frequent list traversals are required. See ‘AssociationList’ on page 403 for more
information.

• EqTable gives tables in which keys are considered equal only when they are in fact the same
instance of a structure. See ‘EqTable’ on page 479 for more information.

• StringTable should be used when the keys are known to be strings. See ‘StringTable’ on page
738 for more information.

• SparseTable provides tables with default entries, so lookup never fails. TheGeneralSparseTable
constructor can be used to make any table type behave this way. See ‘SparseTable’ on page 719
for more information.

• KeyedAccessFile allows values to be saved in a file, accessed as a table. See ‘KeyedAccessFile’
on page 562 for more information.

Issue the system command )show Table to display the full list of operations defined by Table.
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9.85 TextFile

The domain TextFile allows FriCAS to read and write character data and exchange text with other
programs. This type behaves in FriCAS much like a File of strings, with additional operations to
cause new lines. We give an example of how to produce an upper case copy of a file. This is the file
from which we read the text.

f1: TextFile := open ("/ etc/group", "input ")

(4)"/etc/group"

TextFile

This is the file to which we read the text.

f2: TextFile := open ("/ tmp/MOTD", "output ")

(5)"/tmp/MOTD"

TextFile

Entire lines are handled using the readLine! and writeLine! operations.

l := readLine ! f1

(6)"root:x:0:"

String

writeLine !(f2 , upperCase l)

(7)"ROOT:X:0:"

String

Use the endOfFile? operation to check if you have reached the end of the file.

while not endOfFile ? f1 repeat

s := readLine ! f1

writeLine !(f2, upperCase s)

The file f1 is exhausted and should be closed.

close! f1
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(9)"/etc/group"

TextFile

It is sometimes useful to write lines a bit at a time. The write! operation allows this.

write !(f2 , "-The -")

(10)"-The-"

String

write !(f2 , "-End -")

(11)"-End-"

String

This ends the line. This is done in a machine-dependent manner.

writeLine ! f2

(12)""

String

close! f2

(13)"/tmp/MOTD"

TextFile

Finally, clean up.

)system rm /tmp /MOTD

For more information on related topics, see ‘File’ on page 499, ‘KeyedAccessFile’ on page 562, and
‘Library’ on page 583. Issue the system command )show TextFile to display the full list of operations
defined by TextFile.
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9.86 TwoDimensionalArray

The TwoDimensionalArray domain is used for storing data in a two-dimensional data structure
indexed by row and by column. Such an array is a homogeneous data structure in that all the entries
of the array must belong to the same FriCAS domain (although see Section 2.6 on page 97). Each
array has a fixed number of rows and columns specified by the user and arrays are not extensible. In
FriCAS, the indexing of two-dimensional arrays is one-based. This means that both the “first” row of
an array and the “first” column of an array are given the index 1. Thus, the entry in the upper left
corner of an array is in position (1,1).

The operation new creates an array with a specified number of rows and columns and fills the compo-
nents of that array with a specified entry. The arguments of this operation specify the number of rows,
the number of columns, and the entry. This creates a five-by-four array of integers, all of whose
entries are zero.

arr : ARRAY2 INT := new (5,4,0)

(4)













0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0













TwoDimensionalArray(Integer)

The entries of this array can be set to other integers using the operation setelt!.

Issue this to set the element in the upper left corner of this array to 17.

setelt !(arr , 1, 1, 17)

(5)17

PositiveInteger

Now the first element of the array is 17.

arr

(6)













17 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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TwoDimensionalArray(Integer)

Likewise, elements of an array are extracted using the operation elt.

elt (arr ,1,1)

(7)17

PositiveInteger

Another way to use these two operations is as follows. This sets the element in position (3,2) of the
array to 15.

arr (3,2) := 15

(8)15

PositiveInteger

This extracts the element in position (3,2) of the array.

arr (3,2)

(9)15

PositiveInteger

The operations elt and setelt! come equipped with an error check which verifies that the indices are
in the proper ranges. For example, the above array has five rows and four columns, so if you ask for
the entry in position (6,2) with arr(6,2) FriCAS displays an error message. If there is no need for
an error check, you can call the operations qelt and qsetelt! which provide the same functionality but
without the error check. Typically, these operations are called in well-tested programs.

The operations row and column extract rows and columns, respectively, and return objects of One-
DimensionalArray with the same underlying element type.

row (arr ,1)

(10)[17, 0, 0, 0]
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OneDimensionalArray(Integer)

column (arr ,1)

(11)[17, 0, 0, 0, 0]

OneDimensionalArray(Integer)

You can determine the dimensions of an array by calling the operations nrows and ncols, which return
the number of rows and columns, respectively.

nrows(arr )

(12)5

PositiveInteger

ncols(arr )

(13)4

PositiveInteger

To apply an operation to every element of an array, use map. This creates a new array. This expression
negates every element.

map (-,arr )

(14)













−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0













TwoDimensionalArray(Integer)

This creates an array where all the elements are doubled.

map ((x +-> x + x),arr )
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(15)













34 0 0 0
0 0 0 0
0 30 0 0
0 0 0 0
0 0 0 0













TwoDimensionalArray(Integer)

To change the array destructively, use map! instead of map. If you need to make a copy of any array,
use copy.

arrc := copy(arr)

(16)













17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0













TwoDimensionalArray(Integer)

map !(-, arrc)

(17)













−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0













TwoDimensionalArray(Integer)

arrc

(18)













−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0
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TwoDimensionalArray(Integer)

arr

(19)













17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0













TwoDimensionalArray(Integer)

Use member? to see if a given element is in an array.

member ?(17, arr)

(20)true

Boolean

member ?(10317 , arr)

(21)false

Boolean

To see how many times an element appears in an array, use count.

count (17, arr )

(22)1

PositiveInteger

count (0, arr)

(23)18
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PositiveInteger

For more information about the operations available forTwoDimensionalArray, issue )show TwoDimensionalArray.
For information on related topics, see ‘Matrix’ on page 627 and ‘OneDimensionalArray’ on page 646.

9.87 UnivariatePolynomial

The domain constructor UnivariatePolynomial (abbreviated UP) creates domains of univariate
polynomials in a specified variable. For example, the domain UP(a1,POLY FRAC INT) provides
polynomials in the single variable a1 whose coefficients are general polynomials with rational number
coefficients.

Restriction:

FriCAS does not allow you to create types where UnivariatePolynomial is contained
in the coefficient type of Polynomial. Therefore, UP(x,POLY INT) is legal but
POLY UP(x,INT) is not.

UP(x,INT) is the domain of polynomials in the single variable x with integer coefficients.

(p,q) : UP(x,INT)

p := (3*x-1) ^2 * (2*x + 8)

(5)18 x3 + 60x2 − 46 x+ 8

UnivariatePolynomial (x, Integer )

q := (1 - 6*x + 9*x^2) ^2

(6)81 x4 − 108 x3 + 54x2 − 12 x+ 1

UnivariatePolynomial (x, Integer )

The usual arithmetic operations are available for univariate polynomials.

p^2 + p*q
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(7)1458 x7 + 3240 x6 − 7074 x5 + 10584 x4 − 9282 x3 + 4120 x2 − 878 x+ 72

UnivariatePolynomial (x, Integer )

The operation leadingCoefficient extracts the coefficient of the term of highest degree.

leadingCoefficient p

(8)18

PositiveInteger

The operation degree returns the degree of the polynomial. Since the polynomial has only one variable,
the variable is not supplied to operations like degree.

degree p

(9)3

PositiveInteger

The reductum of the polynomial, the polynomial obtained by subtracting the term of highest order, is
returned by reductum.

reductum p

(10)60 x2 − 46x+ 8

UnivariatePolynomial (x, Integer )

The operation gcd computes the greatest common divisor of two polynomials.

gcd (p,q)

(11)9 x2 − 6x+ 1
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UnivariatePolynomial (x, Integer )

The operation lcm computes the least common multiple.

lcm (p,q)

(12)162 x5 + 432 x4 − 756 x3 + 408 x2 − 94x+ 8

UnivariatePolynomial (x, Integer )

The operation resultant computes the resultant of two univariate polynomials. In the case of p and q,
the resultant is 0 because they share a common root.

resultant (p,q)

(13)0

NonNegativeInteger

To compute the derivative of a univariate polynomial with respect to its variable, use D.

D p

(14)54x2 + 120 x− 46

UnivariatePolynomial (x, Integer )

Univariate polynomials can also be used as if they were functions. To evaluate a univariate polynomial
at some point, apply the polynomial to the point.

p(2)

(15)300

PositiveInteger

The same syntax is used for composing two univariate polynomials, i.e. substituting one polynomial
for the variable in another. This substitutes q for the variable in p.

p(q)
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(16)9565938 x12 − 38263752 x11 + 70150212 x10 − 77944680 x9 + 58852170 x8 − 32227632 x7

+ 13349448 x6 − 4280688 x5 + 1058184 x4 − 192672 x3 + 23328 x2 − 1536 x+ 40

UnivariatePolynomial (x, Integer )

This substitutes p for the variable in q.

q(p)

(17)8503056 x12 + 113374080 x11 + 479950272 x10 + 404997408 x9

− 1369516896 x8 − 626146848 x7 + 2939858712 x6 − 2780728704 x5

+ 1364312160 x4 − 396838872 x3 + 69205896 x2 − 6716184 x+ 279841

UnivariatePolynomial (x, Integer )

To obtain a list of coefficients of the polynomial, use coefficients.

l := coefficients p

(18)[18, 60, −46, 8]

List ( Integer )

From this you can use gcd and reduce to compute the content of the polynomial.

reduce (gcd ,l)

(19)2

PositiveInteger

Alternatively (and more easily), you can just call content.

content p

(20)2
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PositiveInteger

Note that the operation coefficients omits the zero coefficients from the list. Sometimes it is useful to
convert a univariate polynomial to a vector whose ith position contains the degree i-1 coefficient of
the polynomial.

ux := (x^4+2*x+3) ::UP(x,INT)

(21)x
4 + 2x+ 3

UnivariatePolynomial (x, Integer )

To get a complete vector of coefficients, use the operation vectorise, which takes a univariate polynomial
and an integer denoting the length of the desired vector.

vectorise (ux ,5)

(22)[3, 2, 0, 0, 1]

Vector( Integer )

It is common to want to do something to every term of a polynomial, creating a new polynomial in
the process. This is a function for iterating across the terms of a polynomial, squaring each term.

squareTerms (p) ==

reduce (+,[t^2 for t in monomials p])

Recall what p looked like.

p

(24)18 x3 + 60x2 − 46 x+ 8

UnivariatePolynomial (x, Integer )

We can demonstrate squareTerms on p.

squareTerms p

Compiling function squareTerms with type UnivariatePolynomial(x,

Integer ) -> UnivariatePolynomial (x,Integer )
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(25)324 x6 + 3600 x4 + 2116 x2 + 64

UnivariatePolynomial (x, Integer )

When the coefficients of the univariate polynomial belong to a field,7 it is possible to compute quotients
and remainders.

(r,s) : UP(a1 ,FRAC INT)

r := a1^2 - 2/3

(27)a12 − 2

3

UnivariatePolynomial (a1, Fraction ( Integer ))

s := a1 + 4

(28)a1 + 4

UnivariatePolynomial (a1, Fraction ( Integer ))

When the coefficients are rational numbers or rational expressions, the operation quo computes the
quotient of two polynomials.

r quo s

(29)a1− 4

UnivariatePolynomial (a1, Fraction ( Integer ))

The operation rem computes the remainder.

r rem s

7For example, when the coefficients are rational numbers, as opposed to integers. The important property of a field is
that non-zero elements can be divided and produce another element. The quotient of the integers 2 and 3 is not another
integer.
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(30)
46

3

UnivariatePolynomial (a1, Fraction ( Integer ))

The operation divide can be used to return a record of both components.

d := divide (r, s)

(31)

[

quotient = a1− 4, remainder =
46

3

]

Record(quotient : UnivariatePolynomial (a1, Fraction ( Integer )) , remainder: UnivariatePolynomial (a1, Fraction ( Integer ))

)

Now we check the arithmetic!

r - (d.quotient * s + d. remainder )

(32)0

UnivariatePolynomial (a1, Fraction ( Integer ))

It is also possible to integrate univariate polynomials when the coefficients belong to a field.

integrate r

(33)
1

3
a13 − 2

3
a1

UnivariatePolynomial (a1, Fraction ( Integer ))

integrate s

(34)
1

2
a12 + 4 a1
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UnivariatePolynomial (a1, Fraction ( Integer ))

One application of univariate polynomials is to see expressions in terms of a specific variable. We
start with a polynomial in a1 whose coefficients are quotients of polynomials in b1 and b2.

t : UP(a1 ,FRAC POLY INT)

Since in this case we are not talking about using multivariate polynomials in only two variables, we
use Polynomial. We also use Fraction because we want fractions.

t := a1^2 - a1/b2 + (b1^2- b1)/(b2 +3)

(36)a12 − 1

b2
a1 +

b12 − b1

b2 + 3

UnivariatePolynomial (a1, Fraction (Polynomial( Integer )))

We push all the variables into a single quotient of polynomials.

u : FRAC POLY INT := t

(37)
a12 b22 +

(

b12 − b1 + 3 a12 − a1
)

b2− 3 a1

b22 + 3 b2

Fraction (Polynomial( Integer ))

Alternatively, we can view this as a polynomial in the variable This is a mode-directed conversion: you
indicate as much of the structure as you care about and let FriCAS decide on the full type and how to
do the transformation.

u :: UP(b1 ,?)

(38)
1

b2 + 3
b12 − 1

b2 + 3
b1 +

a12 b2− a1

b2

UnivariatePolynomial (b1, Fraction (Polynomial( Integer )))

See Section 8.2 on page 298 for a discussion of the factorization facilities in FriCAS for univariate poly-
nomials. For more information on related topics, see Section 1.9 on page 55, Section 2.7 on page 98,
‘Polynomial’ on page 666, ‘MultivariatePolynomial’ on page 639, and ‘DistributedMultivariatePolynomial’
on page 475. Issue the system command )show UnivariatePolynomial to display the full list of op-
erations defined by UnivariatePolynomial.
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9.88 UniversalSegment

The UniversalSegment domain generalizes Segment by allowing segments without a “high” end
point.

pints := 1..

(4)1 . .

UniversalSegment( PositiveInteger )

nevens := (0..) by -2

(5)0 . . by − 2

UniversalSegment(NonNegativeInteger)

Values of type Segment are automatically converted to type UniversalSegment when appropriate.

useg: UniversalSegment(Integer ) := 3..10

(6)3 . . 10

UniversalSegment(Integer)

The operation hasHi is used to test whether a segment has a high end point.

hasHi pints

(7)false

Boolean

hasHi nevens

(8)false
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Boolean

hasHi useg

(9)true

Boolean

All operations available on type Segment apply to UniversalSegment, with the proviso that expan-
sions produce streams rather than lists. This is to accommodate infinite expansions.

expand pints

(10)[1, 2, 3, 4, 5, 6, 7, . . .]

Stream(Integer)

expand nevens

(11)[0, −2, −4, −6, −8, −10, −12, . . .]

Stream(Integer)

expand [1, 3, 10..15 , 100..]

(12)[1, 3, 10, 11, 12, 13, 14, . . .]

Stream(Integer)

For more information on related topics, see ‘Segment’ on page 709, ‘SegmentBinding’ on page 711,
‘List’ on page 607, and ‘Stream’ on page 728. Issue the system command )show UniversalSegment

to display the full list of operations defined by UniversalSegment.
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9.89 Vector

The Vector domain is used for storing data in a one-dimensional indexed data structure. A vector is a
homogeneous data structure in that all the components of the vector must belong to the same FriCAS
domain. Each vector has a fixed length specified by the user; vectors are not extensible. This domain is
similar to the OneDimensionalArray domain, except that when the components of a Vector belong
to a Ring, arithmetic operations are provided. For more examples of operations that are defined for
both Vector and OneDimensionalArray, see ‘OneDimensionalArray’ on page 646.

As with the OneDimensionalArray domain, a Vector can be created by calling the operation new,
its components can be accessed by calling the operations elt and qelt, and its components can be reset
by calling the operations setelt! and qsetelt!. This creates a vector of integers of length 5 all of whose
components are 12.

u : VECTOR INT := new (5 ,12)

(4)[12, 12, 12, 12, 12]

Vector( Integer )

This is how you create a vector from a list of its components.

v : VECTOR INT := vector ([1,2,3,4,5])

(5)[1, 2, 3, 4, 5]

Vector( Integer )

Indexing for vectors begins at 1. The last element has index equal to the length of the vector, which
is computed by #.

#(v)

(6)5

PositiveInteger

This is the standard way to use elt to extract an element. Functionally, it is the same as if you had
typed elt(v,2).

v.2
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(7)2

PositiveInteger

This is the standard way to use setelt! to change an element. It is the same as if you had typed
setelt!(v, 3, 99).

v.3 := 99

(8)99

PositiveInteger

Now look at v to see the change. You can use qelt and qsetelt! (instead of elt and setelt!, respectively)
but only when you know that the index is within the valid range.

v

(9)[1, 2, 99, 4, 5]

Vector( Integer )

When the components belong to a Ring, FriCAS provides arithmetic operations for Vector. These
include left and right scalar multiplication.

5 * v

(10)[5, 10, 495, 20, 25]

Vector( Integer )

v * 7

(11)[7, 14, 693, 28, 35]

Vector( Integer )

w : VECTOR INT := vector ([2,3,4,5,6])
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(12)[2, 3, 4, 5, 6]

Vector( Integer )

Addition and subtraction are also available.

v + w

(13)[3, 5, 103, 9, 11]

Vector( Integer )

Of course, when adding or subtracting, the two vectors must have the same length or an error message
is displayed.

v - w

(14)[−1, −1, 95, −1, −1]

Vector( Integer )

For more information about other aggregate domains, see the following: ‘List’ on page 607, ‘Matrix’
on page 627, ‘OneDimensionalArray’ on page 646, ‘Set’ on page 713, ‘Table’ on page 743, and
‘TwoDimensionalArray’ on page 750. Issue the system command )show Vector to display the full
list of operations defined by Vector.

9.90 Void

When an expression is not in a value context, it is given type Void. For example, in the expression

r := (a; b; if c then d else e; f)

values are used only from the subexpressions c and f: all others are thrown away. The subexpressions
a, b, d and e are evaluated for side-effects only and have type Void. There is a unique value of type
Void.

You will most often see results of type Void when you declare a variable.

a : Integer

Usually no output is displayed for Void results. You can force the display of a rather ugly object by
issuing )set message void on.
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)set message void on

b : Fraction Integer

(5)"()"

)set message void off

All values can be converted to type Void.

3:: Void

Once a value has been converted to Void, it cannot be recovered.

% :: PositiveInteger

Cannot convert the value from type Void to PositiveInteger .

9.91 WuWenTsunTriangularSet

The WuWenTsunTriangularSet domain constructor implements the characteristic set method of
Wu Wen Tsun. This algorithm computes a list of triangular sets from a list of polynomials such
that the algebraic variety defined by the given list of polynomials decomposes into the union of the
regular-zero sets of the computed triangular sets. The constructor takes four arguments. The first one,
R, is the coefficient ring of the polynomials; it must belong to the category IntegralDomain. The
second one, E, is the exponent monoid of the polynomials; it must belong to the category Ordered-
AbelianMonoidSup. The third one, V, is the ordered set of variables; it must belong to the category
OrderedSet. The last one is the polynomial ring; it must belong to the category RecursivePolyno-
mialCategory(R,E,V). The abbreviation for WuWenTsunTriangularSet is WUTSET.

Let us illustrate the facilities by an example.

Define the coefficient ring.

R := Integer

(4)Integer

Type

Define the list of variables,

ls : List Symbol := [x,y,z,t]
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(5)[x, y, z, t]

List (Symbol)

and make it an ordered set;

V := OVAR(ls)

(6)OrderedVariableList([x, y, z, t])

Type

then define the exponent monoid.

E := IndexedExponents V

(7)IndexedExponents(OrderedVariableList([x, y, z, t]))

Type

Define the polynomial ring.

P := NSMP(R, V)

(8)NewSparseMultivariatePolynomial(Integer,OrderedVariableList([x, y, z, t]))

Type

Let the variables be polynomial.

x: P := ’x

(9)x

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

y: P := ’y
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(10)y

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

z: P := ’z

(11)z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

t: P := ’t

(12)t

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

Now call the WuWenTsunTriangularSet domain constructor.

T := WUTSET (R,E,V,P)

(13)WuWenTsunTriangularSet(Integer, IndexedExponents(OrderedVariableList([x, y, z, t])),OrderedVariableList([x, y, z, t]),NewSparseMultiv

Type

Define a polynomial system.

p1 := x ^ 31 - x ^ 6 - x - y

(14)x
31 − x

6 − x− y

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

p2 := x ^ 8 - z
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(15)x
8 − z

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

p3 := x ^ 10 - t

(16)x
10 − t

NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z , t ]) )

lp := [p1 , p2 , p3]

(17)
[

x
31 − x

6 − x− y, x
8 − z, x

10 − t
]

List (NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([x, y, z, t ]) ))

Compute a characteristic set of the system.

characteristicSet(lp)$T

(18)
{

z
5 − t

4
, t

4
z
2
y
2 + 2 t3 z4 y +

(

−t
7 + 2 t4 − t

)

z
6 + t

6
z,
(

t
3 − 1

)

z
3
x− z

3
y − t

3}

Union(WuWenTsunTriangularSet(Integer, IndexedExponents(OrderedVariableList([x, y, z, t ]) ) , OrderedVariableList ([x, y

, z , t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z, t ]) )) , ...)

Solve the system.

zeroSetSplit(lp)$T

(19)
[

{t, z, y, x} ,
{

t
3 − 1, z5 − t

4
, z

3
y + t

3
, z x

2 − t
}

,
{

z
5 − t

4
,

t
4
z
2
y
2 + 2 t3 z4 y +

(

−t
7 + 2 t4 − t

)

z
6 + t

6
z,
(

t
3 − 1

)

z
3
x− z

3
y − t

3}]

List (WuWenTsunTriangularSet(Integer, IndexedExponents(OrderedVariableList([x, y, z, t ]) ) , OrderedVariableList ([x, y,

z , t ]) , NewSparseMultivariatePolynomial(Integer , OrderedVariableList ([ x, y, z, t ]) )))
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The RegularTriangularSet and SquareFreeRegularTriangularSet domain constructors, and the
LazardSetSolvingPackage, SquareFreeRegularTriangularSet and ZeroDimensionalSolvePack-
age package constructors also provide operations to compute triangular decompositions of algebraic
varieties. These five constructor use a special kind of characteristic sets, called regular triangular sets.
These special characteristic sets have better properties than the general ones. Regular triangular sets
and their related concepts are presented in the paper ”On the Theories of Triangular sets” By P.
Aubry, D. Lazard and M. Moreno Maza (to appear in the Journal of Symbolic Computation). The
decomposition algorithm (due to the third author) available in the four above constructors provide
generally better timings than the characteristic set method. In fact, the WUTSET constructor re-
mains interesting for the purpose of manipulating characteristic sets whereas the other constructors
are more convenient for solving polynomial systems.

Note that the way of understanding triangular decompositions is detailed in the example of the Reg-
ularTriangularSet constructor.

9.92 XPBWPolynomial

Initialisations

a:Symbol := ’a

(4)a

Symbol

b:Symbol := ’b

(5)b

Symbol

RN := Fraction (Integer )

(6)Fraction(Integer)

Type

word := FreeMonoid Symbol
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(7)FreeMonoid(Symbol)

Type

lword := LyndonWord (Symbol )

(8)LyndonWord(Symbol)

Type

base := PoincareBirkhoffWittLyndonBasis Symbol

(9)PoincareBirkhoffWittLyndonBasis(Symbol)

Type

dpoly := XDistributedPolynomial (Symbol , RN)

(10)XDistributedPolynomial(Symbol,Fraction(Integer))

Type

rpoly := XRecursivePolynomial(Symbol , RN)

(11)XRecursivePolynomial(Symbol,Fraction(Integer))

Type

lpoly := LiePolynomial(Symbol , RN)

(12)LiePolynomial(Symbol,Fraction(Integer))
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Type

poly := XPBWPolynomial(Symbol , RN)

(13)XPBWPolynomial(Symbol,Fraction(Integer))

Type

liste : List lword := LyndonWordsList([a,b], 6)

(14)
[

[a] , [b] , [a b] ,
[

a
2
b
]

,
[

a b
2
]

,
[

a
3
b
]

,
[

a
2
b
2
]

,
[

a b
3
]

,
[

a
4
b
]

,
[

a
3
b
2
]

,
[

a
2
b a b

]

,
[

a
2
b
3
]

,
[

a b a b
2
]

,
[

a b
4
]

,
[

a
5
b
]

,
[

a
4
b
2
]

,
[

a
3
b a b

]

,
[

a
3
b
3
]

,
[

a
2
b a b

2
]

,
[

a
2
b
2
a b
]

,
[

a
2
b
4
]

,
[

a b a b
3
]

,
[

a b
5
]]

List (LyndonWord(Symbol))

Let’s make some polynomials

0$poly

(15)0

XPBWPolynomial(Symbol, Fraction(Integer))

1$poly

(16)1

XPBWPolynomial(Symbol, Fraction(Integer))

p : poly := a

(17)[a]

XPBWPolynomial(Symbol, Fraction(Integer))

q : poly := b
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(18)[b]

XPBWPolynomial(Symbol, Fraction(Integer))

pq: poly := p*q

(19)[a b] + [b] [a]

XPBWPolynomial(Symbol, Fraction(Integer))

Coerce to distributed polynomial

pq :: dpoly

(20)a b

XDistributedPolynomial(Symbol, Fraction( Integer ))

Check some polynomial operations

mirror pq

(21)[b] [a]

XPBWPolynomial(Symbol, Fraction(Integer))

listOfTerms pq

(22)[[k = [b] [a] , c = 1] , [k = [a b] , c = 1]]

List (Record(k: PoincareBirkhoffWittLyndonBasis(Symbol), c: Fraction ( Integer )))

reductum pq
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(23)[a b]

XPBWPolynomial(Symbol, Fraction(Integer))

leadingMonomial pq

(24)[b] [a]

XPBWPolynomial(Symbol, Fraction(Integer))

coefficients pq

(25)[1, 1]

List (Fraction ( Integer ))

leadingTerm pq

(26)[k = [b] [a] , c = 1]

Record(k: PoincareBirkhoffWittLyndonBasis(Symbol), c: Fraction ( Integer ))

degree pq

(27)2

PositiveInteger

pq4 :=exp(pq ,4)

(28)1 + [a b] + [b] [a] +
1

2
[a b] [a b] +

1

2

[

a b
2] [a] +

1

2
[b]
[

a
2
b
]

+
3

2
[b] [a b] [a] +

1

2
[b] [b] [a] [a]
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XPBWPolynomial(Symbol, Fraction(Integer))

log (pq4 ,4) - pq

(29)0

XPBWPolynomial(Symbol, Fraction(Integer))

Calculations with verification in XDistributedPolynomial.

lp1 :lpoly := LiePoly liste .10

(30)
[

a
3
b
2]

LiePolynomial(Symbol, Fraction( Integer ))

lp2 :lpoly := LiePoly liste .11

(31)
[

a
2
b a b

]

LiePolynomial(Symbol, Fraction( Integer ))

lp :lpoly := [lp1 , lp2]

(32)
[

a
3
b
2
a
2
b a b

]

LiePolynomial(Symbol, Fraction( Integer ))

lpd1: dpoly := lp1

(33)a
3
b
2 − 2 a2

b a b− a
2
b
2
a+ 4 a b a b a− a b

2
a
2 − 2 b a b a2 + b

2
a
3

XDistributedPolynomial(Symbol, Fraction( Integer ))

lpd2: dpoly := lp2
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(34)a
2
b a b− a

2
b
2
a− 3 a b a2

b+ 4 a b a b a− a b
2
a
2 + 2 b a3

b− 3 b a2
b a+ b a b a

2

XDistributedPolynomial(Symbol, Fraction( Integer ))

lpd : dpoly := lpd1 * lpd2 - lpd2 * lpd1

(35)

a
3
b
2
a
2
b a b− a

3
b
2
a
2
b
2
a− 3 a3

b
2
a b a

2
b+ 4 a3

b
2
a b a b a− a

3
b
2
a b

2
a
2

+ 2 a3
b
3
a
3
b− 3 a3

b
3
a
2
b a+ a

3
b
3
a b a

2 − a
2
b a b a

3
b
2 + 3 a2

b a b a
2
b
2
a

+ 6 a2
b a b a b a

2
b− 12 a2

b a b a b a b a+ 3 a2
b a b a b

2
a
2 − 4 a2

b a b
2
a
3
b

+ 6 a2
b a b

2
a
2
b a− a

2
b a b

3
a
3 + a

2
b
2
a
4
b
2 − 3 a2

b
2
a
3
b a b+ 3 a2

b
2
a
2
b a

2
b

− 2 a2
b
2
a b a

3
b+ 3 a2

b
2
a b a

2
b a− 3 a2

b
2
a b a b a

2 + a
2
b
2
a b

2
a
3 +3 a b a2

b a
3
b
2

− 6 a b a2
b a

2
b a b− 3 a b a2

b a
2
b
2
a+ 12 a b a2

b a b a b a− 3 a b a2
b a b

2
a
2

− 6 a b a2
b
2
a b a

2 + 3 a b a2
b
3
a
3 − 4 a b a b a4

b
2 + 12 a b a b a3

b a b

− 12 a b a b a2
b a

2
b+ 8 a b a b a b a3

b− 12 a b a b a b a2
b a+ 12 a b a b a b a b a2

− 4 a b a b a b2 a3 + a b
2
a
5
b
2 − 3 a b2 a4

b a b+ 3 a b2 a3
b a

2
b− 2 a b2 a2

b a
3
b

+ 3 a b2 a2
b a

2
b a− 3 a b2 a2

b a b a
2 + a b

2
a
2
b
2
a
3 − 2 b a3

b a
3
b
2 + 4 b a3

b a
2
b a b

+ 2 b a3
b a

2
b
2
a− 8 b a3

b a b a b a+ 2 b a3
b a b

2
a
2 + 4 b a3

b
2
a b a

2 − 2 b a3
b
3
a
3

+ 3 b a2
b a

4
b
2 − 6 b a2

b a
3
b a b− 3 b a2

b a
3
b
2
a+ 12 b a2

b a
2
b a b a

− 3 b a2
b a

2
b
2
a
2 − 6 b a2

b a b a b a
2 + 3 b a2

b a b
2
a
3 − b a b a

5
b
2 + 3 b a b a4

b
2
a

+ 6 b a b a3
b a

2
b− 12 b a b a3

b a b a+ 3 b a b a3
b
2
a
2 − 4 b a b a2

b a
3
b

+ 6 b a b a2
b a

2
b a− b a b a

2
b
2
a
3 + b

2
a
5
b a b− b

2
a
5
b
2
a− 3 b2 a4

b a
2
b

+ 4 b2 a4
b a b a− b

2
a
4
b
2
a
2 + 2 b2 a3

b a
3
b− 3 b2 a3

b a
2
b a+ b

2
a
3
b a b a

2

XDistributedPolynomial(Symbol, Fraction( Integer ))

lp :: dpoly - lpd

(36)0

XDistributedPolynomial(Symbol, Fraction( Integer ))

Calculations with verification in XRecursivePolynomial.

p := 3 * lp

(37)3
[

a
3
b
2
a
2
b a b

]
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XPBWPolynomial(Symbol, Fraction(Integer))

q := lp1

(38)
[

a
3
b
2
]

XPBWPolynomial(Symbol, Fraction(Integer))

pq:= p * q

(39)3
[

a
3
b
2
a
2
b a b

] [

a
3
b
2]

XPBWPolynomial(Symbol, Fraction(Integer))

pr:rpoly := p :: rpoly

(40)(((((−3 b a+ 3 a b) b a+ ((9 b a− 12 a b) a+ 3 a a b) b) a+ ((−6 b a+ 9 a b)a− 3 a a b) a b) b b a+ ((((3 b b a− 9 a b b)a+ ((−18 b a+ 36

+((((((6 b b a+ (−12 b a− 6 a b) b) a+ (24 a b a− 6 a a b) b) a+ (−12 a a b a+ 6 a a a b) b) b a+ (((−9 b b a+ (18 b a+ 9 a b) b) a+ (−36

XRecursivePolynomial(Symbol, Fraction( Integer ))

qr:rpoly := q :: rpoly

(41)((1 b b a+ (−2 b a− a b) b) a+ (4 a b a− a a b) b)a+ (−2 a a b a+ 1 a a a b) b

XRecursivePolynomial(Symbol, Fraction( Integer ))

pq :: rpoly - pr*qr

(42)0

XRecursivePolynomial(Symbol, Fraction( Integer ))
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9.93 XPolynomial

The XPolynomial domain constructor implements multivariate polynomials whose set of variables is
Symbol. These variables do not commute. The only parameter of this constructor is the coefficient
ring which may be non-commutative. However, coefficients and variables commute. The representation
of the polynomials is recursive. The abbreviation for XPolynomial is XPOLY.

Other constructors like XPolynomialRing, XRecursivePolynomial, XDistributedPolynomial,
LiePolynomial and XPBWPolynomial implement multivariate polynomials in non-commutative
variables.

We illustrate now some of the facilities of the XPOLY domain constructor.

Define a polynomial ring over the integers.

poly := XPolynomial (Integer )

(4)XPolynomial(Integer)

Type

Define a first polynomial,

pr: poly := 2*x + 3*y-5

(5)− 5 + 2 x+ 3 y

XPolynomial(Integer)

and a second one.

pr2 : poly := pr*pr

(6)25 + (−20 + 4x+ 6 y)x+ (−30 + 6x+ 9 y) y

XPolynomial(Integer)

Rewrite pr in a distributive way,

pd := expand pr

(7)− 5 + 2 x+ 3 y
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XDistributedPolynomial(Symbol, Integer )

compute its square,

pd2 := pd*pd

(8)25− 20x− 30 y + 4x2 + 6x y + 6 y x+ 9 y2

XDistributedPolynomial(Symbol, Integer )

and checks that:

expand (pr2) - pd2

(9)0

XDistributedPolynomial(Symbol, Integer )

We define:

qr := pr^3

(10)− 125 + (150 + (−60 + 8x+ 12 y)x+ (−90 + 12x+ 18 y) y)x

+ (225 + (−90 + 12 x+ 18 y)x+ (−135 + 18 x+ 27 y) y) y

XPolynomial(Integer)

and:

qd := pd^3

(11)− 125 + 150 x+ 225 y − 60 x2 − 90 x y − 90 y x− 135 y2 + 8 x3

+ 12 x2
y + 12x y x+ 18 x y2 + 12 y x2 + 18 y x y + 18 y2

x+ 27 y3

XDistributedPolynomial(Symbol, Integer )

We truncate qd at degree 3:

trunc(qd ,2)
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(12)− 125 + 150 x+ 225 y − 60 x2 − 90x y − 90 y x− 135 y2

XDistributedPolynomial(Symbol, Integer )

The same for qr:

trunc(qr ,2)

(13)− 125 + (150− 60 x− 90 y)x+ (225− 90 x− 135 y) y

XPolynomial(Integer)

We define:

Word := FreeMonoid Symbol

(14)FreeMonoid(Symbol)

Type

and:

w: Word := x*y^2

(15)x y
2

FreeMonoid(Symbol)

The we can compute the right-quotient of qr by r:

rquo(qr ,w)

(16)18

XPolynomial(Integer)

and the shuffle-product of pr by r:

sh(pr,w:: poly)
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(17)2x y y x+ (2x y x+ ((−5 + 4x+ 3 y)x+ 9x y) y) y

XPolynomial(Integer)

9.94 XPolynomialRing

The XPolynomialRing domain constructor implements generalized polynomials with coefficients
from an arbitrary Ring (not necessarily commutative) and whose exponents are words from an arbi-
trary OrderedMonoid (not necessarily commutative too). Thus these polynomials are (finite) linear
combinations of words.

This constructor takes two arguments. The first one is a Ring and the second is an OrderedMonoid.
The abbreviation for XPolynomialRing is XPR.

Other constructors likeXPolynomial,XRecursivePolynomial,XDistributedPolynomial, LiePoly-
nomial and XPBWPolynomial implement multivariate polynomials in non-commutative variables.

We illustrate now some of the facilities of the XPR domain constructor.

Define the free ordered monoid generated by the symbols.

Word := FreeMonoid (Symbol )

(4)FreeMonoid(Symbol)

Type

Define the linear combinations of these words with integer coefficients.

poly:= XPR(Integer ,Word)

(5)XPolynomialRing(Integer,FreeMonoid(Symbol))

Type

Then we define a first element from poly.

p:poly := 2 * x - 3 * y + 1

(6)1 + 2x− 3 y
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XPolynomialRing(Integer, FreeMonoid(Symbol))

And a second one.

q:poly := 2 * x + 1

(7)1 + 2x

XPolynomialRing(Integer, FreeMonoid(Symbol))

We compute their sum,

p + q

(8)2 + 4x− 3 y

XPolynomialRing(Integer, FreeMonoid(Symbol))

their product,

p * q

(9)1 + 4x− 3 y + 4x2 − 6 y x

XPolynomialRing(Integer, FreeMonoid(Symbol))

and see that variables do not commute.

(p +q)^2 -p^2 -q^2 - 2*p*q

(10)− 6 x y + 6 y x

XPolynomialRing(Integer, FreeMonoid(Symbol))

Now we define a ring of square matrices,

M := SquareMatrix(2, Fraction Integer )
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(11)SquareMatrix(2,Fraction(Integer))

Type

and the linear combinations of words with these matrices as coefficients.

poly1 := XPR(M,Word)

(12)XPolynomialRing(SquareMatrix(2,Fraction(Integer)),FreeMonoid(Symbol))

Type

Define a first matrix,

m1:M := matrix [[i*j^2 for i in 1..2] for j in 1..2]

(13)

[

1 2
4 8

]

SquareMatrix(2, Fraction ( Integer ))

a second one,

m2:M := m1 - 5/4

(14)

[

− 1
4

2
4 27

4

]

SquareMatrix(2, Fraction ( Integer ))

and a third one.

m3: M := m2^2

(15)

[

129
16

13
26 857

16

]
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SquareMatrix(2, Fraction ( Integer ))

Define a polynomial,

pm:poly1 := m1*x + m2*y + m3*z - 2/3

(16)

[

− 2
3

0
0 − 2

3

]

+

[

1 2
4 8

]

x+

[

− 1
4

2
4 27

4

]

y +

[

129
16

13
26 857

16

]

z

XPolynomialRing(SquareMatrix(2, Fraction( Integer )) , FreeMonoid(Symbol))

a second one,

qm:poly1 := pm - m1*x

(17)

[

− 2
3

0
0 − 2

3

]

+

[

− 1
4

2
4 27

4

]

y +

[

129
16

13
26 857

16

]

z

XPolynomialRing(SquareMatrix(2, Fraction( Integer )) , FreeMonoid(Symbol))

and the following power.

qm^3

(18)

[

− 8
27

0
0 − 8

27

]

+

[

− 1
3

8
3

16
3

9

]

y +

[

43
4

52
3

104
3

857
12

]

z +

[

− 129
8

−26
−52 − 857

8

]

y
2 +

[

− 3199
32

− 831
4

− 831
2

− 26467
32

]

y z

+

[

− 3199
32

− 831
4

− 831
2

− 26467
32

]

z y+

[

− 103169
128

− 6409
4

− 6409
2

− 820977
128

]

z
2 +

[

3199
64

831
8

831
4

26467
64

]

y
3 +

[

103169
256

6409
8

6409
4

820977
256

]

y
2
z

+

[

103169
256

6409
8

6409
4

820977
256

]

y z y +

[

3178239
1024

795341
128

795341
64

25447787
1024

]

y z
2 +

[

103169
256

6409
8

6409
4

820977
256

]

z y
2

+

[

3178239
1024

795341
128

795341
64

25447787
1024

]

z y z +

[

3178239
1024

795341
128

795341
64

25447787
1024

]

z
2
y +

[

98625409
4096

12326223
256

12326223
128

788893897
4096

]

z
3

XPolynomialRing(SquareMatrix(2, Fraction( Integer )) , FreeMonoid(Symbol))

9.95 ZeroDimensionalSolvePackage

The ZeroDimensionalSolvePackage package constructor provides operations for computing sym-
bolically the complex or real roots of zero-dimensional algebraic systems.
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The package provides no multiplicity information (i.e. some returned roots may be double or higher)
but only distinct roots are returned.

Complex roots are given by means of univariate representations of irreducible regular chains. These
representations are computed by the univariateSolve operation (by calling the InternalRationalU-
nivariateRepresentationPackage package constructor which does the job).

Real roots are given by means of tuples of coordinates lying in the RealClosure of the coefficient ring.
They are computed by the realSolve and positiveSolve operations. The former computes all the
solutions of the input system with real coordinates whereas the later concentrate on the solutions with
(strictly) positive coordinates. In both cases, the computations are performed by the RealClosure
constructor.

Both computations of complex roots and real roots rely on triangular decompositions. These decom-
positions can be computed in two different ways. First, by a applying the zeroSetSplit operation
from the REGSET domain constructor. In that case, no Groebner bases are computed. This strategy
is used by default. Secondly, by applying the zeroSetSplit from LEXTRIPK. To use this later
strategy with the operations univariateSolve, realSolve and positiveSolve one just needs to use
an extra boolean argument.

Note that the way of understanding triangular decompositions is detailed in the example of the Reg-
ularTriangularSet constructor.

The ZeroDimensionalSolvePackage constructor takes three arguments. The first one R is the
coefficient ring; it must belong to the categories OrderedRing, EuclideanDomain, Characteris-
ticZero and RealConstant. This means essentially that R is Integer or Fraction(Integer). The
second argument ls is the list of variables involved in the systems to solve. The third one MUST BE
concat(ls,s) where s is an additional symbol used for the univariate representations. The abbreviation
for ZeroDimensionalSolvePackage is ZDSOLVE.

We illustrate now how to use the constructor ZDSOLVE by two examples: the Arnborg and Lazard
system and the L-3 system (Aubry and Moreno Maza). Note that the use of this package is also
demonstrated in the example of the LexTriangularPackage constructor.

Define the coefficient ring.

R := Integer

(4)Integer

Type

Define the lists of variables:

ls : List Symbol := [x,y,z,t]

(5)[x, y, z, t]
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List (Symbol)

and:

ls2 : List Symbol := [x,y,z,t,new () $Symbol ]

(6)[x, y, z, t, %A]

List (Symbol)

Call the package:

pack := ZDSOLVE (R,ls,ls2 )

(7)ZeroDimensionalSolvePackage(Integer, [x, y, z, t] , [x, y, z, t, %A])

Type

Define a polynomial system (Arnborg-Lazard)

p1 := x^2*y*z + x*y^2*z + x*y*z^2 + x*y*z + x*y + x*z + y*z

(8)x y z
2 +

(

x y
2 +

(

x
2 + x+ 1

)

y + x
)

z + x y

Polynomial( Integer )

p2 := x^2*y^2*z + x*y^2* z^2 + x^2*y*z + x*y*z + y*z + x + z

(9)x y
2
z
2 +

(

x
2
y
2 +

(

x
2 + x+ 1

)

y + 1
)

z + x

Polynomial( Integer )

p3 := x^2*y^2*z^2 + x^2* y^2*z + x*y^2* z + x*y*z + x*z + z + 1

(10)x
2
y
2
z
2 +

((

x
2 + x

)

y
2 + x y + x+ 1

)

z + 1
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Polynomial( Integer )

lp := [p1 , p2 , p3]

(11)
[

x y z
2 +

(

x y
2 +

(

x
2 + x+ 1

)

y + x
)

z + x y, x y
2
z
2 +

(

x
2
y
2 +

(

x
2 + x+ 1

)

y + 1
)

z + x,

x
2
y
2
z
2 +

((

x
2 + x

)

y
2 + x y + x+ 1

)

z + 1
]

List (Polynomial( Integer ))

Note that these polynomials do not involve the variable t; we will use it in the second example.

First compute a decomposition into regular chains (i.e. regular triangular sets).

triangSolve (lp)$pack

(12)
[{

z
20 − 6 z19 − 41 z18 + 71 z17 + 106 z16 + 92 z15 + 197 z14 + 145 z13 + 257 z12 + 278 z11

+ 201 z10 + 278 z9 + 257 z8 + 145 z7 + 197 z6 + 92 z5 + 106 z4 + 71 z3 − 41 z2 − 6 z + 1,
(

14745844 z19 + 50357474 z18 − 130948857 z17 − 185261586 z16 − 180077775 z15 − 338007307 z14 − 275379623 z13 − 453190404 z12 −
+ 1917314 z19 + 6508991 z18 − 16973165 z17 − 24000259 z16 − 23349192 z15 − 43786426 z14

− 35696474 z13 − 58724172 z12 − 61480792 z11 − 47452440 z10 − 62378085 z9 − 55776527 z8 − 33940618 z7

− 42233406 z6 − 21122875 z5 − 22958177 z4 − 13504569 z3 + 8448317 z2 + 1195888 z − 202934,
((

z
3 − 2 z

)

y
2 +

(

−z
3 − z

2 − 2 z − 1
)

y − z
2 − z + 1

)

x+ z
2 − 1

}]

List (RegularChain(Integer , [x, y, z , t ]) )

We can see easily from this decomposition (consisting of a single regular chain) that the input system
has 20 complex roots.

Then we compute a univariate representation of this regular chain.

univariateSolve(lp)$pack

(13)
[[

complexRoots= ?
12 −12 ?11+24 ?10+4 ?9−9 ?8+27 ?7−21 ?6 +27 ?5−9 ?4+4 ?3+24 ?2−12 ?+1,

coordinates=
[

63 x+62%A
11−721%A

10+1220%A
9+705%A

8−285%A
7+1512%A

6−735%A
5+1401%A

4−21%A
3+215%A

2+1577

63 y−75%A
11+890%A

10−1682%A
9−516%A

8+588%A
7−1953%A

6+1323%A
5−1815%A

4+426%A
3−243%A

2−1801%A+679

z −%A
]]

,
[

complexRoots = ?
6 + ?

5 + ?
4 + ?

3 + ?
2 + ?+ 1, coordinates =

[

x−%A
5
,

y −%A
3
, z −%A

]]

,
[

complexRoots = ?
2 + 5 ?+ 1, coordinates = [x− 1, y − 1, z −%A]

]]
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List (Record(complexRoots: SparseUnivariatePolynomial( Integer ) , coordinates : List (Polynomial( Integer ))))

We see that the zeros of our regular chain are split into three components. This is due to the use of
univariate polynomial factorization.

Each of these components consist of two parts. The first one is an irreducible univariate polynomial
p(?) which defines a simple algebraic extension of the field of fractions of R. The second one consists
of multivariate polynomials pol1(x,%A), pol2(y,%A) and pol3(z,%A). Each of these polynomials
involve two variables: one is an indeterminate x, y or z of the input system lp and the other is %A
which represents any root of p(?). Recall that this %A is the last element of the third parameter
of ZDSOLVE. Thus any complex root ? of p(?) leads to a solution of the input system lp by
replacing %A by this ? in pol1(x,%A), pol2(y,%A) and pol3(z,%A). Note that the polynomials
pol1(x,%A), pol2(y,%A) and pol3(z,%A) have degree one w.r.t. x, y or z respectively. This is
always the case for all univariate representations. Hence the operation univariateSolve replaces a
system of multivariate polynomials by a list of univariate polynomials, what justifies its name. Another
example of univariate representations illustrates the LexTriangularPackage package constructor.

We now compute the solutions with real coordinates:

lr := realSolve (lp)$pack ;

List ( List (RealClosure(Fraction ( Integer ))))

The number of real solutions for the input system is:

# lr

(15)8

PositiveInteger

Each of these real solutions is given by a list of elements in RealClosure(R). In these 8 lists, the
first element is a value of z, the second of y and the last of x. This is logical since by setting the list
of variables of the package to [x,y,z,t] we mean that the elimination ordering on the variables is t ¡
z ¡ y ¡ x . Note that each system treated by the ZDSOLVE package constructor needs only to be
zero-dimensional w.r.t. the variables involved in the system it-self and not necessarily w.r.t. all the
variables used to define the package.

We can approximate these real numbers as follows. This computation takes between 30 sec. and 5
min, depending on your machine.

[[ approximate (r ,1/1000000) for r in point ] for point in lr];

List ( List (Fraction ( Integer )))

We can also concentrate on the solutions with real (strictly) positive coordinates:

lpr := positiveSolve(lp)$pack
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(17)[]

List ( List (RealClosure(Fraction ( Integer ))))

Thus we have checked that the input system has no solution with strictly positive coordinates.

Let us define another polynomial system (L-3).

f0 := x^3 + y + z + t- 1

(18)z + y + x
3 + t− 1

Polynomial( Integer )

f1 := x + y^3 + z + t -1

(19)z + y
3 + x+ t− 1

Polynomial( Integer )

f2 := x + y + z^3 + t-1

(20)z
3 + y + x+ t− 1

Polynomial( Integer )

f3 := x + y + z + t^3 -1

(21)z + y + x+ t
3 − 1

Polynomial( Integer )

lf := [f0 , f1 , f2, f3]
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(22)
[

z + y + x
3 + t− 1, z + y

3 + x+ t− 1, z3 + y + x+ t− 1, z + y + x+ t
3 − 1

]

List (Polynomial( Integer ))

First compute a decomposition into regular chains (i.e. regular triangular sets).

lts := triangSolve (lf)$pack

(23)
[{

t
2 + t+ 1, z3 − z − t

3 + t,
(

3 z + 3 t3 − 3
)

y
2 +

(

3 z2 +
(

6 t3 − 6
)

z + 3 t6 − 6 t3 + 3
)

y +
(

3 t3 − 3
)

z
2

+
(

3 t6 − 6 t3 + 3
)

z + t
9 − 3 t6 + 5 t3 − 3 t, x+ y + z

}

,
{

t
16 − 6 t13 + 9 t10 + 4 t7 + 15 t4 − 54 t2 + 27,

(

4907232 t15 + 40893984 t14 − 115013088 t13 + 22805712 t12 + 36330336 t11 + 162959040 t10 − 159859440 t9 − 156802608 t8 + 117168768

+ 48 t54 − 912 t51 + 8232 t48 − 72 t46 − 46848 t45 +1152 t43 + 186324 t42 − 3780 t40 − 543144 t39 − 3168 t38

− 21384 t37 + 1175251 t36 + 41184 t35 + 278003 t34 − 1843242 t33 − 301815 t32 − 1440726 t31

+ 1912012 t30 + 1442826 t29 + 4696262 t28 − 922481 t27 − 4816188 t26 − 10583524 t25 − 208751 t24

+ 11472138 t23 + 16762859 t22 − 857663 t21 − 19328175 t20 − 18270421 t19 + 4914903 t18 + 22483044 t17

+ 12926517 t16 − 8605511 t15 − 17455518 t14 − 5014597 t13 + 8108814 t12 + 8465535 t11 + 190542 t10

− 4305624 t9 − 2226123 t8 + 661905 t7 + 1169775 t6 + 226260 t5 − 209952 t4 − 141183 t3 + 27216 t,
(

3 z + 3 t3 − 3
)

y
2 +

(

3 z2 +
(

6 t3 − 6
)

z + 3 t6 − 6 t3 + 3
)

y +
(

3 t3 − 3
)

z
2 +

(

3 t6 − 6 t3 + 3
)

z + t
9

− 3 t6 + 5 t3 − 3 t, x+ y + z + t
3 − 1

}

,
{

t, z − 1, y2 − 1, x+ y
}

,
{

t− 1, z, y2 − 1,

x+ y
}

,
{

t− 1, z2 − 1, z y + 1, x
}

,
{

t
16 − 6 t13 + 9 t10 + 4 t7 + 15 t4 − 54 t2 + 27,

(

4907232 t29 + 40893984 t28 − 115013088 t27 − 1730448 t26 − 168139584 t25 + 738024480 t24 − 195372288 t23 + 315849456 t22 − 2567279232

− 48 t68 + 1152 t65 − 13560 t62 + 360 t60 + 103656 t59 − 7560 t57 − 572820 t56 + 71316 t54 + 2414556 t53

+ 2736 t52 − 402876 t51 − 7985131 t50 − 49248 t49 + 1431133 t48 + 20977409 t47 + 521487 t46 − 2697635 t45

− 43763654 t44 − 3756573 t43 − 2093410 t42 + 71546495 t41 + 19699032 t40 + 35025028 t39 − 89623786 t38

− 77798760 t37 − 138654191 t36 + 87596128 t35 + 235642497 t34 + 349607642 t33 − 93299834 t32

−551563167 t31−630995176 t30+186818962 t29+995427468 t28+828416204 t27−393919231 t26−1076617485 t25

−1609479791 t24+595738126 t23+1198787136 t22+4342832069 t21−2075938757 t20−4390835799 t19−4822843033 t18

+6932747678 t17+6172196808 t16+1141517740 t15−4981677585 t14−9819815280 t13−7404299976 t12−157295760 t11

+29124027630 t10+14856038208 t9−16184101410 t8−26935440354 t7−3574164258 t6+10271338974 t5+11191425264 t4

+ 6869861262 t3 − 9780477840 t2 − 3586674168 t+ 2884297248,
(

3 z3 +
(

6 t3 − 6
)

z
2 +

(

6 t6 − 12 t3 + 3
)

z + 2 t9 − 6 t6 + t
3 + 3 t

)

y+
(

3 t3 − 3
)

z
3+
(

6 t6 − 12 t3 + 6
)

z
2+
(

4 t9 − 12 t6 + 11 t3 − 3
)

z

+ t
12 − 4 t9 + 5 t6 − 2 t3, x+ y + z + t

3 − 1
}

,
{

t− 1, z2 − 1, y,

x+ z
}

,
{

t
8 + t

7 + t
6 − 2 t5 − 2 t4 − 2 t3 + 19 t2 + 19 t− 8,

(

2395770 t7 + 3934440 t6 − 3902067 t5 − 10084164 t4 − 1010448 t3 + 32386932 t2 + 22413225 t− 10432368
)

z

− 463519 t7 +3586833 t6 +9494955 t5 − 8539305 t4 − 33283098 t3 +35479377 t2 +46263256 t− 17419896,
(

3 z4 +
(

9 t3 − 9
)

z
3 +

(

12 t6 − 24 t3 + 9
)

z
2 +

(

−152 t3 + 219 t− 67
)

z − 41 t6 + 57 t4 + 25 t3 − 57 t+ 16
)

y

+
(

3 t3 − 3
)

z
4+
(

9 t6 − 18 t3 + 9
)

z
3+
(

−181 t3 + 270 t− 89
)

z
2+
(

−92 t6 + 135 t4 + 49 t3 − 135 t+ 43
)

z+27 t7

− 27 t6 − 54 t4 + 396 t3 − 486 t+ 144, x+ y + z + t
3 − 1

}

,
{

t, z − t
3 + 1, y − 1,

x− 1
}

, {t− 1, z, y, x} , {t, z − 1, y, x} , {t, z, y − 1, x} , {t, z, y, x− 1}
]
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List (RegularChain(Integer , [x, y, z , t ]) )

Then we compute a univariate representation.

univariateSolve(lf)$pack

[

[complexRoots= ?, coordinates = [x− 1, y− 1, z+1, t−%A]] , [complexRoots= ?, coordinates = [x, y− 1,

z, t−%A]] , [complexRoots= ?−1, coordinates= [x, y, z, t−%A]] , [complexRoots= ?, coordinates= [x−1,

y, z, t−%A]] , [complexRoots = ?, coordinates = [x, y, z − 1, t−%A]] , [complexRoots = ?− 2,

coordinates = [x− 1, y + 1, z, t− 1]] , [complexRoots = ?, coordinates = [x+ 1, y − 1, z, t− 1]] ,

[complexRoots = ?− 1, coordinates = [x− 1, y + 1, z − 1, t]] , [complexRoots = ?+ 1, coordinates = [x+ 1,

y−1, z−1, t]] ,
[

complexRoots= ?
6−2?3+3 ?2−3, coordinates=

[

2x+%A
3+%A−1, 2 y+%A

3+%A−1,

z −%A, t−%A
]]

,
[

complexRoots = ?
5 + 3 ?3 − 2 ?2 + 3 ?− 3, coordinates =

[

x−%A, y −%A,

z +%A
3 + 2%A− 1, t−%A

]]

,
[

complexRoots = ?
4 − ?

3 − 2 ?2 + 3, coordinates =
[

x+%A
3 −%A− 1,

y +%A
3 −%A− 1, z −%A

3 + 2%A+ 1, t−%A
]]

, [complexRoots = ?+ 1, coordinates = [x− 1,

y − 1, z, t−%A]] ,
[

complexRoots = ?
6 + 2 ?3 + 3 ?2 − 3, coordinates =

[

2x−%A
3 −%A− 1,

y +%A, 2 z −%A
3 −%A− 1, t+%A

]]

,
[

complexRoots = ?
6 + 12 ?4 + 20 ?3 − 45 ?2 − 42 ?− 953,

coordinates =
[

12609 x+ 23%A
5 + 49%A

4 − 46%A
3 + 362%A

2 − 5015%A− 8239,

25218 y + 23%A
5 + 49%A

4 − 46%A
3 + 362%A

2 + 7594%A− 8239,

25218 z + 23%A
5 + 49%A

4 − 46%A
3 + 362%A

2 + 7594%A− 8239,

12609 t+ 23%A
5 + 49%A

4 − 46%A
3 + 362%A

2 − 5015%A− 8239
]]

,
[

complexRoots = ?
5 + 12 ?3 − 16 ?2 + 48 ?− 96, coordinates =

[

8x+%A
3 + 8%A− 8, 2 y −%A, 2 z −%A,

2 t−%A
]]

,
[

complexRoots = ?
5 + ?

4 − 5 ?3 − 3 ?2 + 9 ?+ 3, coordinates =
[

2x−%A
3 + 2%A− 1,

2 y+%A
3−4%A+1, 2 z−%A

3+2%A−1, 2 t−%A
3+2%A−1

]]

,
[

complexRoots= ?
4−3 ?3+4 ?2−6 ?+13,

coordinates =
[

9x− 2%A
3 +4%A

2 −%A+2, 9 y+%A
3 − 2%A

2 +5%A− 1, 9 z+%A
3 − 2%A

2 +5%A− 1,

9 t+%A
3 − 2%A

2 − 4%A− 1
]]

,
[

complexRoots = ?
4 − 11 ?2 + 37, coordinates =

[

3x−%A
2 + 7,

6 y +%A
2 + 3%A− 7, 3 z −%A

2 + 7, 6 t+%A
2 − 3%A− 7

]]

, [complexRoots = ?+ 1, coordinates = [x− 1,

y, z − 1, t+ 1]] , [complexRoots = ?+ 2, coordinates = [x, y − 1, z − 1, t+ 1]] , [complexRoots = ?− 2,

coordinates = [x, y − 1, z + 1, t− 1]] , [complexRoots = ?, coordinates = [x, y + 1, z − 1, t− 1]] ,

[complexRoots= ?−2, coordinates= [x−1, y, z+1, t−1]] , [complexRoots= ?, coordinates= [x+1, y, z−1,

t− 1]] ,
[

complexRoots= ?
4 +5 ?3 +16 ?2 +30 ?+57, coordinates =

[

151 x+15%A
3 +54%A

2 +104%A+93,

151 y − 10%A
3 − 36%A

2 − 19%A− 62, 151 z − 5%A
3 − 18%A

2 − 85%A− 31,

151 t−5%A
3−18%A

2−85%A−31
]]

,
[

complexRoots= ?
4−?

3−2?2+3, coordinates=
[

x−%A
3+2%A+1,

y +%A
3 −%A− 1, z −%A, t+%A

3 −%A− 1
]]

,
[

complexRoots = ?
4 + 2 ?3 − 8 ?2 + 48,

coordinates =
[

8x−%A
3 + 4%A− 8, 2 y +%A, 8 z +%A

3 − 8%A+ 8, 8 t−%A
3 + 4%A− 8

]]

,
[

complexRoots = ?
5 + ?

4 − 2 ?3 − 4 ?2 + 5 ?+ 8, coordinates =
[

3x+%A
3 − 1, 3 y +%A

3 − 1, 3 z +%A
3 − 1,

t−%A
]]

,
[

complexRoots = ?
3 + 3 ?− 1, coordinates = [x−%A, y −%A, z −%A, t−%A]

]]

(24)

List (Record(complexRoots: SparseUnivariatePolynomial( Integer ) , coordinates : List (Polynomial( Integer ))))
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Note that this computation is made from the input system lf. However it is possible to reuse a
pre-computed regular chain as follows:

ts := lts .1

(25)
{

t
2 + t+ 1, z3 − z − t

3 + t,
(

3 z + 3 t3 − 3
)

y
2 +

(

3 z2 +
(

6 t3 − 6
)

z + 3 t6 − 6 t3 + 3
)

y

+
(

3 t3 − 3
)

z
2 +

(

3 t6 − 6 t3 + 3
)

z + t
9 − 3 t6 + 5 t3 − 3 t, x+ y + z

}

RegularChain(Integer , [x, y, z, t ])

univariateSolve(ts)$pack

(26)

[[

complexRoots = ?
4 + 5 ?3 + 16 ?2 + 30 ?+ 57,

coordinates =
[

151 x+ 15%A
3 + 54%A

2 + 104%A+ 93,

151 y − 10%A
3 − 36%A

2 − 19%A− 62, 151 z − 5%A
3 − 18%A

2 − 85%A− 31,

151 t− 5%A
3 − 18%A

2 − 85%A− 31
]]

,
[

complexRoots = ?
4 − ?

3 − 2 ?2 + 3,

coordinates =
[

x−%A
3 + 2%A+ 1, y +%A

3 −%A− 1, z −%A, t+%A
3 −%A− 1

]]

,
[

complexRoots = ?
4 + 2 ?3 − 8 ?2 + 48, coordinates =

[

8 x−%A
3 + 4%A− 8,

2 y +%A, 8 z +%A
3 − 8%A+ 8, 8 t−%A

3 + 4%A− 8
]]]

List (Record(complexRoots: SparseUnivariatePolynomial( Integer ) , coordinates : List (Polynomial( Integer ))))

realSolve (ts)$pack

(27)[]

List ( List (RealClosure(Fraction ( Integer ))))

We compute now the full set of points with real coordinates:

lr2 := realSolve (lf)$pack;

List ( List (RealClosure(Fraction ( Integer ))))

The number of real solutions for the input system is:

#lr2
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(29)27

PositiveInteger

Another example of computation of real solutions illustrates the LexTriangularPackage package
constructor.

We concentrate now on the solutions with real (strictly) positive coordinates:

lpr2 := positiveSolve(lf)$pack

(30)

[[

%B40, −1

3
%B403 +

1

3
, −1

3
%B403 +

1

3
, −1

3
%B403 +

1

3

]]

List ( List (RealClosure(Fraction ( Integer ))))

Finally, we approximate the coordinates of this point with 20 exact digits:

[approximate (r ,1/10^21) ::Float for r in lpr2 .1]

[0.32218535462608559291, 0.32218535462608559291, 0.32218535462608559291, 0.32218535462608559291]

(31)

List (Float)
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Chapter 10

Interactive Programming

Programming in the interpreter is easy. So is the use of FriCAS’s graphics facility. Both are rather
flexible and allow you to use them for many interesting applications. However, both require learning
some basic ideas and skills.

All graphics examples in the FriCAS Images section are either produced directly by interactive com-
mands or by interpreter programs. Four of these programs are introduced here. By the end of this
chapter you will know enough about graphics and programming in the interpreter to not only under-
stand all these examples, but to tackle interesting and difficult problems on your own. Appendix B
lists all the remaining commands and programs used to create these images.

10.1 Drawing Ribbons Interactively

We begin our discussion of interactive graphics with the creation of a useful facility: plotting ribbons
of two-graphs in three-space. Suppose you want to draw the two-dimensional graphs of n functions
fi(x), 1 ≤ i ≤ n, all over some fixed range of x. One approach is to create a two-dimensional graph
for each one, then superpose one on top of the other. What you will more than likely get is a jumbled
mess. Even if you make each function a different color, the result is likely to be confusing.

A better approach is to display each of the fi(x) in three dimensions as a “ribbon” of some appropriate
width along the y-direction, laying down each ribbon next to the previous one. A ribbon is simply a
function of x and y depending only on x.

We illustrate this for fi(x) defined as simple powers of x for x ranging between −1 and 1.

Draw the ribbon for z = x2.

draw(x^2,x=-1..1,y=0..1)

799
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Now that was easy! What you get is a “wire-mesh” rendition of the ribbon. That’s fine for now. Notice
that the mesh-size is small in both the x and the y directions. FriCAS normally computes points in
both these directions. This is unnecessary. One step is all we need in the y-direction. To have FriCAS
economize on y-points, we re-draw the ribbon with option var2Steps == 1.

Re-draw the ribbon, but with option var2Steps == 1 so that only 1 step is computed in the y direc-
tion.

vp := draw(x^2,x=-1..1,y=0..1 , var2Steps ==1)

The operation has created a viewport, that is, a graphics window on your screen. We assigned the
viewport to vp and now we manipulate its contents.

Graphs are objects, like numbers and algebraic expressions. You may want to do some experimenting
with graphs. For example, say

showRegion(vp, "on")

to put a bounding box around the ribbon. Try it! Issue rotate(vp, -45, 90) to rotate the figure
−45 longitudinal degrees and 90 latitudinal degrees.

Here is a different rotation. This turns the graph so you can view it along the y-axis.

rotate (vp , 0, -90)
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X
Y

Z

There are many other things you can do. In fact, most everything you can do interactively using
the three-dimensional control panel (such as translating, zooming, resizing, coloring, perspective and
lighting selections) can also be done directly by operations (see Chapter 7 for more details).

When you are done experimenting, say reset(vp) to restore the picture to its original position and
settings.

Let’s add another ribbon to our picture—one for x3. Since y ranges from 0 to 1 for the first ribbon,
now let y range from 1 to 2. This puts the second ribbon next to the first one.

How do you add a second ribbon to the viewport? One method is to extract the “space” component
from the viewport using the operation subspace. You can think of the space component as the object
inside the window (here, the ribbon). Let’s call it sp. To add the second ribbon, you draw the second
ribbon using the option space == sp.

Extract the space component of vp.

sp := subspace (vp)

There are 2 exposed and 0 unexposed library operations named

subspace having 1 argument (s) but none was determined to be

applicable . Use HyperDoc Browse , or issue

)display op subspace

to learn more about the available operations . Perhaps

package -calling the operation or using coercions on the arguments

will allow you to apply the operation .

Cannot find a definition or applicable library operation named

subspace with argument type(s)

Variable (vp)

Perhaps you should use "@" to indicate the required return type ,

or "$" to specify which version of the function you need.

Add the ribbon for x3 alongside that for x2.

vp := draw(x^3,x=-1..1,y=1..2 , var2Steps ==1, space ==sp)
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Unless you moved the original viewport, the new viewport covers the old one. You might want to check
that the old object is still there by moving the top window.

Let’s show quadrilateral polygon outlines on the ribbons and then enclose the ribbons in a box.

Show quadrilateral polygon outlines.

drawStyle (vp ," shade ");outlineRender(vp ,"on")

X Y

Z

Enclose the ribbons in a box.

rotate (vp ,20,-60) ; showRegion (vp ,"on")

X

Y

Z
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This process has become tedious! If we had to add two or three more ribbons, we would have to repeat
the above steps several more times. It is time to write an interpreter program to help us take care of
the details.

10.2 A Ribbon Program

The above approach creates a new viewport for each additional ribbon. A better approach is to build
one object composed of all ribbons before creating a viewport. To do this, use makeObject rather than
draw. The operations have similar formats, but draw returns a viewport and makeObject returns a
space object.

We now create a function drawRibbons of two arguments: flist, a list of formulas for the ribbons
you want to draw, and xrange, the range over which you want them drawn. Using this function, you
can just say

drawRibbons([x^2, x^3], x=-1..1)

to do all of the work required in the last section. Here is the drawRibbons program. Invoke your
favorite editor and create a file called ribbon.input containing the following program.

Listing 10.1: The first drawRibbons function.

1 drawRibbons (flist , xrange ) ==

2 sp := createThreeSpace () -- Create empty space sp.
3 y0 := 0 -- The initial ribbon position.
4 for f in flist repeat -- For each function f,
5 makeObject (f, xrange , y=y0..y0+1, -- create and add a ribbon
6 space ==sp , var2Steps == 1) -- for f to the space sp.
7 y0 := y0 + 1 -- The next ribbon position.
8 vp := makeViewport3D(sp , "Ribbons ") -- Create viewport.
9 drawStyle (vp, "shade ") -- Select shading style.

10 outlineRender(vp , "on") -- Show polygon outlines.
11 showRegion (vp ,"on") -- Enclose in a box.
12 n := # flist -- The number of ribbons
13 zoom(vp ,n,1,n) -- Zoom in x- and z-directions.
14 rotate (vp ,0 ,75) -- Change the angle of view.
15 vp -- Return the viewport.

Here are some remarks on the syntax used in the drawRibbons function (consult Chapter 6 for more
details). Unlike most other programming languages which use semicolons, parentheses, or begin–end
brackets to delineate the structure of programs, the structure of an FriCAS program is determined by
indentation. The first line of the function definition always begins in column 1. All other lines of the
function are indented with respect to the first line and form a pile (see Section 5.2 on page 145).

The definition of drawRibbons consists of a pile of expressions to be executed one after another.
Each expression of the pile is indented at the same level. Lines 4-7 designate one single expression:
since lines 5-7 are indented with respect to the others, these lines are treated as a continuation of line
4. Also since lines 5 and 7 have the same indentation level, these lines designate a pile within the outer
pile.

The last line of a pile usually gives the value returned by the pile. Here it is also the value returned
by the function. FriCAS knows this is the last line of the function because it is the last line of the file.
In other cases, a new expression beginning in column one signals the end of a function.
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The line drawStyle(vp,"shade") is given after the viewport has been created to select the draw style.
We have also used the zoom option. Without the zoom, the viewport region would be scaled equally
in all three coordinate directions.

Let’s try the function drawRibbons. First you must read the file to give FriCAS the function
definition.

Read the input file.

)read ribbon

Draw ribbons for x, x2, . . . , x5 for −1 ≤ x ≤ 1

drawRibbons ([x^i for i in 1..5] , x= -1..1)

10.3 Coloring and Positioning Ribbons

Before leaving the ribbon example, we make two improvements. Normally, the color given to each
point in the space is a function of its height within a bounding box. The points at the bottom of the
box are red, those at the top are purple.

To change the normal coloring, you can give an option colorFunction == function. When FriCAS
goes about displaying the data, it determines the range of colors used for all points within the box.
FriCAS then distributes these numbers uniformly over the number of hues. Here we use the simple
color function (x, y) 7→ i for the ith ribbon.

Also, we add an argument yrange so you can give the range of y occupied by the ribbons. For example,
if the yrange is given as y=0..1 and there are 5 ribbons to be displayed, each ribbon would have width
0.2 and would appear in the range 0 ≤ y ≤ 1.

Refer to lines 4-9. Line 4 assigns to yVar the variable part of the yrange (after all, it need not be y).
Suppose that yrange is given as t = a..b where a and b have numerical values. Then line 5 assigns
the value of a to the variable y0. Line 6 computes the width of the ribbon by dividing the difference
of a and b by the number, num, of ribbons. The result is assigned to the variable width. Note that in
the for-loop in line 7, we are iterating in parallel; it is not a nested loop.

Listing 10.2: The final drawRibbons function.
1 drawRibbons (flist , xrange , yrange ) ==

2 sp := createThreeSpace () -- Create empty space sp.
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3 num := # flist -- The number of ribbons.
4 yVar := variable yrange -- The ribbon variable.
5 y0:Float := low segment yrange -- The first ribbon coordinate.
6 width:Float := (high segment yrange - y0)/num -- The width of a ribbon.
7 for f in flist for color in 1.. num repeat -- For each function f,
8 makeObject (f, xrange , yVar = y0..y0+width , -- create and add ribbon to
9 var2Steps == 1, _ -- sp of a different color.

10 colorFunction == (x,y) +-> color , _

11 space == sp)

12 y0 := y0 + width -- The next ribbon coordinate.
13 vp := makeViewport3D(sp , "Ribbons ") -- Create viewport.
14 drawStyle (vp, "shade ") -- Select shading style.
15 outlineRender(vp , "on") -- Show polygon outlines.
16 showRegion (vp , "on") -- Enclose – in a box.
17 vp -- Return the viewport.

10.4 Points, Lines, and Curves

What you have seen so far is a high-level program using the graphics facility. We now turn to the
more basic notions of points, lines, and curves in three-dimensional graphs. These facilities use small
floats (objects of type DoubleFloat) for data. Let us first give names to the small float values 0 and
1. The small float 0.

zero := 0.0 @DFLOAT

(1)0.0

DoubleFloat

The small float 1.

one := 1.0 @DFLOAT

(2)1.0

DoubleFloat

The “@” sign means “of the type.” Thus zero is 0.0 of the type DoubleFloat. You can also say
0.0::DFLOAT.

Points can have four small float components: x, y, z coordinates and an optional color. A “curve” is
simply a list of points connected by straight line segments. Create the point origin with color zero,
that is, the lowest color on the color map.

origin := point [zero ,zero ,zero ,zero]
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(3)[0.0, 0.0, 0.0, 0.0]

Point(DoubleFloat)

Create the point unit with color zero.

unit := point [one ,one ,one ,zero]

(4)[1.0, 1.0, 1.0, 0.0]

Point(DoubleFloat)

Create the curve (well, here, a line) from origin to unit.

line := [origin , unit]

(5)[[0.0, 0.0, 0.0, 0.0] , [1.0, 1.0, 1.0, 0.0]]

List (Point(DoubleFloat))

We make this line segment into an arrow by adding an arrowhead. The arrowhead extends to, say, p3
on the left, and to, say, p4 on the right. To describe an arrow, you tell FriCAS to draw the two curves
[p1, p2, p3] and [p2, p4]. We also decide through experimentation on values for arrowScale, the
ratio of the size of the arrowhead to the stem of the arrow, and arrowAngle, the angle between the
arrowhead and the arrow.

Invoke your favorite editor and create an input file called arrows.input. This input file first defines
the values of arrowAngle and arrowScale, then defines the function makeArrow(p1, p2) to draw an
arrow from point p1 to p2.

1 arrowAngle := %pi -%pi /10.0 @DFLOAT -- The angle of the arrowhead.
2 arrowScale := 0.2 @DFLOAT -- The size of the arrowhead
3 -- relative to the stem.
4 makeArrow (p1 , p2) ==

5 delta := p2 - p1 -- The arrow.
6 len := arrowScale * length delta -- The length of the arrowhead.
7 theta := atan(delta .1, delta .2) -- The angle from the x-axis
8 c1 := len*cos (theta + arrowAngle ) -- The x-coord of left endpoint.
9 s1 := len*sin (theta + arrowAngle ) -- The y-coord of left endpoint.

10 c2 := len*cos (theta - arrowAngle ) -- The x-coord of right endpoint.
11 s2 := len*sin (theta - arrowAngle ) -- The y-coord of right endpoint.
12 z := p2 .3*(1 - arrowScale ) -- The z-coord of both endpoints.
13 p3 := point [p2.1 + c1 , p2.2 + s1 , z, p2 .4] -- The left endpoint of head.
14 p4 := point [p2.1 + c2 , p2.2 + s2 , z, p2 .4] -- The right endpoint of head.
15 [[p1 , p2 , p3], [p2, p4]] -- The arrow as a list of curves.
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Read the file and then create an arrow from the point origin to the point unit. Read the input file
defining makeArrow.

)read arrows

(6)2.827433388230814

DoubleFloat

(7)0.2

DoubleFloat

Construct the arrow (a list of two curves).

arrow := makeArrow (origin ,unit)

Compiling function makeArrow with type (Point(DoubleFloat ), Point (

DoubleFloat )) -> List(List(Point (DoubleFloat )))

(9)[[[0.0, 0.0, 0.0, 0.0] , [1.0, 1.0, 1.0, 0.0] , [0.6913462860460797, 0.842733077659504,

0.8, 0.0]] , [[1.0, 1.0, 1.0, 0.0] , [0.842733077659504, 0.6913462860460797, 0.8, 0.0]]]

List ( List (Point(DoubleFloat)))

Create an empty object sp of type ThreeSpace.

sp := createThreeSpace()

(10)3-Space with 0 components

ThreeSpace(DoubleFloat)

Add each curve of the arrow to the space sp.

for a in arrow repeat sp := curve (sp ,a)

Create a three-dimensional viewport containing that space.

vp := makeViewport3D(sp ,"Arrow ")
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Here is a better viewing angle.

rotate (vp ,200 , -60)

X

Y

Z

10.5 A Bouquet of Arrows

Let’s draw a “bouquet” of arrows. Each arrow is identical. The arrowheads are uniformly placed on a
circle parallel to the xy-plane. Thus the position of each arrow differs only by the angle θ, 0 ≤ θ < 2π,
between the arrow and the x-axis on the xy-plane.

Our bouquet is rather special: each arrow has a different color (which won’t be evident here, unfortu-
nately). This is arranged by letting the color of each successive arrow be denoted by θ. In this way, the
color of arrows ranges from red to green to violet. Here is a program to draw a bouquet of n arrows.

1 drawBouquet (n,title) ==

2 z := 0.0 @DFLOAT

3 e := 1.0 @DFLOAT

4 angle := z -- The initial angle.
5 sp := createThreeSpace () -- Create empty space sp.
6 for i in 0..n-1 repeat -- For each index i, create:
7 start := point [z,z,z,angle] -- point at base of arrow;
8 end := point [cos angle , sin angle , e, angle ] -- point at tip of arrow;
9 arrow := makeArrow (start ,end) -- ith arrow.

10 for a in makeArrow (start ,end) repeat -- For each arrow component,
11 curve(sp,a) -- add the component to sp.
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12 angle := angle + 2*% pi/n -- The next angle.
13 makeViewport3D(sp ,title) -- Create the viewport from sp.

Read the input file.

)read bouquet

relative size of the arrow head compared to the length of the arrow

(1)0.2

DoubleFloat

angle of the arrow head

(2)2.827433388230814

DoubleFloat

Add an arrow head to a line segment, which starts at ’p1’, ends at ’p2’, has length ’len’, and and angle
’arg’. We pass ’len’ and ’arg’ as arguments since they were already computed by the calling program
A bouquet of a dozen arrows.

drawBouquet (12,"A Dozen Arrows ")

10.6 Drawing Complex Vector Fields

We now put our arrows to good use drawing complex vector fields. These vector fields give a repre-
sentation of complex-valued functions of complex variables. Consider a Cartesian coordinate grid of
points (x, y) in the plane, and some complex-valued function f defined on this grid. At every point on
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this grid, compute the value of f(x+ iy) and call it z. Since z has both a real and imaginary value for
a given (x, y) grid point, there are four dimensions to plot. What do we do? We represent the values
of z by arrows planted at each grid point. Each arrow represents the value of z in polar coordinates
(r, θ). The length of the arrow is proportional to r. Its direction is given by θ.

The code for drawing vector fields is in the file vectors.input. We discuss its contents from top to
bottom.

Before showing you the code, we have two small matters to take care of. First, what if the function
has large spikes, say, ones that go off to infinity? We define a variable clipValue for this purpose.
When r exceeds the value of clipValue, then the value of clipValue is used instead of that for r. For
convenience, we define a function clipFun(x) which uses clipValue to “clip” the value of x.

1 clipValue : DFLOAT := 6 -- Maximum value allowed.
2 clipFun (x) == min(max (x,- clipValue ), clipValue )

Notice that we identify clipValue as a small float but do not declare the type of the function clipFun.
As it turns out, clipFun is called with a small float value. This declaration ensures that clipFun never
does a conversion when it is called.

The second matter concerns the possible “poles” of a function, the actual points where the spikes have
infinite values. FriCAS uses normal DoubleFloat arithmetic which does not directly handle infinite
values. If your function has poles, you must adjust your step size to avoid landing directly on them
(FriCAS calls error when asked to divide a value by 0, for example).

We set the variables realSteps and imagSteps to hold the number of steps taken in the real and
imaginary directions, respectively. Most examples will have ranges centered around the origin. To
avoid a pole at the origin, the number of points is taken to be odd.

1 realSteps : INT := 25 -- Number of real steps.
2 imagSteps : INT := 25 -- Number of imaginary steps.
3 )read arrows

Now define the function drawComplexVectorField to draw the arrows. It is good practice to declare
the type of the main function in the file. This one declaration is usually sufficient to ensure that other
lower-level functions are compiled with the correct types.

4 C := Complex DoubleFloat

5 S := Segment DoubleFloat

6 drawComplexVectorField : (C -> C, S, S) -> VIEW3D

The first argument is a function mapping complex small floats into complex small floats. The second
and third arguments give the range of real and imaginary values as segments like a..b. The result is
a three-dimensional viewport. Here is the full function definition:

1 drawComplexVectorField (f, realRange ,imagRange ) ==

2 delReal := (high(realRange )-low(realRange ))/ realSteps -- The real step size.
3 delImag := (high(imagRange )-low(imagRange ))/ imagSteps -- The imaginary step size.
4 sp := createThreeSpace () -- Create empty space sp.
5 real := low(realRange ) -- The initial real value.
6 for i in 1.. realSteps +1 repeat -- Begin real iteration.
7 imag := low (imagRange ) -- The initial imaginary value.
8 for j in 1.. imagSteps +1 repeat -- Begin imaginary iteration.
9 z := f complex (real ,imag) -- The value of f at the point.

10 arg := argument z -- The direction of the arrow.
11 len := clipFun sqrt norm z -- The length of the arrow.
12 p1 := point [real , imag , 0.0 @DFLOAT , arg ] -- The base point of the arrow.
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13 scaleLen := delReal * len -- The scaled length of the arrow.
14 p2 := point [p1.1 + scaleLen *cos (arg), -- The tip point of the arrow.
15 p1.2 + scaleLen *sin (arg ),0.0 @DFLOAT , arg ]

16 arrow := makeArrow (p1 , p2) -- Create the arrow.
17 for a in arrow repeat curve (sp , a) -- Add arrow to the space sp.
18 imag := imag + delImag -- The next imaginary value.
19 real := real + delReal -- The next real value.
20 makeViewport3D(sp , "Complex Vector Field ") -- Draw it!

As a first example, let us draw f(z) == sin(z). There is no need to create a user function: just pass
the sin from Complex DoubleFloat. Read the file.

)read vectors

(1)2.827433388230814

DoubleFloat

(2)0.2

DoubleFloat

(4)6.0

DoubleFloat

(6)25

Integer

(7)25

Integer

(8)Complex(DoubleF loat)

Type
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(9)Segment(DoubleF loat)

Type

Draw the complex vector field of sin(x).

drawComplexVectorField (sin , -2..2 , -2..2)

10.7 Drawing Complex Functions

Here is another way to graph a complex function of complex arguments. For each complex value
z, compute f(z), again expressing the value in polar coordinates (r, θ). We draw the complex valued
function, again considering the (x, y)-plane as the complex plane, using r as the height (or z-coordinate)
and θ as the color. This is a standard plot—we learned how to do this in Chapter 7—but here we
write a new program to illustrate the creation of polygon meshes, or grids.

Call this function drawComplex. It displays the points using the “mesh” of points. The function
definition is in three parts.

1 drawComplex : (C -> C, S, S) -> VIEW3D

2 drawComplex (f, realRange , imagRange ) == -- The first part.
3 delReal := (high(realRange )-low(realRange ))/ realSteps -- The real step size.
4 delImag := (high(imagRange )-low(imagRange ))/ imagSteps -- The imaginary step size.
5 llp:List List Point DFLOAT := [] -- Initial list of list of points llp.

Variables delReal and delImag give the step sizes along the real and imaginary directions as computed
by the values of the global variables realSteps and imagSteps. The mesh is represented by a list of
lists of points llp, initially empty. Now [ ] alone is ambiguous, so to set this initial value you have
to tell FriCAS what type of empty list it is. Next comes the loop which builds llp.

1 real := low(realRange ) -- The initial real value.
2 for i in 1.. realSteps +1 repeat -- Begin real iteration.
3 imag := low (imagRange ) -- The initial imaginary value.
4 lp := []$(List Point DFLOAT ) -- The initial list of points lp.
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5 for j in 1.. imagSteps +1 repeat -- Begin imaginary iteration.
6 z := f complex (real ,imag) -- The value of f at the point.
7 pt := point [real ,imag , clipFun sqrt norm z, -- Create a point.
8 argument z]

9 lp := cons(pt ,lp) -- Add the point to lp.
10 imag := imag + delImag -- The next imaginary value.
11 real := real + delReal -- The next real value.
12 llp := cons(lp , llp) -- Add lp to llp.

The code consists of both an inner and outer loop. Each pass through the inner loop adds one list lp
of points to the list of lists of points llp. The elements of lp are collected in reverse order.

1 makeViewport3D(mesh(llp), "Complex Function ") -- Create a mesh and display.

The operation mesh then creates an object of type ThreeSpace(DoubleFloat) from the list of lists
of points. This is then passed to makeViewport3D to display the image.

Now add this function directly to your vectors.input file and re-read the file using )read vectors.
We try drawComplex using a user-defined function f.

Read the file.

)read vectors

(1)2.827433388230814

DoubleFloat

(2)0.2

DoubleFloat

(4)6.0

DoubleFloat

(6)25

Integer

(7)25
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Integer

(8)Complex(DoubleF loat)

Type

(9)Segment(DoubleF loat)

Type

This one has a pole at z = 0.

f(z) == exp (1/z)

Draw it with an odd number of steps to avoid the pole.

drawComplex (f , -2..2 , -2..2)

10.8 Functions Producing Functions

In Section 6.14 on page 195, you learned how to use the operation function to create a function
from symbolic formulas. Here we introduce a similar operation which not only creates functions, but
functions from functions.

The facility we need is provided by the packageMakeUnaryCompiledFunction(E,S,T). This pack-
age produces a unary (one-argument) compiled function from some symbolic data generated by a pre-
vious computation.1 The E tells where the symbolic data comes from; the S and T give FriCAS the
source and target type of the function, respectively. The compiled function produced has type S → T.
To produce a compiled function with definition p(x) == expr, call compiledFunction(expr, x) from
this package. The function you get has no name. You must to assign the function to the variable p to
give it that name. Do some computation.

1MakeBinaryCompiledFunction is available for binary functions.
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(x+1/3) ^5

(1)x
5 +

5

3
x
4 +

10

9
x
3 +

10

27
x
2 +

5

81
x+

1

243

Polynomial(Fraction ( Integer ))

Convert this to an anonymous function of x. Assign it to the variable p to give the function a name.

p := compiledFunction(%,x) $MakeUnaryCompiledFunction (POLY FRAC INT ,DFLOAT ,DFLOAT )

Compiling function %A with type DoubleFloat -> DoubleFloat

(2)theMap(unaryFunction)

(DoubleFloat → DoubleFloat)

Apply the function.

p(sin (1.3))

(3)3.668751115057229

DoubleFloat

For a more sophisticated application, read on.

10.9 Automatic Newton Iteration Formulas

We resume our continuing saga of arrows and complex functions. Suppose we want to investigate the
behavior of Newton’s iteration function in the complex plane. Given a function f , we want to find the
complex values z such that f(z) = 0.

The first step is to produce a Newton iteration formula for a given f : xn+1 = xn − f(xn)
f ′(xn)

. We

represent this formula by a function g that performs the computation on the right-hand side, that is,
xn+1 = g(xn).

The type Expression Integer (abbreviated EXPR INT) is used to represent general symbolic
expressions in FriCAS. To make our facility as general as possible, we assume f has this type. Given
f , we want to produce a Newton iteration function g which, given a complex point xn, delivers the
next Newton iteration point xn+1.

This time we write an input file called newton.input. We need to import MakeUnaryCompiled-
Function (discussed in the last section), call it with appropriate types, and then define the function
newtonStep which references it. Here is the function newtonStep:
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1 C := Complex DoubleFloat -- The complex numbers.
2 E := Expression Integer -- The expression domain.
3 complexFunPack:= MakeUnaryCompiledFunction (E,C,C) -- Package for making functions.
4
5 newtonStep (f) == -- Newton’s iteration function.
6 fun := complexNumericFunction f -- Function for f .
7 deriv := complexDerivativeFunction (f,1) -- Function for f ′.
8 (x:C):C +-> -- Return the iterator function.
9 x - fun(x)/ deriv(x)

10
11 complexNumericFunction f == -- Turn an expression f into a
12 v := theVariableIn f -- function.
13 compiledFunction(f, v) $complexFunPack
14
15 complexDerivativeFunction (f,n) == -- Create an nth derivative
16 v := theVariableIn f -- function.
17 df := D(f,v,n)

18 compiledFunction(df , v)$complexFunPack
19
20 theVariableIn f == -- Returns the variable in f .
21 vl := variables f -- The list of variables.
22 nv := # vl -- The number of variables.
23 nv > 1 => error "Expression is not univariate ."

24 nv = 0 => ’x -- Return a dummy variable.
25 first vl

Do you see what is going on here? A formula f is passed into the function newtonStep. First, the
function turns f into a compiled program mapping complex numbers into complex numbers. Next, it
does the same thing for the derivative of f. Finally, it returns a function which computes a single step
of Newton’s iteration.

The function complexNumericFunction extracts the variable from the expression f and then turns
f into a function which maps complex numbers into complex numbers. The function complexDeriva-
tiveFunction does the same thing for the derivative of f. The function theVariableIn extracts the
variable from the expression f, calling the function error if f has more than one variable. It returns
the dummy variable x if f has no variables.

Let’s now apply newtonStep to the formula for computing cube roots of two. Read the input file
with the definitions.

)read newton

Newton’s Iteration function newtonStep(f) returns a newton’s iteration function for the expression f.
create complex numeric functions from an expression

(2)MakeUnaryCompiledFunction(Expression(Integer),Complex(DoubleF loat),Complex(DoubleF loat))

Type

create a complex numeric function from an expression create a complex numeric derivatiave function
from an expression return the unique variable in x, or an error if it is multivariate

)read vectors
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(6)2.827433388230814

DoubleFloat

(7)0.2

DoubleFloat

(9)6.0

DoubleFloat

(11)25

Integer

(12)25

Integer

(13)Complex(DoubleF loat)

Type

(14)Segment(DoubleF loat)

Type

The cube root of two.

f := x^3 - 2

(19)x
3 − 2
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Polynomial( Integer )

Get Newton’s iteration formula.

g := newtonStep f

Compiling function theVariable with type Polynomial (Integer ) ->

Symbol

Compiling function complexNumericFunction with type Polynomial (

Integer ) -> (Complex ( DoubleFloat ) -> Complex (DoubleFloat ))

Compiling function complexDerivativeFunction with type ( Polynomial (

Integer ), PositiveInteger) -> (Complex (DoubleFloat ) -> Complex (

DoubleFloat ))

Compiling function newtonStep with type Polynomial (Integer ) -> (

Complex (DoubleFloat ) -> Complex (DoubleFloat ))

Compiling function %B with type Complex (DoubleFloat ) -> Complex (

DoubleFloat )

Compiling function %C with type Complex (DoubleFloat ) -> Complex (

DoubleFloat )

(20)theMap(?)

(Complex(DoubleFloat)→ Complex(DoubleFloat))

Let a denote the result of applying Newton’s iteration once to the complex number 1 + %i.

a := g(1.0 + %i)

(21)0.6666666666666667 + 0.33333333333333337 i

Complex(DoubleFloat)

Now apply it repeatedly. How fast does it converge?

[(a := g(a)) for i in 1..]

(22)

[1.1644444444444444 − 0.7377777777777778 i, 0.9261400469716478 − 0.17463006425584393 i,

1.3164444838140228 + 0.15690694583015852 i, 1.2462991025761463 + 0.015454763610132094 i,

1.259872529653208−3.382716205931127e-4 i, 1.259920960928212+2.602353465342268e-8 i,

1.259921049894879 − 3.6751942591616685e-15 i, . . .]
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Stream(Complex(DoubleFloat))

Check the accuracy of the last iterate.

a^3

(23)2.0000000000000275 − 1.7502021699542322e-14 i

Complex(DoubleFloat)

In ‘MappingPackage1’ on page 622, we show how functions can be manipulated as objects in FriCAS.
A useful operation to consider here is *, which means composition. For example g*g causes the Newton
iteration formula to be applied twice. Correspondingly, g^n means to apply the iteration formula n

times.

Apply g twice to the point 1 + %i.

(g*g) (1.0 + %i)

(24)1.1644444444444444 − 0.7377777777777778 i

Complex(DoubleFloat)

Apply g 11 times.

(g^11) (1.0 + %i)

(25)1.2599210498948732

Complex(DoubleFloat)

Look now at the vector field and surface generated after two steps of Newton’s formula for the cube
root of two. The poles in these pictures represent bad starting values, and the flat areas are the regions
of convergence to the three roots. The vector field.

drawComplexVectorField (g^3 , -3..3 , -3..3)
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The surface.

drawComplex (g^3 , -3..3 , -3..3)



Chapter 11

Packages

Packages provide the bulk of FriCAS’s algorithmic library, from numeric packages for computing special
functions to symbolic facilities for differential equations, symbolic integration, and limits.

In Chapter 10, we developed several useful functions for drawing vector fields and complex functions.
We now show you how you can add these functions to the FriCAS library to make them available for
general use.

The way we created the functions in Chapter 10 is typical of how you, as an advanced FriCAS user,
may interact with FriCAS. You have an application. You go to your editor and create an input file
defining some functions for the application. Then you run the file and try the functions. Once you
get them all to work, you will often want to extend them, add new features, perhaps write additional
functions.

Eventually, when you have a useful set of functions for your application, you may want to add them
to your local FriCAS library. To do this, you embed these function definitions in a package and add
that package to the library.

To introduce new packages, categories, and domains into the system, you need to use the FriCAS
compiler to convert the constructors into executable machine code. An existing compiler in FriCAS is
available on an “as-is” basis. A new, faster compiler will be available in version 2.0 of FriCAS.

Listing 11.1: The DrawComplex package.
1 C ==> Complex DoubleFloat -- All constructors used in a file
2 S ==> Segment DoubleFloat -- must be spelled out in full
3 INT ==> Integer -- unless abbreviated by macros
4 DFLOAT ==> DoubleFloat -- like these at the top of
5 VIEW3D ==> ThreeDimensionalViewport -- a file.
6 CURVE ==> List List Point DFLOAT

7
8 )abbrev package DRAWCX DrawComplex -- Identify kinds and abbreviations
9 DrawComplex (): Exports == Implementation where -- Type definition begins here.

10
11 Exports == with -- Export part begins.
12 drawComplex : (C -> C,S,S,Boolean ) -> VIEW3D -- Exported Operations
13 drawComplexVectorField : (C -> C,S,S) -> VIEW3D

14 setRealSteps: INT -> INT

15 setImagSteps: INT -> INT

16 setClipValue: DFLOAT -> DFLOAT

17

821
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18 Implementation == add -- Implementation part begins.
19 arrowScale : DFLOAT := (0.2):: DFLOAT -- (relative size) Local variable 1.
20 arrowAngle : DFLOAT := pi()- pi ()/(20:: DFLOAT ) -- Local variable 2.
21 realSteps : INT := 11 -- (real steps) Local variable 3.
22 imagSteps : INT := 11 -- (imaginary steps) Local variable 4.
23 clipValue : DFLOAT := 10:: DFLOAT -- (maximum vector length) Local variable 5.
24
25 setRealSteps(n) == realSteps := n -- Exported function definition 1.
26 setImagSteps(n) == imagSteps := n -- Exported function definition 2.
27 setClipValue(c) == clipValue := c -- Exported function definition 3.
28
29 clipFun : DFLOAT -> DFLOAT -- Clip large magnitudes.
30 clipFun (x) == min (max(x, -clipValue ), clipValue ) -- Local function definition 1.
31
32 makeArrow : (Point DFLOAT ,Point DFLOAT ,DFLOAT ,DFLOAT ) -> CURVE

33 makeArrow (p1 , p2, len , arg) == ... -- Local function definition 2.
34
35 drawComplex (f, realRange , imagRange , arrows ?) == ... -- Exported function definition 4.

11.1 Names, Abbreviations, and File Structure

Each package has a name and an abbreviation. For a package of the complex draw functions from
Chapter 10, we choose the name DrawComplex and abbreviation DRAWCX.1 To be sure that you
have not chosen a name or abbreviation already used by the system, issue the system command )show

for both the name and the abbreviation.

Once you have named the package and its abbreviation, you can choose any new filename you like
with extension “.spad” to hold the definition of your package. We choose the name drawpak.spad.
If your application involves more than one package, you can put them all in the same file. FriCAS
assumes no relationship between the name of a library file, and the name or abbreviation of a package.

Near the top of the “.spad” file, list all the abbreviations for the packages using )abbrev, each
command beginning in column one. Macros giving names to FriCAS expressions can also be placed
near the top of the file. The macros are only usable from their point of definition until the end of the
file.

Consider the definition of DrawComplex in Figure 11.1. After the macro definition

S ==> Segment DoubleFloat

the name S can be used in the file as a shorthand for Segment DoubleFloat.2 The abbreviation
command for the package

)abbrev package DRAWCX DrawComplex

is given after the macros (although it could precede them).

1An abbreviation can be any string of between two and seven capital letters and digits, beginning with a letter. See
Section 2.2.5 on page 85 for more information.

2The interpreter also allows macro for macro definitions.
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11.2 Syntax

The definition of a package has the syntax:

PackageForm : Exports == Implementation

The syntax for defining a package constructor is the same as that for defining any function in FriCAS.
In practice, the definition extends over many lines so that this syntax is not practical. Also, the type
of a package is expressed by the operator with followed by an explicit list of operations. A preferable
way to write the definition of a package is with a where expression:

The definition of a package usually has the form:
PackageForm : Exports == Implementation where

optional type declarations
Exports == with

list of exported operations
Implementation == add

list of function definitions for exported operations

The DrawComplex package takes no parameters and exports five operations, each a separate item
of a pile. Each operation is described as a declaration: a name, followed by a colon (“:”), followed by
the type of the operation. All operations have types expressed as mappings with the syntax

source → target

11.3 Abstract Datatypes

A constructor as defined in FriCAS is called an abstract datatype in the computer science literature.
Abstract datatypes separate “specification” (what operations are provided) from “implementation”
(how the operations are implemented). The Exports (specification) part of a constructor is said to be
“public” (it provides the user interface to the package) whereas the Implementation part is “private”
(information here is effectively hidden—programs cannot take advantage of it).

The Exports part specifies what operations the package provides to users. As an author of a package,
you must ensure that the Implementation part provides a function for each operation in the Exports
part.3

An important difference between interactive programming and the use of packages is in the handling
of global variables such as realSteps and imagSteps. In interactive programming, you simply change
the values of variables by assignment. With packages, such variables are local to the package—their
values can only be set using functions exported by the package. In our example package, we provide
two functions setRealSteps and setImagSteps for this purpose.

Another local variable is clipValue which can be changed using the exported operation setClipValue.
This value is referenced by the internal function clipFun that decides whether to use the computed
value of the function at a point or, if the magnitude of that value is too large, the value assigned to
clipValue (with the appropriate sign).

3The DrawComplex package enhances the facility described in Chapter 10.7 by allowing a complex function to have
arrows emanating from the surface to indicate the direction of the complex argument.
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11.4 Capsules

The part to the right of add in the Implementation part of the definition is called a capsule. The
purpose of a capsule is:

• to define a function for each exported operation, and

• to define a local environment for these functions to run.

What is a local environment? First, what is an environment? Think of the capsule as an input file that
FriCAS reads from top to bottom. Think of the input file as having a )clear all at the top so that
initially no variables or functions are defined. When this file is read, variables such as realSteps and
arrowSize in DrawComplex are set to initial values. Also, all the functions defined in the capsule
are compiled. These include those that are exported (like drawComplex), and those that are not
(like makeArrow). At the end, you get a set of name-value pairs: variable names (like realSteps and
arrowSize) are paired with assigned values, while operation names (like drawComplex and makeArrow)
are paired with function values.

This set of name-value pairs is called an environment. Actually, we call this environment the “initial
environment” of a package: it is the environment that exists immediately after the package is first
built. Afterwards, functions of this capsule can access or reset a variable in the environment. The
environment is called local since any changes to the value of a variable in this environment can be seen
only by these functions.

Only the functions from the package can change the variables in the local environment. When two
functions are called successively from a package, any changes caused by the first function called are
seen by the second.

Since the environment is local to the package, its names don’t get mixed up with others in the system
or your workspace. If you happen to have a variable called realSteps in your workspace, it does not
affect what the DrawComplex functions do in any way.

The functions in a package are compiled into machine code. Unlike function definitions in input files
that may be compiled repeatedly as you use them with varying argument types, functions in packages
have a unique type (generally parameterized by the argument parameters of a package) and a unique
compilation residing on disk.

The capsule itself is turned into a compiled function. This so-called capsule function is what builds
the initial environment spoken of above. If the package has arguments (see below), then each call to
the package constructor with a distinct pair of arguments builds a distinct package, each with its own
local environment.

11.5 Input Files vs. Packages

A good question at this point would be “Is writing a package more difficult than writing an input file?”

The programs in input files are designed for flexibility and ease-of-use. FriCAS can usually work out
all of your types as it reads your program and does the computations you request. Let’s say that you
define a one-argument function without giving its type. When you first apply the function to a value,
this value is understood by FriCAS as identifying the type for the argument parameter. Most of the
time FriCAS goes through the body of your function and figures out the target type that you have in
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mind. FriCAS sometimes fails to get it right. Then—and only then—do you need a declaration to tell
FriCAS what type you want.

Input files are usually written to be read by FriCAS—and by you. Without suitable documentation
and declarations, your input files are likely incomprehensible to a colleague—and to you some months
later!

Packages are designed for legibility, as well as run-time efficiency. There are few new concepts you
need to learn to write packages. Rather, you just have to be explicit about types and type conversions.
The types of all functions are pre-declared so that FriCAS—and the reader— knows precisely what
types of arguments can be passed to and from the functions (certainly you don’t want a colleague to
guess or to have to work this out from context!). The types of local variables are also declared. Type
conversions are explicit, never automatic.4

In summary, packages are more tedious to write than input files. When writing input files, you
can casually go ahead, giving some facts now, leaving others for later. Writing packages requires
forethought, care and discipline.

11.6 Compiling Packages

Once you have defined the package DrawComplex, you need to compile and test it. To compile the
package, issue the system command )compile drawpak. FriCAS reads the file drawpak.spad and
compiles its contents into machine binary. If all goes well, the file DRAWCX.NRLIB is created in
your local directory for the package. To test the package, you must load the package before trying an
operation.

Compile the package.

)compile drawpak

Expose the package.

)expose DRAWCX

DrawComplex is now explicitly exposed in frame initial

Use an odd step size to avoid a pole at the origin.

setRealSteps 51

(1)51

PositiveInteger

setImagSteps 51

4There is one exception to this rule: conversions from a subdomain to a domain are automatic. After all, the objects
both have the domain as a common type.
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(2)51

PositiveInteger

Define f to be the Gamma function.

f(z) == Gamma(z)

Clip values of function with magnitude larger than 7.

setClipValue 7

(4)7.0

DoubleFloat

Draw the Gamma function.

drawComplex (f,-%pi..% pi ,-% pi..%pi , false)

11.7 Parameters

The power of packages becomes evident when packages have parameters. Usually these parameters are
domains and the exported operations have types involving these parameters.

In Chapter 2, you learned that categories denote classes of domains. Although we cover this notion in
detail in the next chapter, we now give you a sneak preview of its usefulness.

In Section 6.15 on page 199, we defined functions bubbleSort(m) and insertionSort(m) to sort a
list of integers. If you look at the code for these functions, you see that they may be used to sort any
structure m with the right properties. Also, the functions can be used to sort lists of any elements—not
just integers. Let us now recall the code for bubbleSort.
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bubbleSort(m) ==

n := #m

for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat

if m.j < m.(j-1) then swap!(m,j,j-1)

m

What properties of “lists of integers” are assumed by the sorting algorithm? In the first line, the
operation # computes the maximum index of the list. The first obvious property is that m must have
a finite number of elements. In FriCAS, this is done by your telling FriCAS that m has the category
finiteAggregate. As we show later in Section 12.9 on page 841, by using category tests programs can
query domains as to the presence or absence of property (attribute) represented by a category.

The operation swap! swaps elements of m. Using Browse, you find that swap! requires its elements to
come from a domain of category IndexedAggregate which also has category shallowlyMutable.
This category means that you can change the internal components of m without changing its external
structure. Shallowly-mutable data structures include lists, streams, one- and two-dimensional arrays,
vectors, and matrices.

The category IndexedAggregate designates the class of aggregates whose elements can be accessed
by the notation m(s) for suitable selectors s. The category IndexedAggregate takes two arguments:
Index, a domain of selectors for the aggregate, and Entry, a domain of entries for the aggregate.
Since the sort functions access elements by integers, we must choose Index = Integer. The most
general class of domains for which bubbleSort and insertionSort are defined are those of cate-
gory IndexedAggregate(Integer,Entry) with the two additional categories shallowlyMutable
and finiteAggregate.

Using Browse, you can also discover that FriCAS has many kinds of domains of category shallowly-
Mutable. Those of class IndexedAggregate(Integer,Entry) include Bits, FlexibleArray, One-
DimensionalArray, List, String, and Vector, and also HashTable and EqTable with integer
keys. Although you may never want to sort all such structures, we nonetheless demonstrate FriCAS’s
ability to do so.

Another requirement is that Entry has an operation <. One way to get this operation is to assume
that Entry has category OrderedSet. By definition, will then export a < operation. A more general
approach is to allow any comparison function f to be used for sorting. This function will be passed as
an argument to the sorting functions.

Our sorting package then takes two arguments: a domain S of objects of any type, and a domain A, an
aggregate of type IndexedAggregate(Integer, S) with the above two additional categories. Here
is its definition using what are close to the original definitions of bubbleSort and insertionSort for
sorting lists of integers. The symbol “!” is added to the ends of the operation names. This uniform
naming convention is used for FriCAS operation names that destructively change one or more of their
arguments.

1 SortPackage (S,A) : Exports == Implementation where

2 S: Object

3 A: IndexedAggregate(Integer ,S)

4 with (finiteAggregate; shallowlyMutable)

5
6 Exports == with

7 bubbleSort !: (A,(S,S) -> Boolean ) -> A

8 insertionSort!: (A, (S,S) -> Boolean ) -> A

9
10 Implementation == add
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11 bubbleSort !(m,f) ==

12 n := #m

13 for i in 1..(n-1) repeat

14 for j in n..( i+1) by -1 repeat

15 if f(m.j,m.(j -1)) then swap!(m,j,j-1)

16 m

17 insertionSort!(m,f) ==

18 for i in 2..#m repeat

19 j := i

20 while j > 1 and f(m.j,m.(j-1)) repeat

21 swap!(m,j,j-1)

22 j := (j - 1) pretend PositiveInteger

23 m

11.8 Conditionals

When packages have parameters, you can say that an operation is or is not exported depending on
the values of those parameters. When the domain of objects S has an < operation, we can supply
one-argument versions of bubbleSort and insertionSort which use this operation for sorting. The
presence of the operation < is guaranteed when S is an ordered set.

1 Exports == with

2 bubbleSort !: (A,(S,S) -> Boolean ) -> A

3 insertionSort!: (A, (S,S) -> Boolean ) -> A

4
5 if S has OrderedSet then

6 bubbleSort !: A -> A

7 insertionSort!: A -> A

In addition to exporting the one-argument sort operations conditionally, we must provide conditional
definitions for the operations in the Implementation part. This is easy: just have the one-argument
functions call the corresponding two-argument functions with the operation < from S.

1 Implementation == add

2 ...

3 if S has OrderedSet then

4 bubbleSort !(m) == bubbleSort !(m,<$S)
5 insertionSort!(m) == insertionSort!(m,<$S)

In Section 6.15 on page 199, we give an alternative definition of bubbleSort using first and rest that
is more efficient for a list (for which access to any element requires traversing the list from its first
node). To implement a more efficient algorithm for lists, we need the operation setelt! which allows us
to destructively change the first and rest of a list. Using Browse, you find that these operations come
from category UnaryRecursiveAggregate. Several aggregate types are unary recursive aggregates
including those of List andAssociationList. We provide two different implementations for bubbleSort!
and insertionSort!: one for list-like structures, another for array-like structures.

1 Implementation == add

2 ...

3 if A has UnaryRecursiveAggregate (S) then

4 bubbleSort !(m,fn) ==

5 empty? m => m

6 l := m

7 while not empty? (r := l.rest) repeat

8 r := bubbleSort ! r
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9 x := l.first

10 if fn(r.first ,x) then

11 l.first := r.first

12 r.first := x

13 l.rest := r

14 l := l.rest

15 m

16 insertionSort!(m,fn) ==

17 ...

The ordering of definitions is important. The standard definitions come first and then the predicate

A has UnaryRecursiveAggregate(S)

is evaluated. If true, the special definitions cover up the standard ones.

Another equivalent way to write the capsule is to use an if-then-else expression:

1 if A has UnaryRecursiveAggregate (S) then

2 ...

3 else

4 ...

11.9 Testing

Once you have written the package, embed it in a file, for example, sortpak.spad. Be sure to include
an )abbrev command at the top of the file:

)abbrev package SORTPAK SortPackage

Now compile the file (using )compile sortpak.spad). Expose the constructor. You are then ready
to begin testing.

)expose SORTPAK

SortPackage is now explicitly exposed in frame initial

Define a list.

l := [1,7,4,2,11,-7,3,2]

(1)[1, 7, 4, 2, 11, −7, 3, 2]

List ( Integer )

Since the integers are an ordered set, a one-argument operation will do.

bubbleSort !(l)
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(2)[−7, 1, 2, 2, 3, 4, 7, 11]

List ( Integer )

Re-sort it using “greater than.”

bubbleSort !(l,(x,y) +-> x > y)

(3)[11, 7, 4, 3, 2, 2, 1, −7]

List ( Integer )

Now sort it again using < on integers.

bubbleSort !(l, <$Integer )

(4)[−7, 1, 2, 2, 3, 4, 7, 11]

List ( Integer )

A string is an aggregate of characters so we can sort them as well.

bubbleSort ! "Mathematical Sciences "

(5)" MSaaaccceeehiilmnstt"

String

Is < defined on booleans?

false < true

(6)true

Boolean

Good! Create a bit string representing ten consecutive boolean values true.

u : Bits := new (10, true)



11.9. TESTING 831

(7)"1111111111"

Bits

Set bits 3 through 5 to false, then display the result.

u(3..5) := false; u

(8)"1100011111"

Bits

Now sort these booleans.

bubbleSort ! u

(9)"0001111111"

Bits

Create an “eq-table” (see ‘EqTable’ on page 479), a table having integers as keys and strings as values.

t : EqTable (Integer ,String ) := table ()

(10)table()

EqTable(Integer , String )

Give the table a first entry.

t.1 := "robert "

(11)"robert"

String

And a second.

t.2 := "richard "
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(12)"richard"

String

What does the table look like?

t

(13)table(2 = "richard", 1 = "robert")

EqTable(Integer , String )

Now sort it.

bubbleSort ! t

(14)table(2 = "robert", 1 = "richard")

EqTable(Integer , String )

11.10 How Packages Work

Recall that packages as abstract datatypes are compiled independently and put into the library. The
curious reader may ask: “How is the interpreter able to find an operation such as bubbleSort!? Also,
how is a single compiled function such as bubbleSort! able to sort data of different types?”

After the interpreter loads the package SortPackage, the four operations from the package become
known to the interpreter. Each of these operations is expressed as a modemap in which the type of the
operation is written in terms of symbolic domains.

)expose SORTPAK

SortPackage is already explicitly exposed in frame initial

See the modemaps for bubbleSort!.

)display op bubbleSort !

There are 2 exposed functions called bubbleSort ! :

[1] (D1 ,((D3 , D3) -> Boolean )) -> D1 from SortPackage (D3 ,D1)

if D3 has TYPE and D1 has Join(IXAGG(INT ,D3),ATFINAG ,

ATSHMUT )

[2] D1 -> D1 from SortPackage (D2 ,D1)

if D2 has ORDSET and D2 has TYPE and D1 has Join(IXAGG(INT ,

D2),ATFINAG ,ATSHMUT )
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What happens if you ask for bubbleSort!([1,-5,3])? There is a unique modemap for an operation
named bubbleSort! with one argument. Since [1,-5,3] is a list of integers, the symbolic domain D1 is
defined as List(Integer). For some operation to apply, it must satisfy the predicate for some D2. What
D2? The third expression of the and requires D1 has IndexedAggregate(Integer, D2) with two
additional categories. So the interpreter searches for an IndexedAggregate among the ancestors of
List (Integer) (see Section 12.4 on page 838). It finds one: IndexedAggregate(Integer, Integer).
The interpreter tries defining D2 as Integer. After substituting for D1 and D2, the predicate evaluates
to true. An applicable operation has been found!

Now FriCAS builds the package SortPackage(List(Integer), Integer). According to its definition,
this package exports the required operation: bubbleSort!: List Integer→List Integer. The interpreter
then asks the package for a function implementing this operation. The package gets all the functions
it needs (for example, rest and swap!) from the appropriate domains and then it returns a bubbleSort!
to the interpreter together with the local environment for bubbleSort!. The interpreter applies the
function to the argument [1,-5,3]. The bubbleSort! function is executed in its local environment and
produces the result.
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Chapter 12

Categories

This chapter unravels the mysteries of categories—what they are, how they are related to domains
and packages, how they are defined in FriCAS, and how you can extend the system to include new
categories of your own.

We assume that you have read the introductory material on domains and categories in Section 2.1.1
on page 77. There you learned that the notion of packages covered in the previous chapter are special
cases of domains. While this is in fact the case, it is useful here to regard domains as distinct from
packages.

Think of a domain as a datatype, a collection of objects (the objects of the domain). From your “sneak
preview” in the previous chapter, you might conclude that categories are simply named clusters of op-
erations exported by domains. As it turns out, categories have a much deeper meaning. Categories are
fundamental to the design of FriCAS. They control the interactions between domains and algorithmic
packages, and, in fact, between all the components of FriCAS.

Categories form hierarchies as shown on the inside cover pages of this book. The inside front-cover
pages illustrate the basic algebraic hierarchy of the FriCAS programming language. The inside back-
cover pages show the hierarchy for data structures.

Think of the category structures of FriCAS as a foundation for a city on which superstructures (do-
mains) are built. The algebraic hierarchy, for example, serves as a foundation for constructive mathe-
matical algorithms embedded in the domains of FriCAS. Once in place, domains can be constructed,
either independently or from one another.

Superstructures are built for quality—domains are compiled into machine code for run-time efficiency.
You can extend the foundation in directions beyond the space directly beneath the superstructures,
then extend selected superstructures to cover the space. Because of the compilation strategy, changing
components of the foundation generally means that the existing superstructures (domains) built on
the changed parts of the foundation (categories) have to be rebuilt—that is, recompiled.

Before delving into some of the interesting facts about categories, let’s see how you define them in
FriCAS.
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12.1 Definitions

A category is defined by a function with exactly the same format as any other function in FriCAS.

The definition of a category has the syntax:

CategoryForm : Category == Extensions [ with Exports ]

The brackets [ ] here indicate optionality.

The first example of a category definition is SetCategory, the most basic of the algebraic categories
in FriCAS.

1 SetCategory (): Category ==

2 Join(Type ,CoercibleTo OutputForm ) with

3 "=" : (%, %) -> Boolean

The definition starts off with the name of the category (SetCategory); this is always in column one
in the source file. All parts of a category definition are then indented with respect to this first line.

In Chapter 2, we talked about Ring as denoting the class of all domains that are rings, in short,
the class of all rings. While this is the usual naming convention in FriCAS, it is also common to
use the word “Category” at the end of a category name for clarity. The interpretation of the name
SetCategory is, then, “the category of all domains that are (mathematical) sets.”

The name SetCategory is followed in the definition by its formal parameters enclosed in parentheses
“()”. Here there are no parameters. As required, the type of the result of this category function is the
distinguished name Category.

Then comes the “==”. As usual, what appears to the right of the “==” is a definition, here, a category
definition. A category definition always has two parts separated by the reserved word with.

The first part tells what categories the category extends. Here, the category extends two categories:
Type, the category of all domains, and CoercibleTo(OutputForm). The operation Join is a
system-defined operation that forms a single category from two or more other categories.

Every category other than Type is an extension of some other category. If, for example, SetCategory
extended only the category Type, the definition here would read “Type with ...”. In fact, the Type
is optional in this line; “with ...” suffices.

12.2 Exports

To the right of the with is a list of all the exports of the category. Each exported operation has a name
and a type expressed by a declaration of the form “name: type”.

Categories can export symbols, as well as 0 and 1 which denote domain constants.1 In the current
implementation, all other exports are operations with types expressed as mappings with the syntax

source → target

1The numbers 0 and 1 are operation names in FriCAS.



12.3. DOCUMENTATION 837

The category SetCategory has a single export: the operation = whose type is given by the mapping
(%, %)→ Boolean. The “%” in a mapping type always means “the domain.” Thus the operation =

takes two arguments from the domain and returns a value of type Boolean.

The source part of the mapping here is given by a tuple consisting of two or more types separated
by commas and enclosed in parentheses. If an operation takes only one argument, you can drop the
parentheses around the source type. If the mapping has no arguments, the source part of the mapping
is either left blank or written as “()”. Here are examples of formats of various operations with some
contrived names.

someIntegerConstant : %

aZeroArgumentOperation: () -> Integer

aOneArgumentOperation: Integer -> %

aTwoArgumentOperation: (Integer,%) -> Void

aThreeArgumentOperation: (%,Integer,%) -> Fraction(%)

12.3 Documentation

The definition of SetCategory above is missing an important component: its library documentation.
Here is its definition, complete with documentation.

1 ++ Description :

2 ++ \spadtype {SetCategory } is the basic category

3 ++ for describing a collection of elements with

4 ++ \spadop {=} (equality ) and a \spadfun {coerce }

5 ++ to \spadtype {OutputForm }.

6
7 SetCategory (): Category ==

8 Join(Type , CoercibleTo OutputForm ) with

9 "=": (%, %) -> Boolean

10 ++ \spad{x = y} tests if \spad{x} and

11 ++ \spad{y} are equal .

Documentary comments are an important part of constructor definitions. Documentation is given
both for the category itself and for each export. A description for the category precedes the code.
Each line of the description begins in column one with “++”. The description starts with the word
Description:.2 All lines of the description following the initial line are indented by the same amount.

Mark the name of any constructor (with or without parameters) with \spadtype like this

\spadtype{Polynomial(Integer)}

Similarly, mark an operator name with \spadop, a FriCAS operation (function) with \spadfun, and
a variable or FriCAS expression with \spad. Library documentation is given in a TEX-like language
so that it can be used both for hard-copy and for Browse. These different wrappings cause operations
and types to have mouse-active buttons in Browse. For hard-copy output, wrapped expressions appear
in a different font. The above documentation appears in hard-copy as:

SetCategory is the basic category for describing a collection of elements with = (equal-
ity) and a coerce to OutputForm.

2Other information such as the author’s name, date of creation, and so on, can go in this area as well but are currently
ignored by FriCAS.
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and

x = y tests if x and y are equal.

For our purposes in this chapter, we omit the documentation from further category descriptions.

12.4 Hierarchies

A second example of a category is SemiGroup, defined by:

1 SemiGroup (): Category == SetCategory with

2 "*": (%,%) -> %

3 "^": (%, PositiveInteger) -> %

This definition is as simple as that for SetCategory, except that there are two exported operations.
Multiple exported operations are written as a pile, that is, they all begin in the same column. Here
you see that the category mentions another type, PositiveInteger, in a signature. Any domain can
be used in a signature.

Since categories extend one another, they form hierarchies. Each category other than Type has one
or more parents given by the one or more categories mentioned before the with part of the defini-
tion. SemiGroup extends SetCategory and SetCategory extends both Type and CoercibleTo
(OutputForm). Since CoercibleTo (OutputForm) also extends Type, the mention of Type in
the definition is unnecessary but included for emphasis.

12.5 Membership

We say a category designates a class of domains. What class of domains? That is, how does FriCAS
know what domains belong to what categories? The simple answer to this basic question is key to the
design of FriCAS:

Domains belong to categories by assertion.

When a domain is defined, it is asserted to belong to one or more categories. Suppose, for example, that
an author of domain String wishes to use the binary operator * to denote concatenation. Thus "hello
" * "there" would produce the string "hello there"3. The author of String could then assert that

String is a member of SemiGroup. According to our definition of SemiGroup, strings would then
also have the operation ^ defined automatically. Then "--" ^ 4 would produce a string of eight dashes
"--------". Since String is a member of SemiGroup, it also is a member of SetCategory and
thus has an operation = for testing that two strings are equal.

Now turn to the algebraic category hierarchy inside the front cover of this book. Any domain that is a
member of a category extending SemiGroup is a member of SemiGroup (that is, it is a semigroup).
In particular, any domain asserted to be a Ring is a semigroup since Ring extends Monoid, that, in

3Actually, concatenation of strings in FriCAS is done by juxtaposition or by using the operation concat. The expression
"hello " "there" produces the string "hello there".
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turn, extends SemiGroup. The definition of Integer in FriCAS asserts that Integer is a member of
category IntegerNumberSystem, that, in turn, asserts that it is a member of EuclideanDomain.
Now EuclideanDomain extends PrincipalIdealDomain and so on. If you trace up the hierarchy,
you see that EuclideanDomain extends Ring, and, therefore, SemiGroup. Thus Integer is a
semigroup and also exports the operations * and ^.

12.6 Defaults

We actually omitted the last part of the definition of SemiGroup in Section 12.4 on page 838. Here
now is its complete FriCAS definition.

1 SemiGroup (): Category == SetCategory with

2 "*": (%, %) -> %

3 "^": (%, PositiveInteger) -> %

4 add

5 import RepeatedSquaring (%)

6 x: % ^ n: PositiveInteger == expt(x,n)

The add part at the end is used to give “default definitions” for exported operations. Once you have a
multiplication operation *, you can define exponentiation for positive integer exponents using repeated
multiplication:

xn = xxx · · · x
︸ ︷︷ ︸

n times

This definition for ^ is called a default definition. In general, a category can give default definitions for
any operation it exports. Since SemiGroup and all its category descendants in the hierarchy export
^, any descendant category may redefine ^ as well.

A domain of category SemiGroup (such as Integer) may or may not choose to define its own ^

operation. If it does not, a default definition that is closest (in a “tree-distance” sense of the hierarchy)
to the domain is chosen.

The part of the category definition following an “add” operation is a capsule, as discussed in the
previous chapter. The line

import RepeatedSquaring(%)

references the package RepeatedSquaring(%), that is, the package RepeatedSquaring that takes
“this domain” as its parameter. For example, if the semigroup Polynomial (Integer) does not define
its own exponentiation operation, the definition used may come from the packageRepeatedSquaring
(Polynomial (Integer)). The next line gives the definition in terms of expt from that package.

The default definitions are collected to form a “default package” for the category. The name of the
package is the same as the category but with an ampersand (“&”) added at the end. A default
package always takes an additional argument relative to the category. Here is the definition of the
default package SemiGroup& as automatically generated by FriCAS from the above definition of
SemiGroup.

1 SemiGroup_ &(%): Exports == Implementation where

2 %: SemiGroup

3 Exports == with

4 "^": (%, PositiveInteger) -> %

5 Implementation == add
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6 import RepeatedSquaring (%)

7 x:% ^ n: PositiveInteger == expt(x,n)

12.7 Axioms

In the previous section you saw the complete FriCAS program defining SemiGroup. According to
this definition, semigroups (that is, are sets with the operations * and ^.

You might ask: “Aside from the notion of default packages, isn’t a category just a macro, that is, a
shorthand equivalent to the two operations * and ^ with their types?” If a category were a macro,
every time you saw the word SemiGroup, you would rewrite it by its list of exported operations.
Furthermore, every time you saw the exported operations of SemiGroup among the exports of a
constructor, you could conclude that the constructor exported SemiGroup.

A category is not a macro and here is why. The definition for SemiGroup has documentation that
states:

Category SemiGroup denotes the class of all multiplicative semigroups, that is, a set
with an associative operation *.

Axioms:
associative("*" : (%,%)→%) (x*y)*z = x*(y*z)

According to the author’s remarks, the mere exporting of an operation named * and ^ is not enough
to qualify the domain as a SemiGroup. In fact, a domain can be a semigroup only if it explicitly
exports a ^ and a * satisfying the associativity axiom.

In general, a category name implies a set of axioms, even mathematical theorems. There are numerous
axioms from Ring, for example, that are well-understood from the literature. No attempt is made to
list them all. Nonetheless, all such mathematical facts are implicit by the use of the name Ring.

12.8 Correctness

While such statements are only comments, FriCAS can enforce their intention simply by shifting the
burden of responsibility onto the author of a domain. A domain belongs to category Ring only if the
author asserts that the domain belongs to Ring or to a category that extends Ring.

This principle of assertion is important for large user-extendable systems. FriCAS has a large library
of operations offering facilities in many areas. Names such as norm and product, for example, have
diverse meanings in diverse contexts. An inescapable hindrance to users would be to force those who
wish to extend FriCAS to always invent new names for operations. FriCAS allows you to reuse names,
and then use context to disambiguate one from another.

Here is another example of why this is important. Some languages, such as APL, denote the Boolean
constants true and false by the integers 1 and 0. You may want to let infix operators + and * serve
as the logical operators or and and, respectively. But note this: Boolean is not a ring. The inverse
axiom for Ring states:

Every element x has an additive inverse y such that x + y = 0.
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Boolean is not a ring since true has no inverse—there is no inverse element a such that 1 + a = 0 (in
terms of booleans, (true or a)= false). Nonetheless, FriCAS could easily and correctly implement
Boolean this way. Boolean simply would not assert that it is of category Ring. Thus the + for
Boolean values is not confused with the one for Ring. Since the Polynomial constructor requires its
argument to be a ring, FriCAS would then refuse to build the domain Polynomial(Boolean). Also,
FriCAS would refuse to wrongfully apply algorithms to Boolean elements that presume that the ring
axioms for + hold.

12.9 Categories as attributes

Most axioms are not computationally useful. Those that are can be explicitly expressed by using
special categories that export no operations. Note: in the past, instead of categories, FriCAS used a
special construct called attribute.

The category CommutativeStar, for example, is used to assert that a domain has commutative
multiplication. Its definition is given by its documentation:

A domain R has CommutativeStar if it has an operation ”*”: (R,R)→R such that x * y = y

* x.

So, to test that a domain is known to satisfy an axiom, we just test if it has corresponding category,
like CommutativeStar above.

Do polynomials over the integers have commutative multiplication?

Polynomial Integer has CommutativeStar

(1)true

Boolean

Do matrices over the integers have commutative multiplication?

Matrix Integer has CommutativeStar

(2)false

Boolean

Using categories to assert axioms and category conditions to test if axioms are satisfied, we can con-
ditionally export and define operations for a domain depending on axioms (see Section 13.3 on page
847). Of course categories can also be asserted in a category definition.

After mentioning categoryRingmany times in this book, it is high time that we show you its definition:

1 Ring() : Category == Join(Rng , SemiRing , NonAssociativeRing ,

2 unitsKnown )
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As you can see Ring just combines properties of other categories. So let us see NonAssociativeRing:

1 NonAssociativeRing () : Category == Join(NonAssociativeRng ,

2 NonAssociativeSemiRing ) with

3 --operations
4 characteristic : -> NonNegativeInteger

5 ++ characteristic() returns the characteristic of the ring.

6 --we can not make this a constant, since some domains are mutable
7 coerce : Integer -> %

8 ++ coerce (n) coerces the integer n to an element of the ring.

9 add

10 n : Integer

11 coerce (n) == n * 1$%

There is one new thing here. Look at the “$%” on the last line. This is not a typographic error! The
“$” says that the 1 is to come from some domain. The “%” says that the domain is “this domain.” If
“%” is Fraction(Integer), this line reads coerce(n)== n * 1$Fraction(Integer).

Let us comment on category unitsKnown appearing in definition of Ring above. The category
unitsKnown asserts a rather subtle mathematical fact that is normally taken for granted when working
with rings.4 Because programs can test for this category, FriCAS can correctly handle rather more
complicated mathematical structures (ones that are similar to rings but do not have this category).

12.10 Parameters

Like domain constructors, category constructors can also have parameters. For example, category
MatrixCategory is a parameterized category for defining matrices over a ring R so that the matrix
domains can have different representations and indexing schemes. Its definition has the form:

1 MatrixCategory(R,Row ,Col ): Category ==

2 TwoDimensionalArrayCategory (R,Row ,Col ) with ...

The category extends TwoDimensionalArrayCategory with the same arguments. You cannot find
TwoDimensionalArrayCategory in the algebraic hierarchy listing. Rather, it is a member of the
data structure hierarchy, given inside the back cover of this book. In particular, TwoDimension-
alArrayCategory is an extension of HomogeneousAggregate since its elements are all one type.

The domain Matrix(R), the class of matrices with coefficients from domain R, asserts that it is a
member of category MatrixCategory(R, Vector(R), Vector(R)). The parameters of a category
must also have types. The first parameter to MatrixCategory R is required to be a ring. The second
and third are required to be domains of category FiniteLinearAggregate(R).5 In practice, examples
of categories having parameters other than domains are rare.

Adding the declarations for parameters to the definition for MatrixCategory, we have:

1 R: Ring

2 (Row , Col ): FiniteLinearAggregate (R)

3
4 MatrixCategory(R, Row , Col ): Category ==

5 TwoDimensionalArrayCategory (R, Row , Col) with ...

4With this axiom, the units of a domain are the set of elements x that each have a multiplicative inverse y in the
domain. Thus 1 and -1 are units in domain Integer. Also, for Fraction Integer, the domain of rational numbers, all
non-zero elements are units.

5This is another extension of HomogeneousAggregate that you can see in the data structure hierarchy.
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12.11 Conditionals

As categories have parameters, the actual operations exported by a category can depend on these pa-
rameters. As an example, the operation determinant from category MatrixCategory is only exported
when the underlying domain R has commutative multiplication:

if R has CommutativeRing then

determinant: % -> R

Conditionals can also define conditional extensions of a category. Here is a portion of the definition of
QuotientFieldCategory:

1 QuotientFieldCategory (R) : Category == ... with ...

2 if R has OrderedSet then OrderedSet

3 if R has IntegerNumberSystem then

4 ceiling : % -> R

5 ...

Think of category QuotientFieldCategory(R) as denoting the domain Fraction(R), the class of
all fractions of the form a/b for elements of R. The first conditional means in English: “If the elements
of R are totally ordered (R is an OrderedSet), then so are the fractions a/b”.

The second conditional is used to conditionally export an operation ceiling which returns the small-
est integer greater than or equal to its argument. Clearly, “ceiling” makes sense for integers but
not for polynomials and other algebraic structures. Because of this conditional, the domain Frac-
tion(Integer) exports an operation ceiling: Fraction Integer→Integer, but Fraction Polynomial
Integer does not.

Conditionals can also appear in the default definitions for the operations of a category. For example,
a default definition for ceiling within the part following the “add” reads:

if R has IntegerNumberSystem then

ceiling x == ...

Here the predicate used is identical to the predicate in the Exports part. This need not be the case.
See Section 11.8 on page 828 for a more complicated example.

12.12 Anonymous Categories

The part of a category to the right of a with is also regarded as a category—an “anonymous category.”
Thus you have already seen a category definition in Chapter 11. The Exports part of the package
DrawComplex (Section 11.3 on page 823) is an anonymous category. This is not necessary. We
could, instead, give this category a name:

1 DrawComplexCategory (): Category == with

2 drawComplex : (C -> C,S,S,Boolean ) -> VIEW3D

3 drawComplexVectorField : (C -> C,S,S) -> VIEW3D

4 setRealSteps: INT -> INT

5 setImagSteps: INT -> INT

6 setClipValue: DFLOAT -> DFLOAT



844 CHAPTER 12. CATEGORIES

and then define DrawComplex by:

1 DrawComplex (): DrawComplexCategory == Implementation

2 where

3 ...

There is no reason, however, to give this list of exports a name since no other domain or package
exports it. In fact, it is rare for a package to export a named category. As you will see in the next
chapter, however, it is very common for the definition of domains to mention one or more category
before the with.



Chapter 13

Domains

We finally come to the domain constructor. A few subtle differences between packages and domains
turn up some interesting issues. We first discuss these differences then describe the resulting issues
by illustrating a program for the QuadraticForm constructor. After a short example of an algebraic
constructor, CliffordAlgebra, we show how you use domain constructors to build a database query
facility.

13.1 Domains vs. Packages

Packages are special cases of domains. What is the difference between a package and a domain that
is not a package? Internally, FriCAS makes no distinction. However, humans think differently about
them, so we make the following definition: a domain that is not a package has the symbol “%” appearing
somewhere among the types of its exported operations. The “%” denotes “this domain.” If the “%”
appears before the “->” in the type of a signature, it means the operation takes an element from the
domain as an argument. If it appears after the “->”, then the operation returns an element of the
domain.

If no exported operations mention “%”, then evidently there is nothing of interest to do with the objects
of the domain. You might then say that a package is a “boring” domain! But, as you saw in Chapter 11,
packages are a very useful notion indeed. The exported operations of a package depend solely on the
parameters to the package constructor and other explicit domains.

To summarize, domain constructors are versatile structures that serve two distinct practical purposes:
Those like Polynomial and List describe classes of computational objects; others, like SortPackage,
describe packages of useful operations. As in the last chapter, we focus here on the first kind.

13.2 Definitions

The syntax for defining a domain constructor is the same as for any function in FriCAS:

DomainForm : Exports == Implementation

As this definition usually extends over many lines, a where expression is generally used instead.

845
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A recommended format for the definition of a domain is:
DomainForm : Exports == Implementation where

optional type declarations
Exports == [Category Assertions] with

list of exported operations
Implementation == [Add Domain] add

[Rep := Representation]
list of function definitions for exported operations

Note: The brackets [ ] here denote optionality.

A complete domain constructor definition for QuadraticForm is shown in Figure 13.1. Interestingly,
this little domain illustrates all the new concepts you need to learn.

Listing 13.1: The QuadraticForm domain.
1 )abbrev domain QFORM QuadraticForm

2
3 ++ Description :

4 ++ This domain provides modest support for

5 ++ quadratic forms.

6 QuadraticForm(n, K): Exports == Implementation where

7 n: PositiveInteger

8 K: Field

9
10 Exports == AbelianGroup with -- The exports.
11 quadraticForm: SquareMatrix(n,K) -> % -- The export quadraticForm.
12 ++ \spad{quadraticForm(m)} creates a quadratic

13 ++ quadratic form from a symmetric ,

14 ++ square matrix \spad{m}.

15 matrix : % -> SquareMatrix(n,K) -- The export matrix.
16 ++ \spad{matrix (qf)} creates a square matrix

17 ++ from the quadratic form \spad{qf}.

18 elt : (%, DirectProduct(n,K)) -> K -- The export elt.
19 ++ \spad{qf(v)} evaluates the quadratic form

20 ++ \spad{qf} on the vector \spad{v},

21 ++ producing a scalar .

22
23 Implementation == SquareMatrix(n,K) add -- The definitions of the exports
24 Rep := SquareMatrix(n,K) -- The “representation.”
25 quadraticForm m == -- The definition of
26 not symmetric ? m => error -- quadraticForm.
27 "quadraticForm requires a symmetric matrix "

28 m :: %

29 matrix q == q :: Rep -- The definition of matrix.
30 elt (q,v) == dot (v, (matrix q * v)) -- The definition of elt.

A domain constructor can take any number and type of parameters. QuadraticForm takes a positive
integer n and a field K as arguments. Like a package, a domain has a set of explicit exports and an
implementation described by a capsule. Domain constructors are documented in the same way as
package constructors.

Domain QuadraticForm(n, K), for a given positive integer n and domain K, explicitly exports three
operations:

• quadraticForm(A) creates a quadratic form from a matrix A.
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• matrix(q) returns the matrix A used to create the quadratic form q.

• q.v computes the scalar vTAv for a given vector v.

Compared with the corresponding syntax given for the definition of a package, you see that a do-
main constructor has three optional parts to its definition: Category Assertions, Add Domain, and
Representation.

13.3 Category Assertions

The Category Assertions part of your domain constructor definition lists those categories of which
all domains created by the constructor are unconditionally members. The word “unconditionally”
means that membership in a category does not depend on the values of the parameters to the domain
constructor. This part thus defines the link between the domains and the category hierarchies given
on the inside covers of this book. As described in Section 12.8 on page 840, it is this link that makes
it possible for you to pass objects of the domains as arguments to other operations in FriCAS.

Every QuadraticForm domain is declared to be unconditionally a member of category Abelian-
Group. An abelian group is a collection of elements closed under addition. Every object x of an
abelian group has an additive inverse y such that x + y = 0. The exports of an abelian group include
0, +, -, and scalar multiplication by an integer. After asserting that QuadraticForm domains are
abelian groups, it is possible to pass quadratic forms to algorithms that only assume arguments to
have these abelian group properties.

In Section 12.11 on page 843, you saw that Fraction(R), a member of QuotientFieldCategory(R),
is a member of OrderedSet if R is a member of OrderedSet. Likewise, from the Exports part of the
definition of ModMonic(R, S),

UnivariatePolynomialCategory(R) with

if R has Finite then Finite

...

you see that ModMonic(R, S) is a member of Finite if R is.

The Exports part of a domain definition is the same kind of expression that can appear to the right of
an “==” in a category definition. If a domain constructor is unconditionally a member of two or more
categories, a Join form is used. The Exports part of the definition of FlexibleArray(S) reads, for
example:

Join(ExtensibleLinearAggregate(S),

OneDimensionalArrayAggregate(S)) with...

13.4 A Demo

Before looking at the Implementation part of QuadraticForm, let’s try some examples.

Build a domain QF.
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QF := QuadraticForm(2, Fraction Integer )

(1)QuadraticForm(2,Fraction(Integer))

Type

Define a matrix to be used to construct a quadratic form.

A := matrix [[ -1 ,1/2] ,[1/2 ,1]]

(2)

[

−1 1
2

1
2

1

]

Matrix(Fraction ( Integer ))

Construct the quadratic form. A package call $QF is necessary since there are other QuadraticForm
domains.

q : QF := quadraticForm(A)

(3)

[

−1 1
2

1
2

1

]

QuadraticForm(2, Fraction( Integer ))

Looks like a matrix. Try computing the number of rows. FriCAS won’t let you.

nrows q

There are 2 exposed and 2 unexposed library operations named nrows

having 1 argument (s) but none was determined to be applicable .

Use HyperDoc Browse , or issue

)display op nrows

to learn more about the available operations . Perhaps

package -calling the operation or using coercions on the arguments

will allow you to apply the operation .

Cannot find a definition or applicable library operation named nrows

with argument type(s)

QuadraticForm(2, Fraction (Integer ))

Perhaps you should use "@" to indicate the required return type ,

or "$" to specify which version of the function you need.

Create a direct product element v. A package call is again necessary, but FriCAS understands your
list as denoting a vector.

v := directProduct([2,-1]) $DirectProduct(2, Fraction Integer )
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(4)[2, −1]

DirectProduct(2, Fraction ( Integer ))

Compute the product vTAv.

q.v

(5)− 5

Fraction ( Integer )

What is 3 times q minus q plus q?

3*q-q+q

(6)

[

−3 3
2

3
2

3

]

QuadraticForm(2, Fraction( Integer ))

13.5 Browse

The Browse facility of HyperDoc is useful for investigating the properties of domains, packages, and
categories. From the main HyperDoc menu, move your mouse to Browse and click on the left mouse
button. This brings up the Browse first page. Now, with your mouse pointer somewhere in this
window, enter the string “quadraticform” into the input area (all lower case letters will do). Move
your mouse to Constructors and click. Up comes a page describing QuadraticForm that includes
a part labeled by “Description:”. You also see the types for arguments n and K displayed as well as
the fact that QuadraticForm returns an AbelianGroup.

Select Operations to get a list of operations for QuadraticForm. You can select an operation by
clicking on it to get an individual page with information about that operation. Or you can select the
buttons along the bottom to see alternative views or get additional information on the operations.

Eventually, use to return to the first page on QuadraticForm.

You can go and experiment a bit by selecting Field and n with your mouse. Going back toOperations
you will see that Implementations view now works (it is disabled if some domain parameter is
unspecified). Then return to the page on QuadraticForm.

At the bottom the QuadraticForm page has buttons for Parents, Ancestors, and others. Clicking
on Parents, you see that QuadraticForm has AbelianGroup and ConvertibleTo as parents (note
that QuadraticForm distributed with FriCAS is richer then the demo version presented before).
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13.6 Representation

The Implementation part of an FriCAS capsule for a domain constructor uses the special variable
Rep to identify the lower level data type used to represent the objects of the domain. The Rep for
quadratic forms is SquareMatrix(n, K). This means that all objects of the domain are required to
be n by n matrices with elements from K.

The code for quadraticForm in Figure 13.1 on page 846 checks that the matrix is symmetric and then
converts it to “%”, which means, as usual, “this domain.” Such explicit conversions are generally
required by the compiler. Aside from checking that the matrix is symmetric, the code for this function
essentially does nothing. The m :: % on line 28 coerces m to a quadratic form. In fact, the quadratic
form you created in step (3) of Section 13.4 on page 847 is just the matrix you passed it in disguise!
Without seeing this definition, you would not know that. Nor can you take advantage of this fact now
that you do know! When we try in the next step of Section 13.4 on page 847 to regard q as a matrix by
asking for nrows, the number of its rows, FriCAS gives you an error message saying, in effect, “Good
try, but this won’t work!”

The definition for the matrix function could hardly be simpler: it just returns its argument after
explicitly coercing its argument to a matrix. Since the argument is already a matrix, this coercion does
no computation.

Within the context of a capsule, an object of “%” is regarded both as a quadratic form and as a matrix.1

This makes the definition of q.v easy—it just calls the dot product from DirectProduct to perform
the indicated operation.

13.7 Multiple Representations

To write functions that implement the operations of a domain, you want to choose the most computa-
tionally efficient data structure to represent the elements of your domain.

A classic problem in computer algebra is the optimal choice for an internal representation of polyno-
mials. If you create a polynomial, say 3x2 + 5, how does FriCAS hold this value internally? There
are many ways. FriCAS has nearly a dozen different representations of polynomials, one to suit al-
most any purpose. Algorithms for solving polynomial equations work most efficiently with polynomials
represented one way, whereas those for factoring polynomials are most efficient using another. One
often-used representation is a list of terms, each term consisting of exponent-coefficient records written
in the order of decreasing exponents. For example, the polynomial 3x2 + 5 is represented by the list
[[e:2, c:3], [e:0, c:5]].

What is the optimal data structure for a matrix? It depends on the application. For large sparse
matrices, a linked-list structure of records holding only the non-zero elements may be optimal. If
the elements can be defined by a simple formula f(i, j), then a compiled function for f may be op-
timal. Some programmers prefer to represent ordinary matrices as vectors of vectors. Others prefer
to represent matrices by one big linear array where elements are accessed with linearly computable
indexes.

While all these simultaneous structures tend to be confusing, FriCAS provides a helpful organizational
tool for such a purpose: categories. PolynomialCategory, for example, provides a uniform user

1In case each of “%” and “Rep” have the same named operation available, the one from “%” takes precedence. Thus,
if you want the one from “Rep”, you must package call it using a “$Rep” suffix.
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interface across all polynomial types. Each kind of polynomial implements functions for all these
operations, each in its own way. If you use only the top-level operations in PolynomialCategory you
usually do not care what kind of polynomial implementation is used.

Within a given domain, however, you define (at most) one representation.2 If you want to have multiple
representations (that is, several domains, each with its own representation), use a category to describe
the Exports, then define separate domains for each representation.

13.8 Add Domain

The capsule part of Implementation defines functions that implement the operations exported by the
domain—usually only some of the operations. In our demo in Section 13.4 on page 847, we asked for
the value of 3*q-q+q. Where do the operations *, +, and - come from? There is no definition for them
in the capsule!

The Implementation part of a definition can optionally specify an “add-domain” to the left of an
add (for QuadraticForm, defines SquareMatrix(n,K) is the add-domain). The meaning of an
add-domain is simply this: if the capsule part of the Implementation does not supply a function
for an operation, FriCAS goes to the add-domain to find the function. So do *, + and - come from
SquareMatrix(n,K)?

13.9 Defaults

In Chapter 11, we saw that categories can provide default implementations for their operations. How
and when are they used? When FriCAS finds that QuadraticForm(2, Fraction Integer) does not
implement the operations *, +, and -, it goes to SquareMatrix(2,Fraction Integer) to find it. As
it turns out, SquareMatrix(2, Fraction Integer) does not implement any of these operations!

What does FriCAS do then? Here is its overall strategy. First, FriCAS looks for a function in the
capsule for the domain. If it is not there, FriCAS looks in the add-domain for the operation. If that fails,
FriCAS searches the add-domain of the add-domain, and so on. If all those fail, it then searches the
default packages for the categories of which the domain is a member. In the case of QuadraticForm,
it searches AbelianGroup, then its parents, grandparents, and so on. If this fails, it then searches
the default packages of the add-domain. Whenever a function is found, the search stops immediately
and the function is returned. When all fails, the system calls error to report this unfortunate news to
you. To find out the actual order of constructors searched for QuadraticForm, consult Browse: from
the QuadraticForm, and click on Search Path.

Let’s apply this search strategy for our example 3*q-q+q. The scalar multiplication comes first. FriCAS
finds a default implementation in AbelianGroup&. Remember from Section 12.6 on page 839 that
SemiGroup provides a default definition for xn by repeated squaring? AbelianGroup similarly
provides a definition for n ∗ x by repeated doubling.

But the search of the defaults for QuadraticForm fails to find any + or * in the default packages
for the ancestors of QuadraticForm. So it now searches among those for SquareMatrix. Category
MatrixCategory, which provides a uniform interface for all matrix domains, is a grandparent of
SquareMatrix and has a capsule defining many functions for matrices, including matrix addition,

2You can make that representation a Union type, however. See Section 2.5 on page 92 for examples of unions.



852 CHAPTER 13. DOMAINS

subtraction, and scalar multiplication. The default packageMatrixCategory& is where the functions
for + and - come from.

You can use Browse to discover where the operations for QuadraticForm are implemented. First,
get the page describing QuadraticForm. With your mouse somewhere in this window, type a “2”,

press the Tab key, and then enter “Fraction Integer” to indicate that you want the domain Quad-
raticForm(2, Fraction Integer). Now click on Operations to get a table of operations and on *

to get a page describing the * operation. Finally, click on implementation at the bottom.

13.10 Origins

Aside from the notion of where an operation is implemented, a useful notion is the origin or “home”
of an operation. When an operation (such as quadraticForm) is explicitly exported by a domain (such
as QuadraticForm), you can say that the origin of that operation is that domain. If an operation is
not explicitly exported from a domain, it is inherited from, and has as origin, the (closest) category
that explicitly exports it. The operations + and - of QuadraticForm, for example, are inherited from
AbelianMonoid. As it turns out, AbelianMonoid is the origin of virtually every + operation in
FriCAS!

Again, you can use Browse to discover the origins of operations. From the Browse page on Quadrat-
icForm, click on Operations, then on origins at the bottom of the page.

The origin of the operation is the only place where on-line documentation is given. However, you
can re-export an operation to give it special documentation. Suppose you have just invented the
world’s fastest algorithm for inverting matrices using a particular internal representation for matrices.
If your matrix domain just declares that it exports MatrixCategory, it exports the inverse operation,
but the documentation the user gets from Browse is the standard one from MatrixCategory. To
give your version of inverse the attention it deserves, simply export the operation explicitly with new
documentation. This redundancy gives inverse a new origin and tells Browse to present your new
documentation.

13.11 Short Forms

In FriCAS, a domain could be defined using only an add-domain and no capsule. Although we talk
about rational numbers as quotients of integers, there is no type RationalNumber in FriCAS. To
create such a type, you could compile the following “short-form” definition:

1 RationalNumber() == Fraction (Integer )

The Exports part of this definition is missing and is taken to be equivalent to that ofFraction(Integer).
Because of the add-domain philosophy, you get precisely what you want. The effect is to create a little
stub of a domain. When a user asks to add two rational numbers, FriCAS would ask RationalNum-
ber for a function implementing this +. Since the domain has no capsule, the domain then immediately
sends its request to Fraction (Integer).

The short form definition for domains is used to define such domains as MultivariatePolynomial:

1 MultivariatePolynomial (vl: List Symbol , R: Ring) ==

2 SparseMultivariatePolynomial (R,

3 OrderedVariableList vl)
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13.12 Example 1: Clifford Algebra

Now that we have QuadraticForm available, let’s put it to use. Given some quadratic form Q
described by an n by n matrix over a field K, the domain CliffordAlgebra(n, K, Q) defines a vector
space of dimension 2n over K. This is an interesting domain since complex numbers, quaternions,
exterior algebras and spin algebras are all examples of Clifford algebras.

The basic idea is this: the quadratic form Q defines a basis e1, e2 . . . , en for the vector space Kn—the
direct product of K with itself n times. From this, the Clifford algebra generates a basis of 2n elements
given by all the possible products of the ei in order without duplicates, that is, 1, e1, e2, e1e2, e3, e1e3,
e2e3, e1e2, e3, and so on.

The algebra is defined by the relations

ei ei = Q(ei)
ei ej = −ej ei for i 6= j

Now look at the snapshot of its definition given in Figure 13.2. Lines 9-10 show part of the definitions
of the Exports. A Clifford algebra over a field K is asserted to be a ring, an algebra over K, and a

vector space over K. Its explicit exports include e(n), which returns the nth unit element.

Listing 13.2: Part of the CliffordAlgebra domain.

1 NNI ==> NonNegativeInteger

2 PI ==> PositiveInteger

3
4 CliffordAlgebra(n,K,q): Exports == Implementation where

5 n: PI

6 K: Field

7 q: QuadraticForm(n, K)

8
9 Exports == Join(Ring , Algebra (K)) with

10 e: PI -> %

11 ...

12
13 Implementation == add

14 Qeelist :=

15 [q.unitVector (i::PI) for i in 1.. n]

16 dim := 2^n

17 Rep := PrimitiveArray K

18 New ==> new(dim , 0$K)$Rep
19 x + y ==

20 z := New

21 for i in 0.. dim -1 repeat z.i := x.i + y.i

22 z

23 addMonomProd: (K, NNI , K, NNI , %) -> %

24 addMonomProd(c1 , b1 , c2, b2 , z) == ...

25 x * y ==

26 z := New

27 for ix in 0.. dim -1 repeat

28 if x.ix ~= 0 then for iy in 0.. dim -1 repeat

29 if y.iy ~= 0

30 then addMonomProd(x.ix ,ix,y.iy ,iy ,z)

31 z

32 ...

The Implementation part begins by defining a local variable Qeelist to hold the list of all q.v
where v runs over the unit vectors from 1 to the dimension n. Another local variable dim is set to 2n,
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computed once and for all. The representation for the domain is PrimitiveArray(K), which is a basic
array of elements from domain K. Line 18 defines New as shorthand for the more lengthy expression
new(dim, 0$K)$Rep, which computes a primitive array of length 2n filled with 0’s from domain K.

Lines 19-22 define the sum of two elements x and y straightforwardly. First, a new array of all 0
’s is created, then filled with the sum of the corresponding elements. Indexing for primitive arrays
starts at 0. The definition of the product of x and y first requires the definition of a local function
addMonomProd. FriCAS knows it is local since it is not an exported function. The types of all local
functions must be declared.

For a demonstration of CliffordAlgebra, see ‘CliffordAlgebra’ on page 439.

13.13 Example 2: Building A Query Facility

We now turn to an entirely different kind of application, building a query language for a database.

Here is the practical problem to solve. The Browse facility of FriCAS has a database for all operations
and constructors which is stored on disk and accessed by HyperDoc. For our purposes here, we regard
each line of this file as having eight fields: class, name, type, nargs, exposed, kind, origin,

and condition. Here is an example entry:

o‘determinant‘$->R‘1‘x‘d‘Matrix(R)‘has(R,commutative("*"))

In English, the entry means:

The operation determinant: % → R with 1 argument, is exposed and is exported by
domain Matrix(R) if R has commutative("*").

Our task is to create a little query language that allows us to get useful information from this database.

13.13.1 A Little Query Language

First we design a simple language for accessing information from the database. We have the following
simple model in mind for its design. Think of the database as a box of index cards. There is only one
search operation—it takes the name of a field and a predicate (a boolean-valued function) defined on
the fields of the index cards. When applied, the search operation goes through the entire box selecting
only those index cards for which the predicate is true. The result of a search is a new box of index
cards. This process can be repeated again and again.

The predicates all have a particularly simple form: symbol = pattern, where symbol designates one of the
fields, and pattern is a “search string”—a string that may contain a “*” as a wildcard. Wildcards match
any substring, including the empty string. Thus the pattern "*ma*t" matches "mat", "doormat" and
"smart".

To illustrate how queries are given, we give you a sneak preview of the facility we are about to create.

Extract the database of all FriCAS operations.

ops := getDatabase ("o")
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(1)8280

Database(IndexCard)

How many exposed three-argument map operations involving streams?

ops .(name ="map ").( nargs ="3") .( type ="* Stream *")

(2)3

Database(IndexCard)

As usual, the arguments of elt (“.”) associate to the left. The first elt produces the set of all operations
with name map. The second elt produces the set of all map operations with three arguments. The third
elt produces the set of all three-argument map operations having a type mentioning Stream.

Another thing we’d like to do is to extract one field from each of the index cards in the box and look
at the result. Here is an example of that kind of request.

What constructors explicitly export a determinant operation?

elt (elt(elt(elt (ops ,name =" determinant "),origin ),sort),unique )

(3)["InnerMatrixLinearAlgebraFunctions", "MatrixCategory",

"MatrixLinearAlgebraFunctions", "SquareMatrixCategory"]

DataList(String )

The first elt produces the set of all index cards with name determinant. The second elt extracts the
origin component from each index card. Each origin component is the name of a constructor which
directly exports the operation represented by the index card. Extracting a component from each index
card produces what we call a datalist. The third elt, sort, causes the datalist of origins to be sorted
in alphabetic order. The fourth, unique, causes duplicates to be removed.

Before giving you a more extensive demo of this facility, we now build the necessary domains and
packages to implement it.

13.13.2 The Database Constructor

We work from the top down. First, we define a database, our box of index cards, as an abstract
datatype. For sake of illustration and generality, we assume that an index card is some type S, and
that a database is a box of objects of type S. Here is the FriCAS program defining the Database
domain.
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1 PI ==> PositiveInteger

2 Database (S): Exports == Implementation where

3 S: Object with

4 elt: (%, Symbol ) -> String

5 display : % -> Void

6 fullDisplay : % -> Void

7
8 Exports == with

9 elt: (%, QueryEquation) -> % -- Select by an equation.
10 elt: (%, Symbol ) -> DataList String -- Select by a field name.
11 "+": (%,%) -> % -- Combine two databases.
12 "-": (%,%) -> % -- Subtract one from another.
13 display : % -> Void -- A brief database display.
14 fullDisplay : % -> Void -- A full database display.
15 fullDisplay : (%,PI ,PI) -> Void -- A selective display.
16 coerce : % -> OutputForm -- Display a database.
17 Implementation == add

18 ...

The domain constructor takes a parameter S, which stands for the class of index cards. We describe an
index card later. Here think of an index card as a string which has the eight fields mentioned above.

First, we tell FriCAS what operations we are going to require from index cards. We need an elt to
extract the contents of a field (such as name and type) as a string. For example, c.name returns a
string that is the content of the name field on the index card c. We need to display an index card in
two ways: display shows only the name and type of an operation; fullDisplay displays all fields. The
display operations return no useful information and thus have return type Void.

Next, we tell FriCAS what operations the user can apply to the database. This part defines our
little query language. The most important operation is db . field = pattern which returns a new
database, consisting of all index cards of db such that the field part of the index card is matched by the
string pattern called pattern. The expression field = pattern is an object of type QueryEquation
(defined in the next section).

Another elt is needed to produce a DataList object. Operation + is to merge two databases together;
- is used to subtract away common entries in a second database from an initial database. There are
three display functions. The fullDisplay function has two versions: one that prints all the records, the
other that prints only a fixed number of records. A coerce to OutputForm creates a display object.

The Implementation part of Database is straightforward.

1 Implementation == add

2 s: Symbol

3 Rep := List S

4 elt(db ,equation ) == ...

5 elt(db ,key) == [x.key for x in db]:: DataList (String )

6 display (db) == for x in db repeat display x

7 fullDisplay (db) == for x in db repeat fullDisplay x

8 fullDisplay (db , n, m) == for x in db for i in 1.. m

9 repeat

10 if i >= n then fullDisplay x

11 x+y == removeDuplicates! merge(x,y)

12 x-y == mergeDifference(copy(x::Rep ),

13 y:: Rep)$MergeThing (S)
14 coerce (db): OutputForm == (#db):: OutputForm

The database is represented by a list of elements of S (index cards). We leave the definition of the
first elt operation (on line 4) until the next section. The second elt collects all the strings with field
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name key into a list. The display function and first fullDisplay function simply call the corresponding
functions from S. The second fullDisplay function provides an efficient way of printing out a portion
of a large list. The + is defined by using the existing merge operation defined on lists, then removing
duplicates from the result. The - operation requires writing a corresponding subtraction operation. A
package MergeThing (not shown) provides this.

The coerce function converts the database to an OutputForm by computing the number of index
cards. This is a good example of the independence of the representation of an FriCAS object from how
it presents itself to the user. We usually do not want to look at a database—but do care how many
“hits” we get for a given query. So we define the output representation of a database to be simply the
number of index cards our query finds.

13.13.3 Query Equations

The predicate for our search is given by an object of type QueryEquation. FriCAS does not have
such an object yet so we have to invent it.

1 QueryEquation(): Exports == Implementation where

2 Exports == with

3 equation : (Symbol , String ) -> %

4 variable : % -> Symbol

5 value : % -> String

6
7 Implementation == add

8 Rep := Record (var :Symbol , val:String )

9 equation (x, s) == [x, s]

10 variable q == q.var

11 value q == q.val

FriCAS converts an input expression of the form a = b to equation(a, b). Our equations always
have a symbol on the left and a string on the right. The Exports part thus specifies an operation
equation to create a query equation, and variable and value to select the left- and right-hand sides. The
Implementation part uses Record for a space-efficient representation of an equation.

Here is the missing definition for the elt function of Database in the last section:

1 elt(db ,eq) ==

2 field := variable eq

3 value := value eq

4 [x for x in db | matches ?(value ,x.field )]

Recall that a database is represented by a list. Line 4 simply runs over that list collecting all elements
such that the pattern (that is, value) matches the selected field of the element.

13.13.4 DataLists

Type DataList is a new type invented to hold the result of selecting one field from each of the index
cards in the box. It is useful to make datalists extensions of lists—lists that have special elt operations
defined on them for sorting and removing duplicates.

1 DataList (S:OrderedSet ) : Exports == Implementation where

2 Exports == ListAggregate(S) with

3 elt: (%," unique ") -> %

4 elt: (%," sort ") -> %
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5 elt: (%," count ") -> NonNegativeInteger

6 coerce : List S -> %

7
8 Implementation == List(S) add

9 Rep := List S

10 elt(x," unique ") == removeDuplicates(x)

11 elt(x,"sort ") == sort(x)

12 elt(x," count ") == #x

13 coerce (x:List S) == x :: %

The Exports part asserts that datalists belong to the category ListAggregate. Therefore, you can use
all the usual list operations on datalists, such as first, rest, and concat. In addition, datalists have four
explicit operations. Besides the three elt operations, there is a coerce operation that creates datalists
from lists.

The Implementation part needs only to define four functions. All the rest are obtained from List(S).

13.13.5 Index Cards

An index card comes from a file as one long string. We define functions that extract substrings from
the long string. Each field has a name that is passed as a second argument to elt.

1 IndexCard () == Implementation where

2 Exports == with

3 elt: (%, Symbol ) -> String

4 display : % -> Void

5 fullDisplay : % -> Void

6 coerce : String -> %

7 Implementation == String add ...

We leave the Implementation part to the reader. All operations involve straightforward string ma-
nipulations.

13.13.6 Creating a Database

We must not forget one important operation: one that builds the database in the first place! We’ll
name it getDatabase and put it in a package. This function is implemented by calling the Common
LISP function getBrowseDatabase(s) to get appropriate information from Browse. This operation
takes a string indicating which lines you want from the database: "o" gives you all operation lines,
and "k", all constructor lines. Similarly, "c", "d", and "p" give you all category, domain and package
lines respectively.

1 OperationsQuery(): Exports == Implementation where

2 Exports == with

3 getDatabase : String -> Database (IndexCard )

4
5 Implementation == add

6 getDatabase (s) == getBrowseDatabase(s)$Lisp

We do not bother creating a special name for databases of index cards. Database(IndexCard) will
do. Notice that we used the package OperationsQuery to create, in effect, a new kind of domain:
Database(IndexCard).
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13.13.7 Putting It All Together

To create the database facility, you put all these constructors into one file.3 At the top of the file put
)abbrev commands, giving the constructor abbreviations you created.

1 )abbrev domain ICARD IndexCard

2 )abbrev domain QEQUAT QueryEquation

3 )abbrev domain MTHING MergeThing

4 )abbrev domain DLIST DataList

5 )abbrev domain DBASE Database

6 )abbrev package OPQUERY OperationsQuery

With all this in alql.spad, for example, compile it using

)compile alql

and then load each of the constructors:

)load ICARD QEQUAT MTHING DLIST DBASE OPQUERY

You are ready to try some sample queries.

13.13.8 Example Queries

Our first set of queries give some statistics on constructors in the current FriCAS system.

How many constructors does FriCAS have?

ks := getDatabase "k"

(1)1250

Database(IndexCard)

Break this down into the number of categories, domains, and packages.

[ks.(kind=k) for k in ["c","d","p"]]

(2)[269, 427, 554]

List (Database(IndexCard))

What are all the domain constructors that take 5 parameters?

elt (ks.(kind ="d").(nargs ="5") ,name)

3You could use separate files, but we are putting them all together because, organizationally, that is the logical thing
to do.
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(3)["FractionalIdealAsModule", "IndexedJetBundle", "InnerIndexedTwoDimensionalArray",

"ModularField", "ModularRing", "RadicalFunctionField", "ResidueRing", "TensorProduct"]

DataList(String )

How many constructors have “Matrix” in their name?

mk := ks.( name ="* Matrix *")

(4)39

Database(IndexCard)

What are the names of those that are domains?

elt (mk.(kind ="d"),name)

(5)

["ComplexDoubleFloatMatrix", "DenavitHartenbergMatrix",

"DirectProductMatrixModule", "DoubleFloatMatrix", "I16Matrix", "I32Matrix",

"I8Matrix", "IndexedMatrix", "LieSquareMatrix", "LinearMultivariateMatrixPencil",

"Matrix", "RectangularMatrix", "SparseEchelonMatrix", "SquareMatrix",

"ThreeDimensionalMatrix", "U16Matrix", "U32Matrix", "U8Matrix"]

DataList(String )

How many operations are there in the library?

o := getDatabase "o"

(6)8280

Database(IndexCard)

Break this down into categories, domains, and packages.

[o.( kind=k) for k in ["c","d","p"]]
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(7)[2051, 2902, 3327]

List (Database(IndexCard))

The query language is helpful in getting information about a particular operation you might like to
apply. While this information can be obtained with Browse, the use of the query database gives you
data that you can manipulate in the workspace.

How many operations have “eigen” in the name?

eigens := o.( name ="* eigen *")

(8)9

Database(IndexCard)

What are their names?

elt (eigens ,name)

(9)["eigenMatrix", "eigenvalues", "eigenvalues", "eigenvalues", "eigenvector",

"eigenvector", "eigenvectors", "eigenvectors", "eigenvectors"]

DataList(String )

Where do they come from?

elt (elt(elt(eigens ,origin ),sort),unique )

(10)["EigenPackage", "InnerEigenPackage", "RadicalEigenPackage"]

DataList(String )

The operations + and - are useful for constructing small databases and combining them. However,
remember that the only matching you can do is string matching. Thus a pattern such as "*Matrix*"
on the type field matches any type containing Matrix, MatrixCategory, SquareMatrix, and so
on.

How many operations mention “Matrix” in their type?

tm := o.( type ="* Matrix *")
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(11)383

Database(IndexCard)

How many operations come from constructors with “Matrix” in their name?

fm := o.( origin ="* Matrix *")

(12)321

Database(IndexCard)

How many operations are in fm but not in tm?

fm-tm

(13)272

Database(IndexCard)

Display the operations that both mention “Matrix” in their type and come from a constructor having
“Matrix” in their name.

fullDisplay (fm -%)

How many operations involve matrices?

m := tm+fm

(15)639

Database(IndexCard)

Display 4 of them.

fullDisplay (m, 202, 205)

How many distinct names of operations involving matrices are there?

elt (elt(elt(m,name),unique ),count )
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(17)355

PositiveInteger
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Chapter 14

Browse

This chapter discusses the Browse component of HyperDoc. We suggest you invoke FriCAS and work
through this chapter, section by section, following our examples to gain some familiarity with Browse.

14.1 The Front Page: Searching the Library

To enter Browse, click on Browse on the top level page of HyperDoc to get the front page of Browse.

Figure 14.1: The Browse front page.

To use this page, you first enter a search string into the input area at the top, then click on one of the
buttons below. We show the use of each of the buttons by example.

865
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Constructors

First enter the search string Matrix into the input area and click on Constructors. What you get
is the constructor page for Matrix. We show and describe this page in detail in Section 14.2 on page
869. By convention, FriCAS does a case-insensitive search for a match. Thus matrix is just as good as
Matrix, has the same effect as MaTrix, and so on. We recommend that you generally use small letters
for names however. A search string with only capital letters has a special meaning (see Section 14.3.3
on page 884).

Click on to return to the Browse front page.

Use the symbol “*” in search strings as a wild card. A wild card matches any substring, including
the empty string. For example, enter the search string *matrix* into the input area and click on
Constructors.1 What you get is a table of all constructors whose names contain the string “matrix.”

Figure 14.2: Table of exposed constructors matching *matrix*.

All constructors containing the string are listed, whether exposed or unexposed. You can hide the
names of the unexposed constructors by clicking on the *=unexposed button in the Views panel at
the bottom of the window. (The button will change to exposed only.)

One of the names in this table is Matrix. Click on Matrix. What you get is again the constructor
page for Matrix. As you see, Browse gives you a large network of information in which there are many
ways to reach the same pages.

Again click on the to return to the table of constructors whose names contain matrix. Below
the table is a Views panel. This panel contains buttons that let you view constructors in different
ways. To learn about views of constructors, skip to Section 14.2.3 on page 877.

Click on to return to the Browse front page.

1To get only categories, domains, or packages, rather than all constructors, you can click on the corresponding button
to the right of Constructors.
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Operations

Enter *matrix into the input area and click on Operations. This time you get a table of operations
whose names end with matrix or Matrix.

Figure 14.3: Table of operations matching *matrix.

If you select an operation name, you go to a page describing all the operations in FriCAS of that name.
At the bottom of an operation page is another kind of Views panel, one for operation pages. To learn
more about these views, skip to Section 14.3.2 on page 881.

Click on to return to the Browse front page.

General

This button does a general search for all constructor and operation names matching the search string.
Enter the search string *matrix* into the input area. Click on General to find all constructs that
have matrix as a part of their name.

The summary gives you all the names under a heading when the number of entries is less than 10.

Click on to return to the Browse front page.

Documentation

Again enter the search key *matrix* and this time click on Documentation. This search matches
any constructor and operation name whose documentation contains a substring matching matrix.

Click on to return to the Browse front page.

Complete

This search combines both General and Documentation.



868 CHAPTER 14. BROWSE

Figure 14.4: Table of all constructs matching *matrix*.

Figure 14.5: Table of constructs with documentation matching *matrix*.
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Figure 14.6: Table summarizing complete search for pattern *matrix*.

14.2 The Constructor Page

In this section we look in detail at a constructor page for domain Matrix. Enter matrix into the input
area on the main Browse page and click on Constructors.

Figure 14.7: Constructor page for Matrix.

The header part tells you that Matrix has abbreviation MATRIX and one argument called R that
must be a domain of category Ring. Just what domains can be arguments of Matrix? To find this
out, click on the R on the second line of the heading. What you get is a table of all acceptable domain
parameter values of R, or a table of rings in FriCAS.

Click on to return to the constructor page for Matrix.
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Figure 14.8: Table of acceptable domain parameters to Matrix.

If you have access to the source code of FriCAS, the third line of the heading gives you the name of
the source file containing the definition of Matrix. Click on it to pop up an editor window containing
the source code of Matrix.

Figure 14.9: Source code for Matrix.

We recommend that you leave the editor window up while working through this chapter as you occa-
sionally may want to refer to it.
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14.2.1 Constructor Page Buttons

We examine each button on this page in order.

Description

Click here to bring up a page with a brief description of constructor Matrix. If you have access to
system source code, note that these comments can be found directly over the constructor definition.

Figure 14.10: Description page for Matrix.

Operations

Click here to get a table of operations exported by Matrix. You may wish to widen the window to
have multiple columns as below.

If you click on an operation name, you bring up a description page for the operations. For a detailed
description of these pages, skip to Section 14.3.2 on page 881.

Examples

Click here to get an examples page with examples of operations to create and manipulate matrices.

Read through this section. Try selecting the various buttons. Notice that if you click on an operation
name, such as new, you bring up a description page for that operation from Matrix.

Example pages have several examples of FriCAS commands. Each example has an active button to its
left. Click on it! A pre-computed answer is pasted into the page immediately following the command.
If you click on the button a second time, the answer disappears. This button thus acts as a toggle:
“now you see it; now you don’t.”

Note also that the FriCAS commands themselves are active. If you want to see FriCAS execute the
command, then click on it! A new FriCAS window appears on your screen and the command is
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Figure 14.11: Table of operations from Matrix.

Figure 14.12: Example page for Matrix.
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executed.

Exports

Click here to see a page describing the exports of Matrix exactly as described by the source code.

Figure 14.13: Exports of Matrix.

As you see, Matrix declares that it exports all the operations and categories exported by categoryMa-
trixCategory(R, Row, Col). In addition, two operations, diagonalMatrix and inverse, are explicitly
exported.

To learn a little about the structure of FriCAS, we suggest you do the following exercise. Otherwise, go
on to the next section. Matrix explicitly exports only two operations. The other operations are thus
exports of MatrixCategory. In general, operations are usually not explicitly exported by a domain.
Typically they are inherited from several different categories. Let’s find out from where the operations
of Matrix come.

1. Click on MatrixCategory, then on Exports. Here you see that MatrixCategory explicitly
exports many matrix operations. Also, it inherits its operations from TwoDimensionalArray-
Category.

2. Click on TwoDimensionalArrayCategory, then on Exports. Here you see explicit operations
dealing with rows and columns. In addition, it inherits operations from HomogeneousAggre-
gate.

3. Click on and then click on Object, then on Exports, where you see there are no
exports.

4. Click on repeatedly to return to the constructor page for Matrix.

Related Operations

Click here bringing up a table of operations that are exported by packages but not by Matrix itself.
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Figure 14.14: Related operations of Matrix.

To see a table of such packages, use the Relatives button on the Cross Reference page described
next.

14.2.2 Cross Reference

Click on the Cross Reference button on the main constructor page for Matrix. This gives you a
page having various cross reference information stored under the respective buttons.

Figure 14.15: Cross-reference page for Matrix.
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Parents

The parents of a domain are the same as the categories mentioned under the Exports button on the
first page. Domain Matrix has only one parent but in general a domain can have any number.

Ancestors

The ancestors of a constructor consist of its parents, the parents of its parents, and so on. Did you
perform the exercise in the last section under Exports? If so, you see here all the categories you found
while ascending the Exports chain for Matrix.

Relatives

The relatives of a domain constructor are package constructors that provide operations in addition to
those exported by the domain.

Try this exercise.

1. Click on Relatives, bringing up a list of packages.

2. Click on LinearSystemMatrixPackage bringing up its constructor page.2

3. Click on Operations. Here you see rank, an operation also exported by Matrix itself.

4. Click on rank. This rank has two arguments and thus is different from the rank from Matrix.

5. Click on to return to the list of operations for the package LinearSystemMatrixPack-
age.

6. Click on solve to bring up a solve for linear systems of equations.

7. Click on several times to return to the cross reference page for Matrix.

Dependents

The dependents of a constructor are those domains or packages that mention that constructor either
as an argument or in its exports.

If you click on Dependents two entries may surprise you: RectangularMatrix and SquareMatrix.
This happens because Matrix, as it turns out, appears in signatures of operations exported by these
domains.

Search Path

The term search path refers to the search order for functions. If you are an expert user or curious about
how the FriCAS system works, try the following exercise. Otherwise, you best skip this button and go
on to Users.

2You may want to widen your HyperDoc window to make what follows more legible.
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Clicking on Search Path gives you a list of domain constructors: InnerIndexedTwoDimension-
alArray, MatrixCategory&, TwoDimensionalArrayCategory&, HomogeneousAggregate&,
Aggregate&, Evalable&, SetCategory&, InnerEvalable&, BasicType&. What are these con-
structors and how are they used?

We explain by an example. Suppose you create a matrix using the interpreter, then ask for its rank.
FriCAS must then find a function implementing the rank operation for matrices. The first place FriCAS
looks for rank is in the Matrix domain.

If not there, the search path of Matrix tells FriCAS where else to look. Associated with the matrix
domain are eight other search path domains. Their order is important. FriCAS first searches the
first one, InnerIndexedTwoDimensionalArray. If not there, it searches the second MatrixCat-
egory&. And so on.

Where do these search path constructors come from? The source code for Matrix contains this syntax
for the function body of Matrix:3

InnerIndexedTwoDimensionalArray(R,mnRow,mnCol,Row,Col)

add ...

where the “...” denotes all the code that follows. In English, this means: “The functions for matrices
are defined as those from InnerIndexedTwoDimensionalArray domain augmented by those defined
in ‘...’,” where the latter take precedence.

This explains InnerIndexedTwoDimensionalArray. The other names, those with names ending
with an ampersand “&” are default packages for categories to which Matrix belongs. Default packages
are ordered by the notion of “closest ancestor.”

Users

A user of Matrix is any constructor that uses Matrix in its implementation. For example, Complex
is a user of Matrix; it exports several operations that take matrices as arguments or return matrices
as values.4

Uses

A benefactor of Matrix is any constructor that Matrix uses in its implementation. This information,
like that for clients, is gathered from run-time structures.5

Cross reference pages for categories have some different buttons on them. Starting with the constructor
page of Matrix, click on Ring producing its constructor page. Click on Cross Reference, producing
the cross-reference page for Ring. Here are buttons Parents and Ancestors similar to the notion for
domains, except for categories the relationship between parent and child is defined through category
extension.

3InnerIndexedTwoDimensionalArray is a special domain implemented for matrix-like domains to provide efficient
implementations of two-dimensional arrays. For example, domains of category TwoDimensionalArrayCategory can
have any integer as their minIndex. Matrices and other members of this special “inner” array have their minIndex defined
as 1.

4A constructor is a user of Matrix if it handles any matrix. For example, a constructor having internal (unexported)
operations dealing with matrices is also a user.

5The benefactors exclude constructors such as PrimitiveArray whose operations macro-expand and so vanish from
sight!
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Children

Category hierarchies go both ways. There are children as well as parents. A child can have any number
of parents, but always at least one. Every category is therefore a descendant of exactly one category:
Object.

Descendants

These are children, children of children, and so on.

Category hierarchies are complicated by the fact that categories take parameters. Where a parame-
terized category fits into a hierarchy may depend on values of its parameters. In general, the set of
categories in FriCAS forms a directed acyclic graph, that is, a graph with directed arcs and no cycles.

Domains

This produces a table of all domain constructors that can possibly be rings (members of categoryRing).
Some domains are unconditional rings. Others are rings for some parameters and not for others. To
find out which, select the conditions button in the views panel. For example, DirectProduct(n,
R) is a ring if R is a ring.

14.2.3 Views Of Constructors

Below every constructor table page is a Views panel. As an example, click on Cross Reference from
the constructor page of Matrix, then on Benefactors to produce a short table of constructor names.

The Views panel is at the bottom of the page. Two items, names and conditions, are in italics. Others
are active buttons. The active buttons are those that give you useful alternative views on this table of
constructors. Once you select a view, you notice that the button turns off (becomes italicized) so that
you cannot reselect it.

names

This view gives you a table of names. Selecting any of these names brings up the constructor page for
that constructor.

abbrs

This view gives you a table of abbreviations, in the same order as the original constructor names.
Abbreviations are in capitals and are limited to 7 characters. They can be used interchangeably with
constructor names in input areas.

kinds

This view organizes constructor names into the three kinds: categories, domains and packages.
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files

This view gives a table of file names for the source code of the constructors in alphabetic order after
removing duplicates.

parameters

This view presents constructors with the arguments. This view of the benefactors of Matrix shows
that Matrix uses as many as five different List domains in its implementation.

filter

This button is used to refine the list of names or abbreviations. Starting with the names view, enter
m* into the input area and click on filter. You then get a shorter table with only the names beginning
with m.

documentation

This gives you documentation for each of the constructors.

conditions

This page organizes the constructors according to predicates. The view is not available for your
example page since all constructors are unconditional. For a table with conditions, return to the
Cross Reference page for Matrix, click on Ancestors, then on conditions in the view panel. This
page shows you that CoercibleTo(OutputForm) and SetCategory are ancestors of Matrix(R)
only if R belongs to category SetCategory.

14.2.4 Giving Parameters to Constructors

Notice the input area at the bottom of the constructor page. If you leave this blank, then the infor-
mation you get is for the domain constructor Matrix(R), that is, Matrix for an arbitrary underlying
domain R.

In general, however, the exports and other information do usually depend on the actual value of R. For
example, Matrix exports the inverse operation only if the domain R is a Field. To see this, try this
from the main constructor page:

1. Enter Integer into the input area at the bottom of the page.

2. Click on Operations, producing a table of operations. Note the number of operation names
that appear at the top of the page.

3. Click on to return to the constructor page.

4. Use the Delete or Backspace keys to erase Integer from the input area.
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5. Click on Operations to produce a new table of operations. Look at the number of operations
you get. This number is greater than what you had before. Find, for example, the operation
inverse.

6. Click on inverse to produce a page describing the operation inverse. At the bottom of the
description, you notice that the Conditions line says “R has Field.” This operation is not
exported by Matrix(Integer) since Integer is not a field.

Try putting the name of a domain such as Fraction Integer (which is a field) into the input
area, then clicking on Operations. As you see, the operation inverse is exported.

14.3 Miscellaneous Features of Browse

14.3.1 The Description Page for Operations

From the constructor page of Matrix, click on Operations to bring up the table of operations for
Matrix.

Find the operation inverse in the table and click on it. This takes you to a page showing the docu-
mentation for this operation.

Figure 14.16: Operation inverse from Matrix.

Here is the significance of the headings you see.

Arguments

This lists each of the arguments of the operation in turn, paraphrasing the signature of the operation.
As for signatures, a “%” is used to designate this domain, that is, Matrix(R).

Returns

This describes the return value for the operation, analogous to the Arguments part.
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Origin

This tells you which domain or category explicitly exports the operation. In this example, the domain
itself is the Origin.

Conditions

This tells you that the operation is exported by Matrix(R) only if “R has Field,” that is, “R is a
member of category Field.” When no Conditions part is given, the operation is exported for all
values of R.

Description

Here are the “++” comments that appear in the source code of its Origin, here Matrix. You find these
comments in the source code for Matrix.

Figure 14.17: Operations map from Matrix.

Click on to return to the table of operations. Click on map. Here you find three different
operations named map. This should not surprise you. Operations are identified by name and signature.
There are three operations named map, each with different signatures. What you see is the descriptions
view of the operations. If you like, select the button in the heading of one of these descriptions to get
only that operation.

Where

This part qualifies domain parameters mentioned in the arguments to the operation.
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14.3.2 Views of Operations

We suggest that you go to the constructor page for Matrix and click on Operations to bring up a
table of operations with a Views panel at the bottom.

names

This view lists the names of the operations. Unlike constructors, however, there may be several
operations with the same name. The heading for the page tells you the number of unique names and
the number of distinct operations when these numbers are different.

filter

As for constructors, you can use this button to cut down the list of operations you are looking at.
Enter, for example, m* into the input area to the right of filter then click on filter. As usual, any
logical expression is permitted. For example, use

*! or *?

to get a list of destructive operations and predicates.

documentation

This gives you the most information: a detailed description of all the operations in the form you have
seen before. Every other button summarizes these operations in some form.

signatures

This views the operations by showing their signatures.

parameters

This views the operations by their distinct syntactic forms with parameters.

origins

This organizes the operations according to the constructor that explicitly exports them.

conditions

This view organizes the operations into conditional and unconditional operations.
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usage

This button is only available if your user-level is set to development. The usage button produces a
table of constructors that reference this operation.6

implementation

This button is only available if your user-level is set to development. If you enter values for all
domain parameters on the constructor page, then the implementation button appears in place of the
conditions button. This button tells you what domains or packages actually implement the various
operations.7

With your user-level set to development, we suggest you try this exercise. Return to the main con-
structor page for Matrix, then enter Integer into the input area at the bottom as the value of R.
Then click on Operations to produce a table of operations. Note that the conditions part of the
Views table is replaced by implementation. Click on implementation. After some delay, you get
a page describing what implements each of the matrix operations, organized by the various domains
and packages.

Figure 14.18: Implementation domains for Matrix.

generalize

This button only appears for an operation page of a constructor involving a unique operation name.

From an operations page for Matrix, select any operation name, say rank. In the views panel, the
filter button is replaced by generalize. Click on it! What you get is a description of all FriCAS
operations named rank.8

6FriCAS requires an especially long time to produce this table, so anticipate this when requesting this information.
7This button often takes a long time; expect a delay while you wait for an answer.
8If there were more than 10 operations of the name, you get instead a page with a Views panel at the bottom and

the message to Select a view below. To get the descriptions of all these operations as mentioned above, select the
description button.



14.3. MISCELLANEOUS FEATURES OF BROWSE 883

Figure 14.19: All operations named rank in FriCAS.

all domains

This button only appears on an operation page resulting from a search from the front page of Browse
or from selecting generalize from an operation page for a constructor.

Note that the filter button in the Views panel is replaced by all domains. Click on it to produce a
table of all domains or packages that export a rank operation.

Figure 14.20: Table of all domains that export rank.

We note that this table specifically refers to all the rank operations shown in the preceding page.
Return to the descriptions of all the rank operations and select one of them by clicking on the button
in its heading. Select all domains. As you see, you have a smaller table of constructors. When there
is only one constructor, you get the constructor page for that constructor.
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14.3.3 Capitalization Convention

When entering search keys for constructors, you can use capital letters to search for abbreviations.
For example, enter UTS into the input area and click on Constructors. Up comes a page describing
UnivariateTaylorSeries whose abbreviation is UTS.

Constructor abbreviations always have three or more capital letters. For short constructor names (six
letters or less), abbreviations are not generally helpful as their abbreviation is typically the constructor
name in capitals. For example, the abbreviation for Matrix is MATRIX.

Abbreviations can also contain numbers. For example, POLY2 is the abbreviation for constructor
PolynomialFunctions2. For default packages, the abbreviation is the same as the abbreviation for
the corresponding category with the “&” replaced by “-”. For example, for the category default package
MatrixCategory& the abbreviation is MATCAT- since the corresponding category MatrixCate-
gory has abbreviation MATCAT.



Chapter 15

What’s New in FriCAS

15.1 Release Notes

FriCAS information can be found online at http://fricas.github.io.

FriCAS 1.3.10

• New package for root denesting.

• New convenience package containing Unicode symbols.

• Improvements to runtime accounting subsystem, in particular FriCAS can now print info about
storage use.

• Improved handling of roots during integration.

• Improved ’simplifyExp’.

• Domain Pi is renamed to PiDomain.

• Added Lisp version to FriCAS banner.

Bug fixes, in particular:

• Disabled splitting of roots by default simplifications.

• Fixed various build problems.

• Fixed wrong creation of sparse power series.

• Fixed problem with derivatives of unevaluated definite integrals.

885
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FriCAS 1.3.9

• Distributed binary includes support for jfricas.

• Construct of tagged unions by specifying tag.

• New category Hashable.

• AlgebraGivenByStructuralConstants now more general and has FreeModuleCategory.

• Rename ’escape’ in Character to ’underscore’.

Bug fixes, in particular:

• Fixed power series expander for ’polylog’ at 0.

• Fixed storing complex data, in particular streams in files.

• Fixed varius build problems, in particular build with sbcl-2.3.2 and newer.

• Main integrator no longer uses ’real’.

FriCAS 1.3.8

• Improvements to integrator, in particular integrator can now express some integrals in terms of
elliptic integrals.

• More specialized array domains.

• Better handling of cyclotomic polynomials. Roots of cyclotomic polynomials are now presented
in trigonometric form.

• Preliminary support for timeouts (only when using sbcl).

• ’iterate’ is now implemented for Spad.

Bug fixes, in particular:

• Fixes for handling of kernels.

• Fixes for ’elt’ when handling segments with increments.

• Fixed handling of predicates in rewrite rules.

• Fixed build with clisp.
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FriCAS 1.3.7

• Added new formatting framework.

• The FRICASsys binary will use its parent directory when FRICAS environment variable is not
set.

• Polynomial rings are now of FreeModuleCategory.

• Removed remains of obsolete commands.

• Small improvements to integrator.

Bug fixes, in particular:

• Fixed various build problems.

• Fixed tests for bad reduction during polynomial factrization and GCD.

• Worked around buffer overflow with large process identifiers.

• Removed non-Unicode default for sbcl.

• Fixed saving and restoring arrays.

FriCAS 1.3.6

• Small improvements to integrator and limits.

• Generalized a few domains and packages.

• Two new convolutions for quantum probability.

• Main FriCAS environment variable is now called FRICAS and main executable is called FRIC-
ASsys.

Bug fixes, in particular:

• Better error detection for numeric elementary functions.

• Fixed TeX output of formal derivatives.

• Fixed input form of formal derivatives.

FriCAS 1.3.5

• Added free noncommutative field.

• Added factorization in free algebra.

• Improved coercion to InputForm.

• Removed cycle related functions from Tree and BinaryTreeCategory.



888 CHAPTER 15. WHAT’S NEW IN FRICAS

Bug fixes, in particular:

• Improved portablity to Windows and Mac OSX.

• Fixed input form of formal derivatives.

• Fixed coercion of polynomials to patterns.

• Fixed comparison with signed floating point zero.

FriCAS 1.3.4

• Implemented ’sqrt’ for prime fields.

• Improved computation of characteristic polynomial.

• Added conversion from list of elements of a free group to group presentation.

• Added ’extendedLLL’.

• Removed FreeAbelianGroup.

• Removed several old misfeatures.

Bug fixes, in particular:

• Fixed limit of Fresnel functions.

• Fixed few operations for matrices with specialised type.

• Fixed ’factor’ for polynomials over finite fields.

FriCAS 1.3.3

• Added LLL reduction.

• New domain IntegerLocalizedAtPrime.

• Implemented numeric ’ellipticPi’.

• Improved Texmacs interface.

• Added ’gbasisExtend’, removed VarSet from Groebner package interfaces.

Bug fixes, in particular:

• Fixed compatiblility with sbcl-1.4.5.

• Fixed ’write’ to Postscript file.

• Removed unsound power simplification.

• Recursion depth when resolving types is now limited (avoids crashes).

• Fixed handling of leading coefficient in gcd and square-free factorization.

• Build fixes
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FriCAS 1.3.2

• Todd-Coxeter enumeration works also on cosets of subgroups.

• Handle some integrals in terms of incomplete Gamma with irrational first argument.

• Improvement to expressions: added symbolic ’conjugate’, added derivatives of ’box’ and ’paren’.

• Output now contains more spaces.

• Improvements to simplifying routines.

Bug fixes, in particular:

• Fixed a few glitches in printing operations.

• Fixed linear algebra with empty matrices.

• Avoided crash computing some determinants over GF(2).

FriCAS 1.3.1

• Categories with associative multiplication are now subcategories of categories with nonassociative
multiplication.

• Inlining optimization in now effective also in command line (interpreter) compiler.

• Added conversions between finitely presented groups and permutation groups (Todd-Coxeter
algorithm) and back.

• Removed special handling of coercion of String to OutputForm from Spad compiler.

• Former FramedModule is renamed to FractionalIdealAsModule. Added new FramedModule.

• Whole interpreter is now included in executable (no need to load parts before use).

Bug fixes, in particular:

• Fixed build with sbcl-1.3.13.

• Limits using the name of variable in limit point work now.

• A few output fixes.

• Several integrator fixes.

• Removed wrong interpreter transform of ’ =’.

• Fixed compilation of type parameters containing non-type values.

• Plots sometimes used single precision. Now they should always use double precision.
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FriCAS 1.3.0

• Several domains and categories are more general, in particular matrices, indexed products and
direct product.

• ’)show’ now evaluates predicates.

• Improved integrator, handles few more ’erf’ cases and more algebraic functions. Result should
be simpler.

• Added support for using FriCAS as ECL shared library.

• Polynomial factorization uses Kaltofen-Shoup method when applicable.

• ’$createLocalLibDb’ defaults to false.

• Simpler, more predictable equality for algebraic numbers (no longer uses ’trueEqual’).

• Renamed LinearlyExplicitRingOver to LinearlyExplicitOver.

• Renamed ’length’ in Tuple to ’#’.

• Removed argumentless ’random’.

Bug fixes, in particular:

• Fixed several build problems.

• Handle scripted symbols in DeRhamComplex.

• Handle empty matrices in more places.

• Fixed unparse of negative integers.

• No longer crashes on quoted expressions in types.

FriCAS 1.2.7

• New package implementing van Hoej factorization algorithm for LODO-s.

• Gcd over Expression(Integer) now uses modular method.

• Improvements to integrator, in particular trigonometric functions are consistently integrated via
transformation to complex exponentials.

• Some categories and domains are more general. In particular OrderedFreeMonoid is removed, as
ordered case is handled by FreeMonoid.

• Category Monad in renamed to Magma. Domain Magma is renamed to FreeMagma.

Bug fixes, in particular:

• Coercion of square matrices to polynomials is fixed.

• Problem with division by 0 in derivative of ’ellipticPi’ is fixed.

• Division in Ore algebras used to cause infinite loop when coefficients were power series.
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FriCAS 1.2.6

• Polynomial factorization is available for larger class of base rings.

• Improvements to integrator.

• ’normalize’ can be applied to list of expressions.

• Eigenvalues can be computed over larger range of base fields.

• Common denominator package handles now multivariate polynomials.

• More uniform break (error) handling.

Bug fixes, in particular:

• ’distribute’ handles ’box’ operator.

• Fixed problem with guessing over multivariate polynomials.

• Fixed hashcode handling for Void in Aldor.

FriCAS 1.2.5

• Several improvements to integrator.

• Improvements to handling of series, in particular new function ’prodiag’ to compute infinite
products, ’series’ and ’coefficients’ for multivariate Taylor series, new ’laurent’ function which
builds Laurent series from order and stream of coefficients.

• GMP should now work with sbcl on all platforms and with Clozure CL on all platforms except
for Power PC.

• Added a few domains for discrete groups.

• Extended GCD in Ore algebras can now return coefficients of both GCD and LCM.

• New function for computing integrals of solutions of linear differential operators.

• ’)savesystem’ command is now removed.

• Continuation lines which begins like commands are no longer treated as commands.

Bug fixes, in particular:

• Fixed printing of scripted symbols.

• Fixed ’totalDegreeSorted’ (affected Groebner bases).

• Fixed few problems with Hensel lifting (including SF bug 47).

• Fixed ’series’ in UnivariateLaurentSeriesConstructor.

• Fixed ’order’ in SparseUnivariatePowerSeries.

• Printing of series now respect ’showall’ setting, cyclic series are detected.

• Fixed problem with interpreter preferring Union to base type.
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FriCAS 1.2.4

• New cylindrical decomposition package.

• New GnuDraw package for plotting via gnuplot.

• Texmacs interface now handles Cork symbols.

• Added double precision versions of several special functions (needed for plotting).

• Nopile mode for Spad is changed to be more convenient.

• ’stringMatch’ is removed (was broken beyond repair).

Bug fixes, in particular:

• Fixed interpreter assignment to parts of nested aggregates (issue 376).

• Fixed interpreter coercion from Equation to Boolean (issue 359).

• Fix printing of ’%i’ in types (issue 132).

• Disabled incorrect shortcut during coercion (issue 29).

• Difference of intervals now agrees with definition as interval operation.

• Avoid overwriting loop limit and increment.

• Fix a polynomial gcd failure due to bad reduction.

• Avoid mangling unevaluated algebraic integrals.

• Fix integration of unevaluated derivatives.

• Restore parser handling of ’
/’ and ’/
’.

• Properly escape strings and symbols in TeXFormat.

• Fix toplevel multiparameter macros.

• Fix problem with missing parentheses around plexes.

• Avoid crash when printing error message from ’-eval’.

• Redirect I/O when running programs from Clozure CL.
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FriCAS 1.2.3

• Improved integration in terms of ’Ei’ and ’erf’.

• Classical orthogonal polynomials may be used as expressions.

• More cases of generalized indexing for two dimensional arrays.

• Value of ’lambertW’ at ’-1/e’ is now simplified.

• FriCAS now knows that formal derivatives are commutative.

• ’setelt’ is renamed to ’setelt!’.

• ’)read’ now creates intermediate files in current directory.

• Continuation characters in comments are now respected.

• In Spad ’$Lisp’ calls now must have a type.

• In Spad error did only minimal checking of its argument. Now argument to error must be a
String or OutputForm or a literal list of OutputForm-s.

Bug fixes, in particular:

• Input lines with empty continuation are no longer lost.

• Types like ”failed” now consistently use string quotes in output form.

• Fixed pattern matching using %i in patterns.

• Fixed ’)display op coerce’.

• Fixed ’)version’ command.

• Fixed crash when printing ’%’.

• Fix a buffer overflow in HyperDoc.

• Fixed HyperDoc errors in ’Dependants’ and ’Users’.

• HyperDoc browser better handles constructors with parameters.

FriCAS 1.2.2

• Improvements to ’integrate’: better handling of algebraic integrals, new routine which handles
some integrals containing ’lambertW’.

• Improvements to ’limit’, now Gruntz algorithm knows about a few tractable functions.

• Smith form of sparse integer matrices is now much more efficient.

• Generalized indexing for two dimensional arrays.

• Pile/nopile mode is now restored after ’)read’ or ’)compile’. Piling rules now accept some forms
of multiline lists.
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• Eliminated version checking in generated code. Note: this change means that Spad code compiled
by earlier FriCAS versions will not run in FriCAS 1.2.2.

• Updated Aldor interface to work with free Aldor.

Bug fixes, in particular:

• Interpreter can now handle complicated mutually recursive functions.

• Spad compiler should now correctly handle ’has’ inside a function.

• Fixed derivatives of Whittaker functions.

FriCAS 1.2.1

• Improvements to ’integrate’: a new routine for integration in terms of Ei, better handling of
algebraic integrals.

• Implemented ’erfi’.

• Derivatives of ’asec’, ’asech’, ’acsc’ and ’acsch’ use different formula so that numeric evaluation
of derivative will take correct branch on real axis.

• Linear dependence package is changed to be consistent with linear solvers.

• It is now possible to extract empty submatrices.

• Changed default style of 3D graphics.

• Support for building Mac OS application bundle.

Bug fixes, in particular:

• fixed few cases of wrong or unevaluated integrals.

• better zero test during limit computation avoids division by zero.

• fixed buffer overflow problems in view3D.

• ’reducedSystem’ on empty input returns basis of correct size.

FriCAS 1.2.0

• New MatrixManipulation package.

• New ParallelIntegrationTools package.

• Gruntz algorithm is now used also for finite one-sided limits.

• FriCAS has now true 2-dimensional arrays (previously they were emulated using vectors of vec-
tors).

• Speedups in some matrix operations and in arithmetic with algebraic expressions.
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• FreeModule is now more general, it allows Comparable as second argument.

• Changed Spad parser, it now uses common scanner with interpreter. Spad language is now
closer to interpreter language and Aldor. ’leave’ is removed, ’free’, ’generate’ and ’goto’ are now
keywords. Pile rules changed slightly, they should be more intuitive now. Error messages from
Spad parser should be slightly better.

Bug fixes, in particular:

• Fixed a few build problems.

• Eliminated division by 0 during ’normalize’.

• ’nthRootIfCan’ removes leading zeros from generalized series (this avoids problems with power
series expanders).

• Fixed corruption of formal derivatives.

• Fixed two problems with Fortran output.

• Fixed ’)untrace’ and ’)undo’. Fixed ’)trace’ with ECL.

• Fixed problem with calling efricas if user’s default shell is (t)csh.

FriCAS 1.1.8

• Improvements of pattern matching integrator, it can now integrate in terms of Fresnel integrals
and better handles integrals in terms of Si and Ci.

• Better integration of symbolic derivatives.

• Better normalization of Liouvillian functions.

• New package for computing limits using Gruntz algorithm.

• Faster removal of roots from denominators.

• New domains for multivariate Ore algebras and partial differential operators.

• New package for noncommutative Groebner bases.

• New domain for univariate power series with arbitrary exponents.

• New special functions: Shi and Chi.

• Several aggregates (in particular tables) allow more general parameter types.

• New domain for hash tables using equality from underlying domain.

Bug fixes, in particular:

• Fixed problem with gcd failing due to bad reduction.

• Fixed series of ’acot’ and Puiseux series of several special functions.

• Fixed wrong factorization of differential operators.

• Fixed build problem on recent Mac OS X.
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FriCAS 1.1.7

• Improved integration in terms of special functions.

• Updated new graphics framework and graph theory package.

• Added routines for numerical evaluation of several special functions.

• Added modular method for computing polynomial gcd over algebraic extensions.

• Derivatives of fresnelC and fresnelS are changed to agree with established convention.

• When printing floats groups of digits are now separated by underscores (previously were separated
by spaces).

• Added C code for removing directories, this speeds up full build and should avoid build problems
on Mac OSX.

Bug fixes, in particular:

• Series expansion now handle poles of Gamma.

• Fixed derivatives of meijerG.

FriCAS 1.1.6

• Added experimental graph theory package.

• Added power series expanders for Weierstrass elliptic functions at 0.

• New functions: kroneckerProduct and kroneckerSum for matrices, numeric weierstrassInvariants
and modularInvariantJ, symbolic Jacobi Zeta, double float numeric elliptic integrals.

• New domains for vectors and matrices of unsigned 8 and 16 bit integers.

• Changes to Spad compiler: underscores which are not needed as escape are now significant in Spad
names and strings, macros with parameters are supported, added partial support for exceptions,
braces can be used for grouping.

• A few speedups.

• Reduced disc space usage during build.

Bug fixes, in particular:

• Fixed eval of hypergeometricF at 0

• Fixed problem with scope of macros.

• Worked around problems with opening named pipes in several Lisp implementations.

• Fixed a problem with searching documentation via HyperDoc.

• Fixed build problem on Mac OSX.
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FriCAS 1.1.5

• Added numeric version of lambertW.

• New function ’rootFactor’ which tries to write roots of products as products of roots.

• ’try’, ’catch’ and ’finally’ are now Spad keywords.

• Experimental support for using gmp with Clozure CL (64-bit Intel/Amd only).

• New categories CoercibleFrom and ConvertibleFrom. New domain for ordinals up to epsilon0.
New domain for matrices of machine integers. New package for solving linear equations written
as expressions (faster then general expression solver).

• Functions exported by Product() are now called ’construct’, ’first’ and ’second’ (instead of ’make-
prod’, ’selectfirst’ and ’selectsecond’ respectively).

• Some functions are now much faster, in particular bivariate factorization over small finite fields.

• When using sbcl FriCAS now tries to preload statistical profiler.

Bug fixes, in particular:

• Fixed handling of Control-C in FriCAS compiled by recent sbcl.

• Fixed HyperDoc crash due to bad handling of ’#’.

• Fixed power series expanders for elliptic integrals.

• Fixed ’possible wild ramification’ problem with algebraic integrals.

• ’has’ in interpreter now correctly handles %.

• Spad compiler can now handle single => at top level of a function.

• Fixed few problems with conditional types in Spad compiler.

FriCAS 1.1.4

• New domains for combinatorial probability theory by Franz Lehner.

• Improved integration of algebraic functions.

• Initial support for semirings.

• Updated framework for theory of computations.

• In Spad parser **, ^ and → are now right-associative.

• Spad parser no longer transforms relational operators.

• Join of categories is faster which speeds up Spad compiler.

Bug fixes, in particular:
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• Retraction of ’rootOf’ from Expression(Integer) to AlgebraicNumber works now.

• Attempt to print error message about invalid type no longer crash (SF 2977357).

• Fixed few problems in Spad compiler dealing with conditional exports.

• HyperDoc now should find all function descriptions (previously it missed several).

FriCAS 1.1.3

• Added ”jet bundle” framework by Werner Seiler and Joachim Schue, which includes completion
procedure and symmetry analysis for PDE.

• Better splitting of group representations (added Holt-Rees improvement to meatAxe).

• Added numeric versions of some elliptic integrals and few more elliptic functions.

• Speeded up FFCGP (finite fields via Zech logarithms).

• New experimental flag (off by default, set via setSimplifyDenomsFlag) which if on causes removal
of irrationalities from denominators. Usually it causes slowdown, but on some examples gives
huge speedup. It may go away in future (when no longer needed).

• Added experimental framework for theory of computations.

Bug fixes, in particular:

• Numerical solutions of polynomial systems have now required accuracy (SF 2418832).

• Fixed problem with crashes during tracing.

• Fixed a problem with nested iteration (SF 3016806).

• Eliminated stack overflow when concatenating long lists.

FriCAS 1.1.2

• Experimental Texmacs interface and Texmacs format output.

• Guessing package can now guess algebraic dependencies.

• Expansion into Taylor series and limits now work for most special functions.

• Spad to Aldor translator is removed.

• Spad compiler no longer allows to denote sets using braces.

Bug fixes, in particular:

• Fixed few cases where elementary integrals were returned unevaluated or produced wrong results.

• Unwanted numerical evaluation should be no longer a problem (FriCAS interpreter now very
strongly prefers symbolic evaluation over numerical evaluation).

• Fixed a truncation bug in guessing package which caused loss of some correct solutions.

• TeX and MathML format should correctly put parentheses around and inside sums and products.

• Fixed few problems with handling of Unicode.
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FriCAS 1.1.1

• New graphics framework.

• Support for using GMP with sbcl on 32/64 bit AMD/Intel processors (to activate it one must
use ’–with-gmp’ option to configure).

• Improvements to integration and normalization. In particular integrals containing multiple non-
nested roots should now work much faster. Also FriCAS now can compute more integrals of
Liouvillian functions.

• Several new special functions.

• Improvements to efricas.

• Looking for default init file FriCAS now first tries to use ’.fricas.input’ and only if that fails it
looks for ’.axiom.input’.

Bug fixes, in particular:

• Numeric atan, asin and acos took wrong branch.

• WeierstrassPreparation package did not work.

• Saving and restoring history should be now more reliable.

• Fixed two bugs in Spad compiler related to conditional compilation.

• Fixed a problem with rational reconstruction which affected guessing package.

FriCAS 1.1.0

• New domains and packages: VectorSpaceBasis domain, DirichletRing domain, 3D graphic
output in Wavefront .obj format, specialized machine precision numeric vectors and matrices
(faster then general vectors and matrices), Html output.

• Support Clifford algebras corresponding to non-diagonal matrix, added new operations.

• ’normalize’ now tries to simplify logarithms of algebraic constants.

• New functions: Fresnel integrals, carmichaelLambda.

• Speed improvements: several polynomial operations are faster, faster multiplication in Ore alge-
bras, faster computation of strong generating set for permutation groups, faster coercions.

• Several improvements to the guessing package (in particular new option Somos for restricting
attention to Somos-like sequences

Bug fixes, in particular:

• FriCAS can now compute multiplicative inverse of a power series with constant term not equal
to 1.

• Fixed a problem with passing interpreter functions to algebra.
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• Two bugs causing crashes in HyperDoc interface are fixed.

• FriCAS now ignores sign when deciding if number is prime.

• A failing coercion that used to crash FriCAS is now detected.

• ’has’ test sometimes gave wrong result.

• Plotting fixes.

FriCAS 1.0.9

• Speed improvements to polynomial multiplication, power series multiplication, guessing package
and coercion of polynomials to expressions.

• Domains for tensor products.

• Complex(Integer) is now UniqueFactorizationDomain.

• Types in interpreter are now of type ’Type’ (instead of ’Domain’) and categories in interpreter
are of type ’Category’ (instead of ’Subdomain(Domain)’).

• Interpreter functions can now return ’Type’.

• New function for files: ’flush’.

• Spad compiler: return in nested functions and nested functions returning functions.

Bug fixes, in particular:

• Several fixes to guessing package.

• Avoid crash when unparsing equations.

• Equation solver accepts more solutions.

• Fixed handling of Tuple in Spad parser.

• Fixed miscompilation of record constructor by Spad compiler.

FriCAS 1.0.8

• Improved version of guessing package. It can now handle much larger problems than before.
Added ability to guess functional substitution equations.

• Experimental support for build using CMU CL

• Various speed improvements including faster indexing for two dimensional arrays

• By default FriCAS build tries to use sbcl.

• Building no longer require patch.

Bug fixes, in particular:
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• correct definition of random() for matrices

• conditionals in .input files work again

• Spad compiler now recognizes more types as equal

• fixed problem with pattern-matching quote

FriCAS 1.0.7

• Comparisons between elements of the Expression domain are undefined. Earlier versions gave
confusing results for expressions like ’%e ¡ %pi’ – now FriCAS will complain about ’¡’ being
undefined.

• A domain for general quaternions was added.

• Equality in Any is now more reasonable – it uses equality from underlying domain if available.

• Messages about loading of components are switched off by default.

• Release build benefits from parallel make.

• In Spad code a single quote now means that the following token is a symbol.

• Reorganization of algebra sources, in particular several types have changed (this may affect users
Spad code).

Bug fixes, in particular:

• Categories with default package can be used just after definition (fixes 1.0.6 regression).

• Plots involving 0 or 1 work now.

• Numbers in radix bigger than 10 appear correctly in TeX output.

• Fixed browser crashes when displaying some domains.

• Fix horizontal display of fractions.

• Allow local domains in conditionals (in Spad code).

• Fixed problem with splitting polynomials and nested extensions.

FriCAS 1.0.6

• the axiom script is no longer installed (use fricas script instead)

• some undesirable simplification are no longer done by default, for example now asin(sin(3)) is
left unevaluated

• support lambda expressions using “+->” syntax and nested functions in Spad

• better configure, support for Dragonfly BSD

• faster bootstrap, also parallel (this does not affect speed of release build)
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Several bug fixes, in particular:

• fixed a regression introduced in 1.0.4 which caused equality for nested products to sometimes
give wrong result

• corrected fixed output of floating point numbers,

• operations on differential operators like symmetric power work now

• fixed crashes related to coercing power series

• functions returning Void can be traced

FriCAS 1.0.5

• improvement to normalize function, it performs now much stronger simplifications than before

• better integration: due to improved normalize FriCAS can now integrate many functions that it
previously considered unintegrable

• improvement to Martin Rubey guessing package, for example it can now guess differential equa-
tion for the generating function of integer partitions

• better support for using type valued functions

• several bug fixes

FriCAS 1.0.4

• significant speedups for some operations (for example definite integration)

• support for building algebra using user-defined optimization settings

• support for mouse wheel in HyperDoc browser

• included support for interfacing with Aldor

• new optional Emacs mode and efricas script to run FriCAS inside emacs

• better unparse

• removed support for attributes (replaced by empty categories) and use of colon for type conver-
sions in Spad code

• a few bug fixes
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FriCAS 1.0.3

• added multiple precision Gamma and logGamma functions

• better line editing

• removed some undocumented and confusing constructs from Spad language

• added new categories for semiring and ordered semigroup, direct product of monoids is now a
monoid

• internal cleanups and restructurings

• a few bug fixes

FriCAS 1.0.2

• ’)nopiles’ command gives conventional syntax

• added pfaffian function

• ECL support

• Graphics and Hyperdoc work using openmcl or ECL

• Output may be now delimited by user defined markers

• Experimental support for using as a Lisp library

• Spad compiler is now significantly faster

• Several bug fixes

FriCAS 1.0.1

• Graphics and Hyperdoc work using sbcl or clisp

• Builds under Cygwin (using Cygwin clisp)

• MathML support contributed by Arthur C. Ralfs

• Help files created by Tim Daly

• Added SPADEDIT script

• Full release caches all generated HyperDoc pages

• Bug fixes, including implementing some missing functions and build fixes
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FriCAS 1.0.0

The 1.0 release is the first release of FriCAS. Below we list main differences compared to AXIOM
September 2006.

Numerous bug fixes (in particular HyperDoc is now fully functional on Unix systems).

FriCAS includes guessing package written by Martin Rubey. This package provides unique ability to
guess formulas for sequences of numbers or polynomials.

Some computation, in particular involving Expression domain, should be much faster. FriCAS to go
trough its testsuite needs only half of the time needed by AXIOM September 2006.

Spad compilation is faster (in some cases 2 times faster).

FriCAS is much more portable than AXIOM September 2006. It can be build on Linux, many Unix
systems (for example Mac OSX and Solaris 10) and Windows. It can be build on top of gcl, sbcl, clisp
or openmcl (gcl and sbcl based FriCAS is fully functional, clisp or openmcl based one lacks graphic
support).

Many unused or non-working parts are removed from FriCAS. In particular FriCAS does not contain
support for NAG numerical library.

FriCAS can be build from sources using only a few pre-generated Lisp files for bootstrap – only to
bootstrap Shoe translator. This means that modifying FriCAS algebra is now much easier.

15.2 Changes to Spad language

1. $ as name of current domain is no longer supported, use % instead.

2. Attributes are no longer supported, use niladic categories with no exports instead.

3. Floating point numbers without leading zero are no longer supported, so instead of .01 use 0.01

4. Anonymous functions using #1, #2, etc. are no longer supported, to define anonymous functions
use 7→ .

5. Braces no longer construct sets. So instead of {’sin, ’cos}::Set(Symbol) use set([’sin, ’

cos])$Set(Symbol).

6. Old Spad used colon (:) to denote conversion, like pretend but performing even less checking.
This is no longer supported, use :: or pretend instead.

7. There was an alternative spelling for brackets and braces, in FriCAS this is no longer supported,
so one has to write brackets and braces as is.

8. SubsetCategory was handled in special way by the compiler. This is no longer supported.

9. Old Spad compiler used to transform relational operators ~=,<=,>,>= in ways which are correct
for linear order, but may conflict with other uses (as partial order or when generating Output-
Form). FriCAS no longer performs this transformation. Similarely, Spad parser no longer treats
^ and ^= in special way.

10. Quote in old Spad allowed to insert arbitrary literal Lisp data, FriCAS only allows symbols after
quote. Code using old behavior needs to be rewritten, however it seems that this feature was
almost unused, so this should be no problem.
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11. Old Spad treated statement consisting just of constructor name (with arguments if needed) as
request to import the constructor. FriCAS requires import keyword.

12. In FriCAS **, ^, → are right associative. Also, right binding power of 7→ is increased, which
allows more natural writing of code.

13. Few non-working experimental features are removed, in particular partial support for APL-like
syntax.

14. FriCAS implemented parametric macros in the Spad compiler.

15. FriCAS allows simplified form for exporting constants (without constant keyword).

16. FriCAS added partial support for exception handling (currently only finally part).

17. The leave construct is removed from FriCAS. Use break instead.

18. div is no longer a keyword. free, generate, goto are FriCAS keywords.

19. ’$Lisp’ calls now must have a type

20. error did only minimal checking of its argument. Now argument to error must be a String or
OutputForm or a literal list of OutputForm-s.

There are also library changes that affect user code:

1. ** lost its definition as exponentiation, use ^ instead.

2. ^ is no longer used as negation (it means exponentiation now) and ^= no longer means inequality,
use not and ~= instead.

3. setelt is renamed to setelt!.

4. Operator properties are now symbols and not strings, so instead of has?(op, "even") use has

?(op, ’even)

5. There is new category Comparable, several constructors that asserted OrderedSet now only
assert Comparable.

15.3 Online Information

FriCAS information can be found online at

• http://fricas.github.io – The official documentation of FriCAS including the API of the FriCAS
library.

• https://github.com/fricas/fricas – The official git repository.

• http://wiki.fricas.org – A wiki site related to FriCAS.

• http://fricas.sourceforge.net – The old homepage of FriCAS.

• http://sourceforge.net/p/fricas/code/HEAD/tree/ – The old source code repository.
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15.4 Old News about AXIOM Version 2.x

Many things have changed in this version of AXIOM and we describe many of the more important
topics here.

15.4.1 The NAG Library Link

Content removed, NAGLink is no longer included in FriCAS.

15.4.2 Interactive Front-end and Language

The leave keyword has been replaced by the break keyword for compatibility with the new AXIOM
extension language. See section Section 5.4.3 on page 152 for more information.

Curly braces are no longer used to create sets. Instead, use set followed by a bracketed expression. For
example,

set [1,2,3,4]

(1){1, 2, 3, 4}

Set( PositiveInteger )

Curly braces are now used to enclose a block (see section Section 5.2 on page 145 for more information).
For compatibility, a block can still be enclosed by parentheses as well.

New coercions to and from type Expression have been added. For example, it is now possible to map
a polynomial represented as an expression to an appropriate polynomial type.

Various messages have been added or rewritten for clarity.

15.4.3 Library

The FullPartialFractionExpansion domain has been added. This domain computes factor-free full
partial fraction expansions. See section ‘FullPartialFractionExpansion’ on page 524 for examples.

We have implemented the Bertrand/Cantor algorithm for integrals of hyperelliptic functions. This
brings a major speedup for some classes of algebraic integrals.

We have implemented a new (direct) algorithm for integrating trigonometric functions. This brings a
speedup and an improvement in the answer quality.

The SmallFloat domain has been renamed DoubleFloat and SmallInteger has been renamed Single-
Integer. The new abbreviations as DFLOAT and SINT, respectively. We have defined the macro
SF, the old abbreviation for SmallFloat, to expand to DoubleFloat and modified the documentation
and input file examples to use the new names and abbreviations. You should do the same in any
private FriCAS files you have.
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We have made improvements to the differential equation solvers and there is a new facility for solving
systems of first-order linear differential equations. In particular, an important fix was made to the solver
for inhomogeneous linear ordinary differential equations that corrected the calculation of particular
solutions. We also made improvements to the polynomial and transcendental equation solvers including
the ability to solve some classes of systems of transcendental equations.

The efficiency of power series have been improved and left and right expansions of tan(f(x)) at x =

a pole of f(x) can now be computed. A number of power series bugs were fixed and the GeneralU-
nivariatePowerSeries domain was added. The power series variable can appear in the coefficients
and when this happens, you cannot differentiate or integrate the series. Differentiation and integration
with respect to other variables is supported.

A domain was added for representing asymptotic expansions of a function at an exponential singularity.

For limits, the main new feature is the exponential expansion domain used to treat certain exponential
singularities. Previously, such singularities were treated in an ad hoc way and only a few cases were
covered. Now AXIOM can do things like

limit( (x+1)^(x+1)/x^x - x^x/(x-1)^(x-1), x = %plusInfinity)

in a systematic way. It only does one level of nesting, though. In other words, if f is a function with
a pole, we can handle exp(f), but not exp(exp(f)).

The computation of integral bases has been improved through careful use of Hermite row reduction. A
P-adic algorithm for function fields of algebraic curves in finite characteristic has also been developed.

Miscellaneous: There is improved conversion of definite and indefinite integrals to InputForm; bi-
nomial coefficients are displayed in a new way; some new simplifications of radicals have been imple-
mented; the operation complexForm for converting to rectangular coordinates has been added; sym-
metric product operations have been added to LinearOrdinaryDifferentialOperator.

15.4.4 HyperDoc

The buttons on the titlebar and scrollbar have been replaced with ones which have a 3D effect. You
can change the foreground and background colors of these “controls” by including and modifying the
following lines in your .Xdefaults file.

Axiom.hyperdoc.ControlBackground: White

Axiom.hyperdoc.ControlForeground: Black

For various reasons, HyperDoc sometimes displays a secondary window. You can control the size and
placement of this window by including and modifying the following line in your .Xdefaults file.

Axiom.hyperdoc.FormGeometry: =950x450+100+0

This setting is a standard X Window System geometry specification: you are requesting a window 950
pixels wide by 450 deep and placed in the upper left corner.

Some key definitions have been changed to conform more closely with the CUA guidelines. Press F9
to see the current definitions.
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Input boxes (for example, in the Browser) now accept paste-ins from the X Window System. Use the
second button to paste in something you have previously copied or cut. An example of how you can
use this is that you can paste the type from an FriCAS computation into the main Browser input box.

15.4.5 Documentation

We describe here a few additions to the on-line version of the AXIOM book which you can read with
HyperDoc.

A section has been added to the graphics chapter, describing how to build two-dimensional graphs from
lists of points. An example is given showing how to read the points from a file. See section Section
7.1.9 on page 244 for details.

A further section has been added to that same chapter, describing how to add a two-dimensional graph
to a viewport which already contains other graphs. See section Section 7.1.10 on page 252 for details.

Chapter 3 and the on-line HyperDoc help have been unified.

An explanation of operation names ending in “?” and “!” has been added to the first chapter. See the
end of the section Section 1.3.6 on page 29 for details.

An expanded explanation of using predicates has been added to the sixth chapter. See the example
involving evenRule in the middle of the section Section 6.21 on page 218 for details.

Documentation for the )compile, )library and )load commands has been greatly changed. This
reflects the ability of the )compile to now invoke the AXIOM-XL compiler, the impending deletion of
the )load command and the new )library command. The )library command replaces )load and
is compatible with the compiled output from both the old and new compilers.

15.4.6 AXIOM-XL compiler - Enhancements and Additions

Content removed - AXIOM-XL (now using name Aldor) is a separate project.

15.4.7 New polynomial domains and algorithms

Univariate polynomial factorization over the integers has been enhanced by updates to the Galois-
GroupFactorizer type and friends from Frederic Lehobey (Frederic.Lehobey@lifl.fr, University of
Lille I, France).

The package constructor PseudoRemainderSequence provides efficient algorithms by Lionel Ducos
(Lionel.Ducos@mathlabo.univ-poitiers.fr, University of Poitiers, France) for computing sub-resultants.
This leads to a speed up in many places in FriCAS where sub-resultants are computed (polynomial
system solving, algebraic factorization, integration).

Based on this package, the domain constructor NewSparseUnivariatePolynomial extends the con-
structor SparseUnivariatePolynomial. In a similar way, the NewSparseMultivariatePolyno-
mial extends the constructor SparseUnivariatePolynomial; it also provides some additional oper-
ations related to polynomial system solving by means of triangular sets.

Several domain constructors implement regular triangular sets (or regular chains). Among them Reg-
ularTriangularSet and SquareFreeRegularTriangularSet. They also implement an algorithm by
Marc Moreno Maza (marc@nag.co.uk, NAG) for computing triangular decompositions of polynomial
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systems. This method is refined in the package LazardSetSolvingPackage in order to produce de-
compositions by means of Lazard triangular sets. For the case of polynomial systems with finitely
many solutions, these decompositions can also be computed by the package LexTriangularPackage.

The domain constructor RealClosure by Renaud Rioboo (Renaud.Rioboo@lip6.fr, University of Paris
6, France) provides the real closure of an ordered field. The implementation is based on interval
arithmetic. Moreover, the design of this constructor and its related packages allows an easy use of
other codings for real algebraic numbers.

Based on triangular decompositions and the RealClosure constructor, the package ZeroDimen-
sionalSolvePackage provides operations for computing symbolically the real or complex roots of
polynomial systems with finitely many solutions.

Polynomial arithmetic with non-commutative variables has been improved too by a contribution of
Michel Petitot (Michel.Petitot@lifl.fr, University of Lille I, France). The domain constructorsXRecur-
sivePolynomial and XDistributedPolynomial provide recursive and distributed representations
for these polynomials. They are the non-commutative equivalents for the SparseMultivariatePoly-
nomial and DistributedMultivariatePolynomial constructors. The constructor LiePolynomial
implement Lie polynomials in the Lyndon basis. The constructor XPBWPolynomial manage poly-
nomials with non-commutative variables in the Poincaré-Birkhoff-Witt basis from the Lyndon basis.
This allows to compute in the Lie Group associated with a free nilpotent Lie algebra by using the
LieExponentials domain constructor.

15.4.8 Enhancements to HyperDoc and Graphics

From this version of AXIOM onwards, the pixmap format used to save graphics images in color
and to display them in HyperDoc has been changed to the industry-standard XPM format. See
ftp://koala.inria.fr/pub/xpm.

15.4.9 Enhancements to NAGLink

Content removed - NAGLink is no longer included in FriCAS.

15.4.10 Enhancements to the Lisp system

Content removed - no longer relevant since FriCAS runs on different Lisp systems.
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Appendix A

FriCAS System Commands

This chapter describes system commands, the command-line facilities used to control the FriCAS
environment. The first section is an introduction and discusses the common syntax of the commands
available.

A.1 Introduction

System commands are used to perform FriCAS environment management. Among the commands are
those that display what has been defined or computed, set up multiple logical FriCAS environments
(frames), clear definitions, read files of expressions and commands, show what functions are available,
and terminate FriCAS.

Some commands are restricted: the commands

)set userlevel interpreter

)set userlevel compiler

)set userlevel development

set the user-access level to the three possible choices. All commands are available at development

level and the fewest are available at interpreter level. The default user-level is interpreter. In
addition to the )set command (discussed in Section A.21 on page 931) you can use the HyperDoc
settings facility to change the user-level.

Each command listing begins with one or more syntax pattern descriptions plus examples of related
commands. The syntax descriptions are intended to be easy to read and do not necessarily represent the
most compact way of specifying all possible arguments and options; the descriptions may occasionally
be redundant.

All system commands begin with a right parenthesis which should be in the first available column of
the input line (that is, immediately after the input prompt, if any). System commands may be issued
directly to FriCAS or be included in .input files.

A system command argument is a word that directly follows the command name and is not followed
or preceded by a right parenthesis. A system command option follows the system command and is

911
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directly preceded by a right parenthesis. Options may have arguments: they directly follow the option.
This example may make it easier to remember what is an option and what is an argument:

)syscmd arg1 arg2 )opt1 opt1arg1 opt1arg2 )opt2 opt2arg1 ...

In the system command descriptions, optional arguments and options are enclosed in brackets (“[”
and “]”). If an argument or option name is in italics, it is meant to be a variable and must have
some actual value substituted for it when the system command call is made. For example, the syntax
pattern description

)read fileName [)quietly]

would imply that you must provide an actual file name for fileName but need not use the )quietly

option. Thus

)read matrix.input

is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in upper or lower case. The case
of actual arguments may be significant, depending on the particular situation (such as in file names).
System command names and options may be abbreviated to the minimum number of starting letters
so that the name or option is unique. Thus

)s Integer

is not a valid abbreviation for the )set command, because both )set and )show begin with the letter
“s”. Typically, two or three letters are sufficient for disambiguating names. In our descriptions of the
commands, we have used no abbreviations for either command names or options.

In some syntax descriptions we use a vertical line “|” to indicate that you must specify one of the
listed choices. For example, in

)set output fortran on | off

only on and off are acceptable words for following boot. We also sometimes use “...” to indicate that
additional arguments or options of the listed form are allowed. Finally, in the syntax descriptions we
may also list the syntax of related commands.

A.2 )abbreviation

User Level Required: compiler

Command Syntax:

)abbreviation query [nameOrAbbrev]

)abbreviation category abbrev fullname [)quiet]

)abbreviation domain abbrev fullname [)quiet]

)abbreviation package abbrev fullname [)quiet]
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)abbreviation remove nameOrAbbrev

Command Description:

This command is used to query, set and remove abbreviations for category, domain and package
constructors. Every constructor must have a unique abbreviation. This abbreviation is part of the name
of the subdirectory under which the components of the compiled constructor are stored. Furthermore,
by issuing this command you let the system know what file to load automatically if you use a new
constructor. Abbreviations must start with a letter and then be followed by up to seven letters or
digits. Any letters appearing in the abbreviation must be in uppercase.

When used with the query argument, this command may be used to list the name associated with a
particular abbreviation or the abbreviation for a constructor. If no abbreviation or name is given, the
names and corresponding abbreviations for all constructors are listed.

The following shows the abbreviation for the constructor List:

)abbreviation query List

The following shows the constructor name corresponding to the abbreviation NNI:

)abbreviation query NNI

The following lists all constructor names and their abbreviations.

)abbreviation query

To add an abbreviation for a constructor, use this command with category, domain or package. The
following add abbreviations to the system for a category, domain and package, respectively:

)abbreviation domain SET Set

)abbreviation category COMPCAT ComplexCategory

)abbreviation package LIST2MAP ListToMap

If the )quiet option is used, no output is displayed from this command. You would normally only
define an abbreviation in a library source file. If this command is issued for a constructor that has
already been loaded, the constructor will be reloaded next time it is referenced. In particular, you can
use this command to force the automatic reloading of constructors.

To remove an abbreviation, the remove argument is used. This is usually only used to correct a
previous command that set an abbreviation for a constructor name. If, in fact, the abbreviation does
exist, you are prompted for confirmation of the removal request. Either of the following commands will
remove the abbreviation VECTOR2 and the constructor name VectorFunctions2 from the system:

)abbreviation remove VECTOR2

)abbreviation remove VectorFunctions2

Also See: ‘)compile’ in Section A.7 on page 916 and

A.3 )boot

User Level Required: development
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Command Syntax:

)boot bootExpression

Command Description:

This command is used by FriCAS system developers to execute expressions written in the BOOT
language. For example,

)boot times3(x) == 3*x

creates and compiles the Common LISP function “times3” obtained by translating the BOOT code.

Also See: ‘)fin’ in Section A.10 on page 923, ‘)lisp’ in Section A.15 on page 928, ‘)set’ in Section
A.21 on page 931, and ‘)system’ in Section A.25 on page 934.

A.4 )cd

User Level Required: interpreter

Command Syntax:

)cd directory

Command Description:

This command sets the FriCAS working current directory. The current directory is used for looking
for input files (for )read), FriCAS library source files (for )compile), saved history environment files
(for )history )restore), compiled FriCAS library files (for )library), and files to edit (for )edit).
It is also used for writing spool files (via )spool), writing history input files (via )history )write)
and history environment files (via )history )save),and compiled FriCAS library files (via )compile).

If issued with no argument, this command sets the FriCAS current directory to your home directory.
If an argument is used, it must be a valid directory name. Except for the “)” at the beginning of the
command, this has the same syntax as the operating system cd command.

Also See: ‘)compile’ in Section A.7 on page 916, ‘)edit’ in Section A.9 on page 922, ‘)history’ in
Section A.13 on page 925, ‘)library’ in Section A.14 on page 927, ‘)read’ in Section A.20 on page
930, and ‘)spool’ in Section A.23 on page 932.

A.5 )close

User Level Required: interpreter

Command Syntax:

)close

)close )quietly

Command Description:

This command is used to close down interpreter client processes. Such processes are started by Hyper-
Doc to run FriCAS examples when you click on their text. When you have finished examining or
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modifying the example and you do not want the extra window around anymore, issue

)close

to the FriCAS prompt in the window.

If you try to close down the last remaining interpreter client process, FriCAS will offer to close down
the entire FriCAS session and return you to the operating system by displaying something like

This is the last FriCAS session. Do you want to kill FriCAS?

Type ”y” (followed by the Return key) if this is what you had in mind. Type ”n” (followed by the
Return key) to cancel the command.

You can use the )quietly option to force FriCAS to close down the interpreter client process without
closing down the entire FriCAS session.

Also See: ‘)quit’ in Section A.19 on page 929 and ‘)pquit’ in Section A.18 on page 929.

A.6 )clear

User Level Required: interpreter

Command Syntax:

)clear all

)clear completely

)clear properties all

)clear properties obj1 [obj2 ...]

)clear value all

)clear value obj1 [obj2 ...]

)clear mode all

)clear mode obj1 [obj2 ...]

Command Description:

This command is used to remove function and variable declarations, definitions and values from the
workspace. To empty the entire workspace and reset the step counter to 1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue
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)clear properties x y f

The word properties may be abbreviated to the single letter “p”.

)clear p all

)clear p x

)clear p x y f

All definitions of functions and values of variables may be removed by either

)clear value all

)clear v all

This retains whatever declarations the objects had. To remove definitions and values for the specific
objects x, y and f, issue

)clear value x y f

)clear v x y f

To remove the declarations of everything while leaving the definitions and values, issue

)clear mode all

)clear m all

To remove declarations for the specific objects x, y and f, issue

)clear mode x y f

)clear m x y f

The )display names and )display properties commands may be used to see what is currently in
the workspace.

The command

)clear completely

does everything that )clear all does, and also clears the internal system function and constructor
caches.

Also See: ‘)display’ in Section A.8 on page 921, ‘)history’ in Section A.13 on page 925, and ‘)undo’
in Section A.27 on page 938.

A.7 )compile

User Level Required: compiler

Command Syntax:

)compile
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)compile fileName

)compile fileName.as

)compile directory/fileName.as

)compile fileName.ao

)compile directory/fileName.ao

)compile fileName.al

)compile directory/fileName.al

)compile fileName.lsp

)compile directory/fileName.lsp

)compile fileName.spad

)compile directory/fileName.spad

)compile fileName )new

)compile fileName )old

)compile fileName )quiet

)compile fileName )noquiet

)compile fileName )moreargs

)compile fileName )onlyargs

)compile fileName )break

)compile fileName )nobreak

)compile fileName )library

)compile fileName )nolibrary

)compile fileName )vartrace

)compile fileName )constructor nameOrAbbrev

Command Description:

You use this command to invoke the Aldor library compiler or the FriCAS system compiler. The
)compile system command is actually a combination of FriCAS processing and a call to the Aldor
compiler. It is performing double-duty, acting as a front-end to both the Aldor compiler and the
FriCAS system compiler. (The FriCAS system compiler is written in Boot and is an integral part of
the FriCAS environment. The Aldor compiler is written in C and executed by the operating system
when called from within FriCAS.)

The command compiles files with file extensions .as, .ao and .al with the Aldor compiler and files with
file extension .spad with the FriCAS system compiler. It also can compile files with file extension .lsp.
These are assumed to be Lisp files generated by the Aldor compiler. If you omit the file extension,
the command looks to see if you have specified the )new or )old option. If you have given one of
these options, the corresponding compiler is used. Otherwise, the command first looks in the standard
system directories for files with extension .as, .ao and .al and then files with extension .spad. The first
file found has the appropriate compiler invoked on it. If the command cannot find a matching file, an
error message is displayed and the command terminates.

We now describe the options for the Aldor compiler.

The first thing )compile does is look for a source code filename among its arguments. Thus

)compile mycode.as

)compile /u/jones/as/mycode.as

)compile mycode
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all invoke )compiler on the file /u/jones/as/mycode.as if the current FriCAS working directory is
/u/jones/as. (Recall that you can set the working directory via the )cd command. If you don’t set
it explicitly, it is the directory from which you started FriCAS.)

This is frequently all you need to compile your file. This simple command:

1. invokes the Aldor compiler and produces Lisp output,

2. calls the Lisp compiler if the Aldor compilation was successful,

3. uses the )library command to tell FriCAS about the contents of your compiled file and arrange
to have those contents loaded on demand.

Should you not want the )library command automatically invoked, call )compilewith the )nolibrary
option. For example,

)compile mycode.as )nolibrary

The general description of Aldor command line arguments is in the Aldor documentation. The default
options used by the )compile command can be viewed and set using the )set compiler args FriCAS
system command. The current defaults are

-O -Fasy -Fao -Flsp -lfricas -Mno-ALDOR_W_WillObsolete -DFriCAS

-Y $FRICAS/algebra -I $FRICAS/algebra

These options mean:

• -O: perform all optimizations,

• -Fasy: generate a .asy file,

• -Fao: generate a .ao file,

• -Flsp: generate a .lsp (Lisp) file,

• -lfricas: use the fricas library libfricas.al,

• -Mno-ALDOR W WillObsolete: do not display messages about older generated files becoming
obsolete, and

• -DFriCAS: define the global assertion FriCAS so that the Aldor libraries for generating stand-alone
code are not accidentally used with FriCAS.

To supplement these default arguments, use the )moreargs option on )compile. For example,

)compile mycode.as )moreargs "-v"

uses the default arguments and appends the -v (verbose) argument flag. The additional argument
specification must be enclosed in double quotes.

To completely replace these default arguments for a particular use of )compile, use the )onlyargs

option. For example,
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)compile mycode.as )onlyargs "-v -O"

only uses the -v (verbose) and -O (optimize) arguments. The argument specification must be en-
closed in double quotes. In this example, Lisp code is not produced and so the compilation output
will not be available to FriCAS.

To completely replace the default arguments for all calls to )compile within your FriCAS session, use
)set compiler args. For example, to use the above arguments for all compilations, issue

)set compiler args "-v -O"

Make sure you include the necessary -l and -Y arguments along with those needed for Lisp file creation.
As above, the argument specification must be enclosed in double quotes.

By default, the )library system command exposes all domains and categories it processes. This means
that the FriCAS interpreter will consider those domains and categories when it is trying to resolve a
reference to a function. Sometimes domains and categories should not be exposed. For example, a
domain may just be used privately by another domain and may not be meant for top-level use. The
)library command should still be used, though, so that the code will be loaded on demand. In this
case, you should use the )nolibrary option on )compile and the )noexpose option in the )library

command. For example,

)compile mycode.as )nolibrary

)library mycode )noexpose

Once you have established your own collection of compiled code, you may find it handy to use the )dir
option on the )library command. This causes )library to process all compiled code in the specified
directory. For example,

)library )dir /u/jones/as/quantum

You must give an explicit directory after )dir, even if you want all compiled code in the current
working directory processed, e.g.

)library )dir .

The )compile command works with several file extensions. We saw above what happens when it is
invoked on a file with extension .as. A .ao file is a portable binary compiled version of a .as file, and
)compile simply passes the .ao file onto Aldor. The generated Lisp file is compiled and )library is
automatically called, just as if you had specified a .as file.

A .al file is an archive file containing .ao files. The archive is created (on Unix systems) with the ar

program. When )compile is given a .al file, it creates a directory whose name is based on that of the
archive. For example, if you issue

)compile mylib.al

the directory mylib.axldir is created. All members of the archive are unarchived into the directory
and )compile is called on each .ao file found. It is your responsibility to remove the directory and its
contents, if you choose to do so.
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A .lsp file is a Lisp source file, presumably, in our context, generated by Aldor when called with the
-Flsp option. When )compile is used with a .lsp file, the Lisp file is compiled and )library is
called. You must also have present a .asy generated from the same source file.

The following are descriptions of options for the FriCAS system compiler.

You can compile category, domain, and package constructors contained in files with file extension .spad.
You can compile individual constructors or every constructor in a file.

The full filename is remembered between invocations of this command and )edit commands. The
sequence of commands

)compile matrix.spad

)edit

)compile

will call the compiler, edit, and then call the compiler again on the file matrix.spad. If you do not
specify a directory, the working current directory (see Section A.4 on page 914) is searched for the file.
If the file is not found, the standard system directories are searched.

If you do not give any options, all constructors within a file are compiled. Each constructor should
have an )abbreviation command in the file in which it is defined. We suggest that you place the
)abbreviation commands at the top of the file in the order in which the constructors are defined.
The list of commands serves as a table of contents for the file.

The )library option causes directories containing the compiled code for each constructor to be created
in the working current directory. The name of such a directory consists of the constructor abbreviation
and the .NRLIB file extension. For example, the directory containing the compiled code for the
MATRIX constructor is called MATRIX.NRLIB. The )nolibrary option says that such files
should not be created. The default is )library. Note that the semantics of )library and )nolibrary

for the Aldor compiler and for the FriCAS system compiler are completely different.

The )vartrace option causes the compiler to generate extra code for the constructor to support
conditional tracing of variable assignments. (see Section A.26 on page 934). Without this option, this
code is suppressed and one cannot use the )vars option for the trace command.

The )constructor option is used to specify a particular constructor to compile. All other constructors
in the file are ignored. The constructor name or abbreviation follows )constructor. Thus either

)compile matrix.spad )constructor RectangularMatrix

or

)compile matrix.spad )constructor RMATRIX

compiles the RectangularMatrix constructor defined in matrix.spad.

The )break and )nobreak options determine what the FriCASsystem compiler does when it encounters
an error. )break is the default and it indicates that processing should stop at the first error. The
value of the )set break variable then controls what happens.

Also See: ‘)abbreviation’ in Section A.2 on page 912, ‘)edit’ in Section A.9 on page 922, and
‘)library’ in Section A.14 on page 927.
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A.8 )display

User Level Required: interpreter

Command Syntax:

)display all

)display properties

)display properties all

)display properties [obj1 [obj2 ...]]

)display value all

)display value [obj1 [obj2 ...]]

)display mode all

)display mode [obj1 [obj2 ...]]

)display names

)display operations opName

Command Description:

This command is used to display the contents of the workspace and signatures of functions with a
given name.1

The command

)display names

lists the names of all user-defined objects in the workspace. This is useful if you do not wish to see
everything about the objects and need only be reminded of their names.

The commands

)display all

)display properties

)display properties all

all do the same thing: show the values and types and declared modes of all variables in the workspace.
If you have defined functions, their signatures and definitions will also be displayed.

To show all information about a particular variable or user functions, for example, something named
d, issue

)display properties d

To just show the value (and the type) of d, issue

)display value d

To just show the declared mode of d, issue

1A signature gives the argument and return types of a function.
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)display mode d

All modemaps for a given operation may be displayed by using )display operations. A modemap is
a collection of information about a particular reference to an operation. This includes the types of the
arguments and the return value, the location of the implementation and any conditions on the types.
The modemap may contain patterns. The following displays the modemaps for the operation complex:

)d op complex

Also See: ‘)clear’ in Section A.6 on page 915, ‘)history’ in Section A.13 on page 925, ‘)set’ in
Section A.21 on page 931, ‘)show’ in Section A.22 on page 931, and ‘)what’ in Section A.28 on page
939.

A.9 )edit

User Level Required: interpreter

Command Syntax:

)edit [filename]

Command Description:

This command is used to edit files. It works in conjunction with the )read and )compile commands
to remember the name of the file on which you are working. By specifying the name fully, you can edit
any file you wish. Thus

)edit /u/julius/matrix.input

will place you in an editor looking at the file /u/julius/matrix.input. By default, the editor is vi,
but if you have an EDITOR shell environment variable defined, that editor will be used. When FriCAS
is running under the X Window System, it will try to open a separate xterm running your editor if it
thinks one is necessary. For example, under the Korn shell, if you issue

export EDITOR=emacs

then the emacs editor will be used by )edit.

If you do not specify a file name, the last file you edited, read or compiled will be used. If there is no
“last file” you will be placed in the editor editing an empty unnamed file.

It is possible to use the )system command to edit a file directly. For example,

)system emacs /etc/rc.tcpip

calls emacs to edit the file.

Also See: ‘)system’ in Section A.25 on page 934, ‘)compile’ in Section A.7 on page 916, and ‘)read’
in Section A.20 on page 930.
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A.10 )fin

User Level Required: development

Command Syntax:

)fin

Command Description:

This command is used by FriCAS developers to leave the FriCAS system and return to the underlying
Common LISP system. To return to FriCAS, issue the “(|spad|)” function call to Common LISP.

Also See: ‘)pquit’ in Section A.18 on page 929 and ‘)quit’ in Section A.19 on page 929.

A.11 )frame

User Level Required: interpreter

Command Syntax:

)frame new frameName

)frame drop [frameName]

)frame next

)frame last

)frame names

)frame import frameName [objectName1 [objectName2 ...]]

)set message frame on | off

)set message prompt frame

Command Description:

A frame can be thought of as a logical session within the physical session that you get when you start
the system. You can have as many frames as you want, within the limits of your computer’s storage,
paging space, and so on. Each frame has its own step number, environment and history. You can have
a variable named a in one frame and it will have nothing to do with anything that might be called a

in any other frame.

Some frames are created by the HyperDoc program and these can have pretty strange names, since
they are generated automatically. To find out the names of all frames, issue

)frame names

It will indicate the name of the current frame.

You create a new frame “quark” by issuing

)frame new quark

The history facility can be turned on by issuing either )set history on or )history )on. If the
history facility is on and you are saving history information in a file rather than in the FriCAS envi-
ronment then a history file with filename quark.axh will be created as you enter commands. If you
wish to go back to what you were doing in the “initial” frame, use
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)frame next

or

)frame last

to cycle through the ring of available frames to get back to “initial”.

If you want to throw away a frame (say “quark”), issue

)frame drop quark

If you omit the name, the current frame is dropped.

If you do use frames with the history facility on and writing to a file, you may want to delete some of the
older history files. These are directories, so you may want to issue a command like rm -r quark.axh

to the operating system.

You can bring things from another frame by using )frame import. For example, to bring the f and g

from the frame “quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame “quark”, issue

)frame import quark

You will be asked to verify that you really want everything.

There are two )set flags to make it easier to tell where you are.

)set message frame on | off

will print more messages about frames when it is set on. By default, it is off.

)set message prompt frame

will give a prompt that looks like

initial (1) ->

when you start up. In this case, the frame name and step make up the prompt.

Also See: ‘)history’ in Section A.13 on page 925 and ‘)set’ in Section A.21 on page 931.

A.12 )help

User Level Required: interpreter

Command Syntax:
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)help

)help commandName

)help syntax

Command Description:

This command displays help information about system commands. If you issue

)help help

then this very text will be shown. You can also give the name of a system command to display
information about it. For example,

)help clear

will display the description of the )clear system command.

The command

)help syntax

will give further information about the FriCAS language syntax.

All this material is available in the FriCAS User Guide and in HyperDoc. In HyperDoc, choose the
Commands item from the Reference menu.

A.13 )history

User Level Required: interpreter

Command Syntax:

)history )on

)history )off

)history )write historyInputFileName

)history )show [n] [both]

)history )save savedHistoryName

)history )restore [savedHistoryName]

)history )reset

)history )change n

)history )memory

)history )file

%

%%(n)

)set history on | off

Command Description:

The history facility within FriCAS allows you to restore your environment to that of another session
and recall previous computational results. Additional commands allow you to review previous input
lines and to create an .input file of the lines typed to FriCAS.
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FriCAS saves your input and output if the history facility is turned on (which is the default). This
information is saved if either of

)set history on

)history )on

has been issued. Issuing either

)set history off

)history )off

will discontinue the recording of information.

Whether the facility is disabled or not, the value of “%” in FriCAS always refers to the result of the last
computation. If you have not yet entered anything, “%” evaluates to an object of type Variable(’%).
The function “%%” may be used to refer to other previous results if the history facility is enabled. In
that case, %%(n) is the output from step n if n > 0. If n < 0, the step is computed relative to the
current step. Thus %%(-1) is also the previous step, %%(-2), is the step before that, and so on. If an
invalid step number is given, FriCAS will signal an error.

The environment information can either be saved in a file or entirely in memory (the default). Each
frame (Section A.11 on page 923) has its own history database. When it is kept in a file, some of it may
also be kept in memory for efficiency. When the information is saved in a file, the name of the file is of
the form FRAME.axh where “FRAME” is the name of the current frame. The history file is placed
in the current working directory (see Section A.4 on page 914). Note that these history database files
are not text files (in fact, they are directories themselves), and so are not in human-readable format.

The options to the )history command are as follows:

)change n will set the number of steps that are saved in memory to n. This option only has effect
when the history data is maintained in a file. If you have issued )history )memory (or not
changed the default) there is no need to use )history )change.

)on will start the recording of information. If the workspace is not empty, you will be asked to confirm
this request. If you do so, the workspace will be cleared and history data will begin being saved.
You can also turn the facility on by issuing )set history on.

)off will stop the recording of information. The )history )show command will not work after issuing
this command. Note that this command may be issued to save time, as there is some performance
penalty paid for saving the environment data. You can also turn the facility off by issuing )set

history off.

)file indicates that history data should be saved in an external file on disk.

)memory indicates that all history data should be kept in memory rather than saved in a file. Note
that if you are computing with very large objects it may not be practical to kept this data in
memory.

)reset will flush the internal list of the most recent workspace calculations so that the data structures
may be garbage collected by the underlying Common LISP system. Like )history )change,
this option only has real effect when history data is being saved in a file.
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)restore [savedHistoryName] completely clears the environment and restores it to a saved session, if
possible. The )save option below allows you to save a session to a file with a given name. If you
had issued )history )save jacobi the command )history )restore jacobi would clear the
current workspace and load the contents of the named saved session. If no saved session name is
specified, the system looks for a file called last.axh.

)save savedHistoryName is used to save a snapshot of the environment in a file. This file is placed
in the current working directory (see Section A.4 on page 914). Use )history )restore to
restore the environment to the state preserved in the file. This option also creates an input file
containing all the lines of input since you created the workspace frame (for example, by starting
your FriCAS session) or last did a )clear all or )clear completely.

)show [n] [both] can show previous input lines and output results. )show will display up to twenty
of the last input lines (fewer if you haven’t typed in twenty lines). )show n will display up to
n of the last input lines. )show both will display up to five of the last input lines and output
results. )show n both will display up to n of the last input lines and output results.

)write historyInputFile creates an .input file with the input lines typed since the start of the ses-
sion/frame or the last )clear all or )clear completely. If historyInputFileName does not
contain a period (“.”) in the filename, .input is appended to it. For example, )history )write

chaos and )history )write chaos.input both write the input lines to a file called chaos.input
in your current working directory. If you issued one or more )undo commands, )history )write

eliminates all input lines backtracked over as a result of )undo. You can edit this file and then
use )read to have FriCAS process the contents.

Also See: ‘)frame’ in Section A.11 on page 923, ‘)read’ in Section A.20 on page 930, ‘)set’ in Section
A.21 on page 931, and ‘)undo’ in Section A.27 on page 938.

A.14 )library

User Level Required: interpreter

Command Syntax:

)library libName1 [libName2 ...]

)library )dir dirName

)library )only objName1 [objlib2 ...]

)library )noexpose

Command Description:

This command replaces the )load system command. The )library command makes available to
FriCAS the compiled objects in the libraries listed.

For example, if you )compile dopler.as in your home directory, issue )library dopler to have
FriCAS look at the library, determine the category and domain constructors present, update the
internal database with various properties of the constructors, and arrange for the constructors to be
automatically loaded when needed. If the )noexpose option has not been given, the constructors will
be exposed (that is, available) in the current frame.

If you compiled a file with the FriCAS system compiler, you will have an NRLIB present, for example,
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DOPLER.NRLIB, where DOPLER is a constructor abbreviation. The command )library DOPLER will
then do the analysis and database updates as above.

To tell the system about all libraries in a directory, use )library )dir dirName where dirName is an
explicit directory. You may specify “.” as the directory, which means the current directory from which
you started the system or the one you set via the )cd command. The directory name is required.

You may only want to tell the system about particular constructors within a library. In this case, use
the )only option. The command )library dopler )only Test1 will only cause the Test1 constructor
to be analyzed, autoloaded, etc..

Finally, each constructor in a library are usually automatically exposed when the )library command
is used. Use the )noexpose option if you do not want them exposed. At a later time you can use )set
expose add constructor to expose any hidden constructors.

Also See: ‘)cd’ in Section A.4 on page 914, ‘)compile’ in Section A.7 on page 916, ‘)frame’ in Section
A.11 on page 923, and ‘)set’ in Section A.21 on page 931.

A.15 )lisp

User Level Required: development

Command Syntax:

)lisp [lispExpression]

Command Description:

This command is used by FriCAS system developers to have single expressions evaluated by the Com-
mon LISP system on which FriCAS is built. The lispExpression is read by the Common LISP reader
and evaluated. If this expression is not complete (unbalanced parentheses, say), the reader will wait
until a complete expression is entered.

Since this command is only useful for evaluating single expressions, the )fin command may be used
to drop out of FriCAS into Common LISP.

Also See: ‘)system’ in Section A.25 on page 934, ‘)boot’ in Section A.3 on page 913, and ‘)fin’ in
Section A.10 on page 923.

A.16 )load

User Level Required: interpreter

Command Description:

This command is obsolete. Use )library instead.

A.17 )ltrace

User Level Required: development
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Command Syntax:

This command has the same arguments as options as the )trace command.

Command Description:

This command is used by FriCAS system developers to trace Common LISP or BOOT functions. It is
not supported for general use.

Also See: ‘)boot’ in Section A.3 on page 913, ‘)lisp’ in Section A.15 on page 928, and ‘)trace’ in
Section A.26 on page 934.

A.18 )pquit

User Level Required: interpreter

Command Syntax:

)pquit

Command Description:

This command is used to terminate FriCAS and return to the operating system. Other than by redoing
all your computations or by using the )history )restore command to try to restore your working
environment, you cannot return to FriCAS in the same state.

)pquit differs from the )quit in that it always asks for confirmation that you want to terminate
FriCAS (the “p” is for “protected”). When you enter the )pquit command, FriCAS responds

Please enter y or yes if you really want to leave the interactive
environment and return to the operating system:

If you respond with y or yes, you will see the message

You are now leaving the FriCAS interactive environment.
Issue the command fricas to the operating system to start a new session.

and FriCAS will terminate and return you to the operating system (or the environment from which
you invoked the system). If you responded with something other than y or yes, then the message

You have chosen to remain in the FriCAS interactive environment.

will be displayed and, indeed, FriCAS would still be running.

Also See: ‘)fin’ in Section A.10 on page 923, ‘)history’ in Section A.13 on page 925, ‘)close’ in
Section A.5 on page 914, ‘)quit’ in Section A.19 on page 929, and ‘)system’ in Section A.25 on page
934.

A.19 )quit

User Level Required: interpreter

Command Syntax:



930 APPENDIX A. FRICAS SYSTEM COMMANDS

)quit

)set quit protected | unprotected

Command Description:

This command is used to terminate FriCAS and return to the operating system. Other than by redoing
all your computations or by using the )history )restore command to try to restore your working
environment, you cannot return to FriCAS in the same state.

)quit differs from the )pquit in that it asks for confirmation only if the command

)set quit protected

has been issued. Otherwise, )quit will make FriCAS terminate and return you to the operating system
(or the environment from which you invoked the system).

The default setting is )set quit unprotected. We suggest that you do not (somehow) assign )quit

to be executed when you press, say, a function key.

Also See: ‘)fin’ in Section A.10 on page 923, ‘)history’ in Section A.13 on page 925, ‘)close’ in
Section A.5 on page 914, ‘)pquit’ in Section A.18 on page 929, and ‘)system’ in Section A.25 on page
934.

A.20 )read

User Level Required: interpreter

Command Syntax:

)read [fileName]

)read [fileName] [)quiet] [)ifthere]

Command Description:

This command is used to read .input files into FriCAS. The command

)read matrix.input

will read the contents of the file matrix.input into FriCAS. The “.input” file extension is optional.
See Section 4.1 on page 121 for more information about .input files.

This command remembers the previous file you edited, read or compiled. If you do not specify a file
name, the previous file will be read.

The )ifthere option checks to see whether the .input file exists. If it does not, the )read command
does nothing. If you do not use this option and the file does not exist, you are asked to give the name
of an existing .input file.

The )quiet option suppresses output while the file is being read.

Also See: ‘)compile’ in Section A.7 on page 916, ‘)edit’ in Section A.9 on page 922, and ‘)history’
in Section A.13 on page 925.
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A.21 )set

User Level Required: interpreter

Command Syntax:

)set

)set label1 [... labelN]

)set label1 [... labelN] newValue

Command Description:

The )set command is used to view or set system variables that control what messages are displayed,
the type of output desired, the status of the history facility, the way FriCAS user functions are cached,
and so on. Since this collection is very large, we will not discuss them here. Rather, we will show how
the facility is used. We urge you to explore the )set options to familiarize yourself with how you can
modify your FriCAS working environment. There is a HyperDoc version of this same facility available
from the main HyperDoc menu.

The )set command is command-driven with a menu display. It is tree-structured. To see all top-level
nodes, issue )set by itself.

)set

Variables with values have them displayed near the right margin. Subtrees of selections have “...”
displayed in the value field. For example, there are many kinds of messages, so issue )set message to
see the choices.

)set message

The current setting for the variable that displays whether computation times are displayed is visible
in the menu displayed by the last command. To see more information, issue

)set message time

This shows that time printing is on now. To turn it off, issue

)set message time off

As noted above, not all settings have so many qualifiers. For example, to change the )quit command
to being unprotected (that is, you will not be prompted for verification), you need only issue

)set quit unprotected

Also See: ‘)quit’ in Section A.19 on page 929.

A.22 )show

User Level Required: interpreter

Command Syntax:



932 APPENDIX A. FRICAS SYSTEM COMMANDS

)show nameOrAbbrev

)show nameOrAbbrev )operations

Command Description: This command displays information about FriCAS domain, package and
category constructors. If no options are given, the )operations option is assumed. For example,

)show POLY

)show POLY )operations

)show Polynomial

)show Polynomial )operations

each display basic information about the Polynomial domain constructor and then provide a listing
of operations. Since Polynomial requires a Ring (for example, Integer) as argument, the above
commands all refer to a unspecified ring R. In the list of operations, “$” means Polynomial(R).

The basic information displayed includes the signature of the constructor (the name and arguments),
the constructor abbreviation, the exposure status of the constructor, and the name of the library source
file for the constructor.

If operation information about a specific domain is wanted, the full or abbreviated domain name may
be used. For example,

)show POLY INT

)show POLY INT )operations

)show Polynomial Integer

)show Polynomial Integer )operations

are among the combinations that will display the operations exported by the domainPolynomial(Integer)
(as opposed to the general domain constructor Polynomial).

Also See: ‘)display’ in Section A.8 on page 921, ‘)set’ in Section A.21 on page 931, and ‘)what’ in
Section A.28 on page 939.

A.23 )spool

User Level Required: interpreter

Command Syntax:

)spool [fileName]

)spool

Command Description:

This command is used to save (spool) all FriCAS input and output into a file, called a spool file. You
can only have one spool file active at a time. To start spool, issue this command with a filename. For
example,

)spool integrate.out

To stop spooling, issue )spool with no filename.
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If the filename is qualified with a directory, then the output will be placed in that directory. If no
directory information is given, the spool file will be placed in the current directory. The current
directory is the directory from which you started FriCAS or is the directory you specified using the
)cd command.

Also See: ‘)cd’ in Section A.4 on page 914.

A.24 )synonym

User Level Required: interpreter

Command Syntax:

)synonym

)synonym synonym fullCommand

)what synonyms

Command Description:

This command is used to create short synonyms for system command expressions. For example, the
following synonyms might simplify commands you often use.

)synonym save history )save

)synonym restore history )restore

)synonym mail system mail

)synonym ls system ls

)synonym fortran set output fortran

Once defined, synonyms can be used in place of the longer command expressions. Thus

)fortran on

is the same as the longer

)set fortran output on

To list all defined synonyms, issue either of

)synonyms

)what synonyms

To list, say, all synonyms that contain the substring “ap”, issue

)what synonyms ap

Also See: ‘)set’ in Section A.21 on page 931 and ‘)what’ in Section A.28 on page 939.
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A.25 )system

User Level Required: interpreter

Command Syntax:

)system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while remaining in FriCAS.
The cmdExpression is passed to the operating system for execution.

To get an operating system shell, issue, for example, )system sh. When you enter the key combination,

Ctrl – D (pressing and holding the Ctrl key and then pressing the D key) the shell will terminate
and you will return to FriCAS. We do not recommend this way of creating a shell because Common
LISP may field some interrupts instead of the shell. If possible, use a shell running in another window.

If you execute programs that misbehave you may not be able to return to FriCAS. If this happens, you
may have no other choice than to restart FriCAS and restore the environment via )history )restore,
if possible.

Also See: ‘)boot’ in Section A.3 on page 913, ‘)fin’ in Section A.10 on page 923, ‘)lisp’ in Section
A.15 on page 928, ‘)pquit’ in Section A.18 on page 929, and ‘)quit’ in Section A.19 on page 929.

A.26 )trace

User Level Required: interpreter

Command Syntax:

)trace

)trace )off

)trace function [options]

)trace constructor [options]

)trace domainOrPackage [options]

where options can be one or more of

)after S-expression

)before S-expression

)break after

)break before

)cond S-expression

)count

)count n

)depth n

)local op1 [... opN]

)nonquietly

)nt
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)off

)only listOfDataToDisplay

)ops

)ops op1 [... opN ]

)restore

)stats

)stats reset

)timer

)varbreak

)varbreak var1 [... varN ]

)vars

)vars var1 [... varN ]

)within executingFunction

Command Description:

This command is used to trace the execution of functions that make up the FriCAS system, functions
defined by users, and functions from the system library. Almost all options are available for each type
of function but exceptions will be noted below.

To list all functions, constructors, domains and packages that are traced, simply issue

)trace

To untrace everything that is traced, issue

)trace )off

When a function is traced, the default system action is to display the arguments to the function and
the return value when the function is exited. Note that if a function is left via an action such as a
THROW, no return value will be displayed. Also, optimization of tail recursion may decrease the number
of times a function is actually invoked and so may cause less trace information to be displayed. Other
information can be displayed or collected when a function is traced and this is controlled by the various
options. Most options will be of interest only to FriCAS system developers. If a domain or package is
traced, the default action is to trace all functions exported.

Individual interpreter, lisp or boot functions can be traced by listing their names after )trace. Any
options that are present must follow the functions to be traced.

)trace f

traces the function f. To untrace f, issue

)trace f )off

Note that if a function name contains a special character, it will be necessary to escape the character
with an underscore

)trace _/D_,1
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To trace all domains or packages that are or will be created from a particular constructor, give the
constructor name or abbreviation after )trace.

)trace MATRIX

)trace List Integer

The first command traces all domains currently instantiated with Matrix. If additional domains are in-
stantiated with this constructor (for example, if you have usedMatrix(Integer) andMatrix(Float)),
they will be automatically traced. The second command traces List(Integer). It is possible to trace
individual functions in a domain or package. See the )ops option below.

The following are the general options for the )trace command.

)break after causes a Common LISP break loop to be entered after exiting the traced function.

)break before causes a Common LISP break loop to be entered before entering the traced function.

)break is the same as )break before.

)count causes the system to keep a count of the number of times the traced function is entered. The
total can be displayed with )trace )stats and cleared with )trace )stats reset.

)count n causes information about the traced function to be displayed for the first n executions. After
the nth execution, the function is untraced.

)depth n causes trace information to be shown for only n levels of recursion of the traced function.
The command

)trace fib )depth 10

will cause the display of only 10 levels of trace information for the recursive execution of a user
function fib.

)math causes the function arguments and return value to be displayed in the FriCAS monospace two-
dimensional math format.

)nonquietly causes the display of additional messages when a function is traced.

)nt This suppresses all normal trace information. This option is useful if the )count or )timer options
are used and you are interested in the statistics but not the function calling information.

)off causes untracing of all or specific functions. Without an argument, all functions, constructors,
domains and packages are untraced. Otherwise, the given functions and other objects are un-
traced. To immediately retrace the untraced functions, issue )trace )restore.

)only listOfDataToDisplay causes only specific trace information to be shown. The items are listed
by using the following abbreviations:

a display all arguments

v display return value

1 display first argument

2 display second argument
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15 display the 15th argument, and so on

)restore causes the last untraced functions to be retraced. If additional options are present, they are
added to those previously in effect.

)stats causes the display of statistics collected by the use of the )count and )timer options.

)stats reset resets to 0 the statistics collected by the use of the )count and )timer options.

)timer causes the system to keep a count of execution times for the traced function. The total can
be displayed with )trace )stats and cleared with )trace )stats reset.

)varbreak var1 [... varN] causes a Common LISP break loop to be entered after the assignment to
any of the listed variables in the traced function.

)vars causes the display of the value of any variable after it is assigned in the traced function. Note
that library code must have been compiled (see Section A.7 on page 916) using the )vartrace

option in order to support this option.

)vars var1 [... varN] causes the display of the value of any of the specified variables after they are
assigned in the traced function. Note that library code must have been compiled (see Section
A.7 on page 916) using the )vartrace option in order to support this option.

)within executingFunction causes the display of trace information only if the traced function is called
when the given executingFunction is running.

The following are the options for tracing constructors, domains and packages.

)local [op1 [... opN]] causes local functions of the constructor to be traced. Note that to untrace
an individual local function, you must use the fully qualified internal name, using the escape
character “_” before the semicolon.

)trace FRAC )local

)trace FRAC_;cancelGcd )off

)ops op1 [... opN] By default, all operations from a domain or package are traced when the domain
or package is traced. This option allows you to specify that only particular operations should be
traced. The command

)trace Integer )ops min max _+ _-

traces four operations from the domain Integer. Since + and - are special characters, it is
necessary to escape them with an underscore.

Also See: ‘)boot’ in Section A.3 on page 913, ‘)lisp’ in Section A.15 on page 928, and ‘)ltrace’ in
Section A.17 on page 928.
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A.27 )undo

User Level Required: interpreter

Command Syntax:

)undo

)undo integer

)undo integer [option]

)undo )redo

where option is one of

)after

)before

Command Description:

This command is used to restore the state of the user environment to an earlier point in the interactive
session. The argument of an )undo is an integer which must designate some step number in the
interactive session.

)undo n

)undo n )after

These commands return the state of the interactive environment to that immediately after step n. If
n is a positive number, then n refers to step number n. If n is a negative number, it refers to the nth

previous command (that is, undoes the effects of the last −n commands).

A )clear all resets the )undo facility. Otherwise, an )undo undoes the effect of )clear with options
properties, value, and mode, and that of a previous undo. If any such system commands are given
between steps n and n+ 1 (n > 0), their effect is undone for )undo m for any 0 < m ≤ n.
The command )undo is equivalent to )undo -1 (it undoes the effect of the previous user expression).
The command )undo 0 undoes any of the above system commands issued since the last user expression.

)undo n )before

This command returns the state of the interactive environment to that immediately before step n. Any
)undo or )clear system commands given before step n will not be undone.

)undo )redo

This command reads the file redo.input. created by the last )undo command. This file consists of
all user input lines, excluding those backtracked over due to a previous )undo.

The command )history )write will eliminate the “undone” command lines of your program.

Also See: ‘)history’ in Section A.13 on page 925.
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A.28 )what

User Level Required: interpreter

Command Syntax:

)what categories pattern1 [pattern2 ...]

)what commands pattern1 [pattern2 ...]

)what domains pattern1 [pattern2 ...]

)what operations pattern1 [pattern2 ...]

)what packages pattern1 [pattern2 ...]

)what synonym pattern1 [pattern2 ...]

)what things pattern1 [pattern2 ...]

)apropos pattern1 [pattern2 ...]

Command Description:

This command is used to display lists of things in the system. The patterns are all strings and, if
present, restrict the contents of the lists. Only those items that contain one or more of the strings as
substrings are displayed. For example,

)what synonym

displays all command synonyms,

)what synonym ver

displays all command synonyms containing the substring “ver”,

)what synonym ver pr

displays all command synonyms containing the substring “ver” or the substring “pr”. Output similar
to the following will be displayed

---------------- System Command Synonyms -----------------

user-defined synonyms satisfying patterns:

ver pr

)apr ........................... )what things

)apropos ....................... )what things

)prompt ........................ )set message prompt

)version ....................... )lisp *yearweek*

Several other things can be listed with the )what command:

categories displays a list of category constructors.

commands displays a list of system commands available at your user-level. Your user-level is set via
the )set userlevel command. To get a description of a particular command, such as “)what”,
issue )help what.
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domains displays a list of domain constructors.

operations displays a list of operations in the system library. It is recommended that you qualify
this command with one or more patterns, as there are thousands of operations available. For
example, say you are looking for functions that involve computation of eigenvalues. To find their
names, try )what operations eig. A rather large list of operations is loaded into the workspace
when this command is first issued. This list will be deleted when you clear the workspace via
)clear all or )clear completely. It will be re-created if it is needed again.

packages displays a list of package constructors.

synonym lists system command synonyms.

things displays all of the above types for items containing the pattern strings as substrings. The
command synonym )apropos is equivalent to )what things.

Also See: ‘)display’ in Section A.8 on page 921, ‘)set’ in Section A.21 on page 931, and ‘)show’ in
Section A.22 on page 931.



Appendix B

Programs for FriCAS Images

This appendix contains the FriCAS programs used to generate the images in the FriCAS Images color
insert of this book. All these input files are included with the FriCAS system. To produce the images
on page 6 of the FriCAS Images insert, for example, issue the command:

)read images6

These images were produced on an IBM RS/6000 model 530 with a standard color graphics adapter.
The smooth shaded images were made from X Window System screen dumps. The remaining images
were produced with FriCAS-generated PostScript output. The images were reproduced from slides
made on an Agfa ChromaScript PostScript interpreter with a Matrix Instruments QCR camera.

B.1 images1.input

1 )read tknot -- Read torus knot program.
2
3 torusKnot (15,17, 0.1, 6, 700) -- A (15,17) torus knot.

941
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B.2 images2.input

These images illustrate how Newton’s method converges when computing the complex cube roots of
2. Each point in the (x, y)-plane represents the complex number x + iy, which is given as a starting
point for Newton’s method. The poles in these images represent bad starting values. The flat areas
are the regions of convergence to the three roots.

1 )read newton -- Read the programs from
2 )read vectors -- Chapter 10.
3 f := newtonStep (x^3 - 2) -- Create a Newton’s iteration

4 -- function for x3 = 2.

The function fn computes n steps of Newton’s method.

5 clipValue := 4 -- Clip values with magnitude > 4.

6 drawComplexVectorField (f^3, -3..3, -3..3) -- The vector field for f3

7 drawComplex (f^3, -3..3, -3..3) -- The surface for f3

8 drawComplex (f^4, -3..3, -3..3) -- The surface for f4

B.3 images3.input

1 )r tknot

2 for i in 0..4 repeat torusKnot (2, 2 + i/4, 0.5, 25, 250)

B.4 images5.input

The parameterization of the Etruscan Venus is due to George Frances.

1 venus(a,r,steps ) ==

2 surf := (u:DFLOAT , v:DFLOAT ): Point DFLOAT +->

3 cv := cos(v)

4 sv := sin(v)

5 cu := cos(u)

6 su := sin(u)

7 x := r * cos (2*u) * cv + sv * cu

8 y := r * sin (2*u) * cv - sv * su

9 z := a * cv

10 point [x,y,z]

11 draw(surf , 0..%pi , -%pi..%pi , var1Steps ==steps ,

12 var2Steps ==steps , title == "Etruscan Venus ")

13
14 venus (5/2, 13/10 , 50) -- The Etruscan Venus

The Figure-8 Klein Bottle parameterization is from “Differential Geometry and Computer Graphics”
by Thomas Banchoff, in Perspectives in Mathematics, Anniversary of Oberwolfasch 1984, Birkhäuser-
Verlag, Basel, pp. 43-60.

15 klein(x,y) ==

16 cx := cos(x)

17 cy := cos(y)

18 sx := sin(x)

19 sy := sin(y)

20 sx2 := sin (x/2)

21 cx2 := cos (x/2)

22 sq2 := sqrt (2.0 @DFLOAT )
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23 point [cx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _

24 sx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _

25 -sx2 * (sq2 + cy) + cx2 * sy * cy]

26
27 draw(klein , 0..4*% pi, 0..2*% pi , var1Steps ==50, -- Figure-8 Klein bottle
28 var2Steps ==50, title ==" Figure Eight Klein Bottle ")

The next two images are examples of generalized tubes.

29 )read ntube

30 rotateBy (p, theta) == -- Rotate a point p by
31 c := cos(theta) -- θ around the origin.
32 s := sin(theta)

33 point [p.1*c - p.2*s, p.1*s + p.2*c]

34
35 bcircle t == -- A circle in three-space.
36 point [3* cos t, 3*sin t, 0]

37
38 twist(u, t) == -- An ellipse that twists
39 theta := 4*t -- around four times as
40 p := point [sin u, cos (u)/2] -- t revolves once.
41 rotateBy (p, theta)

42
43 ntubeDrawOpt(bcircle , twist , 0..2*% pi, 0..2*% pi , -- Twisted Torus
44 var1Steps == 70, var2Steps == 250)

45
46 twist2 (u, t) == -- Create a twisting circle.
47 theta := t

48 p := point [sin u, cos (u)]

49 rotateBy (p, theta)

50
51 cf(u,v) == sin (21*u) -- Color function with 21 stripes.
52
53 ntubeDrawOpt(bcircle , twist2 , 0..2*% pi , 0..2*% pi , -- Striped Torus
54 colorFunction == cf , var1Steps == 168,

55 var2Steps == 126)

B.5 images6.input

1 gam (x,y) == -- The height and color are the
2 g := Gamma complex (x,y) -- real and argument parts
3 point [x,y,max(min(real g, 4), -4), argument g] -- of the Gamma function,
4 -- respectively.
5
6 draw(gam , -%pi..%pi , -%pi..%pi , -- The Gamma Function
7 title == "Gamma(x + %i*y)", _

8 var1Steps == 100, var2Steps == 100)

9
10 b(x,y) == Beta(x,y)

11
12 draw(b, -3.1..3, -3.1 .. 3, title == "Beta(x,y)") -- The Beta Function
13
14 atf (x,y) ==

15 a := atan complex (x,y)

16 point [x,y,real a, argument a]

17
18 draw(atf , -3.0..% pi , -3.0..% pi) -- The Arctangent function
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B.6 images7.input

First we look at the conformal map z 7→ z + 1/z.

1 )read conformal -- Read program for drawing
2 -- conformal maps.
3
4 f z == z -- The coordinate grid for the
5 -- complex plane.
6 conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian ") -- Mapping 1: Source
7
8 f z == z + 1/z -- The map z 7→ z + 1/z
9

10 conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian ") -- Mapping 1: Target

The map z 7→ −(z + 1)/(z − 1) maps the unit disk to the right half-plane, as shown on the Riemann
sphere.

11 f z == z -- The unit disk.
12
13 riemannConformalDraw(f ,0.1..0.99 ,0..2*% pi ,7,11," polar ") -- Mapping 2: Source
14
15 f z == -(z+1)/(z -1) -- The map x 7→ −(z + 1)/(z − 1).
16 riemannConformalDraw(f ,0.1..0.99 ,0..2*% pi ,7,11," polar ") -- Mapping 2: Target
17
18 riemannSphereDraw (-4..4, -4..4, 7, 7, "cartesian ") -- Riemann Sphere Mapping

B.7 images8.input

1 )read dhtri

2 )read tetra

3 drawPyramid 4 -- Sierpinsky’s Tetrahedron
4
5 \index {Sierpinsky ’s Tetrahedron }

6 )read antoine

7 drawRings 2 -- Antoine’s Necklace
8
9 \index {Antoine ’s Necklace }

10 )read scherk

11 drawScherk (3,3) -- Scherk’s Minimal Surface
12
13 \index {Scherk ’s minimal surface }

14 )read ribbonsNew

15 drawRibbons ([x^i for i in 1..5] , x=-1..1, y=0..2) -- Ribbon Plot

B.8 conformal.input

The functions in this section draw conformal maps both on the plane and on the Riemann sphere.

1 C := Complex DoubleFloat -- Complex Numbers
2 S := Segment DoubleFloat -- Draw ranges
3 R3 := Point DFLOAT -- Points in 3-space

conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the image of the coordinate grid
under f in the complex plane. The grid may be given in either polar or Cartesian coordinates. Argument
f is the function to draw; rRange is the range of the radius (in polar) or real (in Cartesian); tRange is
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the range of θ (in polar) or imaginary (in Cartesian); tSteps, rSteps, are the number of intervals in the
r and θ directions; and coord is the coordinate system to use (either "polar" or "cartesian").

5 conformalDraw: (C -> C, S, S, PI, PI , String ) -> VIEW3D

6 conformalDraw(f,rRange ,tRange ,rSteps ,tSteps ,coord) ==

7 transformC := -- Function for changing an (x, y)
8 coord = "polar " => polar2Complex -- pair into a complex number.
9 cartesian2Complex

10 cm := makeConformalMap(f, transformC )

11 sp := createThreeSpace () -- Create a fresh space.
12 adaptGrid (sp, cm , rRange , tRange , rSteps , tSteps ) -- Plot the coordinate lines.
13 makeViewport3D(sp , "Conformal Map ") -- Draw the image.

riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the image of the coordinate
grid under f on the Riemann sphere. The grid may be given in either polar or Cartesian coordinates.
Its arguments are the same as those for conformalDraw.

14 riemannConformalDraw :(C->C,S,S,PI ,PI ,String )-> VIEW3D

15 riemannConformalDraw(f, rRange , tRange ,

16 rSteps , tSteps , coord) ==

17 transformC := -- Function for changing an (x, y)
18 coord = "polar " => polar2Complex -- pair into a complex number.
19 cartesian2Complex

20 sp := createThreeSpace () -- Create a fresh space.
21 cm := makeRiemannConformalMap (f, transformC )

22 adaptGrid (sp, cm , rRange , tRange , rSteps , tSteps ) -- Plot the coordinate lines.
23 curve(sp ,[ point [0,0,2.0 @DFLOAT ,0], point [0,0,2.0 @DFLOAT ,0]]) -- Add an invisible point at
24 makeViewport3D(sp ,"Map on the Riemann Sphere ") -- the north pole for scaling.
25
26 adaptGrid (sp , f, uRange , vRange , uSteps , vSteps ) == -- Plot the coordinate grid
27 delU := (high(uRange ) - low(uRange ))/ uSteps -- using adaptive plotting for
28 delV := (high(vRange ) - low(vRange ))/ vSteps -- coordinate lines, and draw
29 uSteps := uSteps + 1; vSteps := vSteps + 1 -- tubes around the lines.
30 u := low uRange

31 for i in 1.. uSteps repeat -- Draw coordinate lines in the v

32 c := curryLeft (f,u) -- direction; curve c fixes the
33 cf := (t:DFLOAT ): DFLOAT +-> 0 -- current value of u.
34 makeObject (c,vRange ::SEG Float , colorFunction==cf, -- Draw the v coordinate line.
35 space == sp, tubeRadius == .02, tubePoints == 6)

36 u := u + delU

37 v := low vRange

38 for i in 1.. vSteps repeat -- Draw coordinate lines in the u

39 c := curryRight (f,v) -- direction; curve c fixes the
40 cf := (t:DFLOAT ): DFLOAT +-> 1 -- current value of v.
41 makeObject (c,uRange ::SEG Float , colorFunction==cf, -- Draw the u coordinate line.
42 space == sp, tubeRadius == .02, tubePoints == 6)

43 v := v + delV

44 void ()

45
46 riemannTransform(z) == -- Map a point in the complex
47 r := sqrt norm z -- plane to the Riemann sphere.
48 cosTheta := (real z)/r

49 sinTheta := (imag z)/r

50 cp := 4*r/(4+r^2)

51 sp := sqrt(1- cp*cp)

52 if r>2 then sp := -sp

53 point [cosTheta *cp, sinTheta *cp , -sp + 1]

54
55 cartesian2Complex(r:DFLOAT , i:DFLOAT ):C == -- Convert Cartesian coordinates to
56 complex (r, i) -- complex Cartesian form.
57
58 polar2Complex(r:DFLOAT , th:DFLOAT ):C == -- Convert polar coordinates to
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59 complex (r*cos (th), r*sin(th)) -- complex Cartesian form.
60
61 makeConformalMap(f, transformC ) == -- Convert complex function f to a
62 (u:DFLOAT ,v:DFLOAT ):R3 +-> -- mapping: (DFLOAT,DFLOAT)

→ R3

63 z := f transformC (u, v) -- in the complex plane.
64 point [real z, imag z, 0.0 @DFLOAT ]

65
66 makeRiemannConformalMap (f, transformC ) == -- Convert a complex function f to a
67 (u:DFLOAT , v:DFLOAT ):R3 +-> -- mapping: (DFLOAT,DFLOAT)

→ R3

68 riemannTransform f transformC (u, v) -- on the Riemann sphere.
69
70 riemannSphereDraw: (S, S, PI , PI, String ) -> VIEW3D -- Draw a picture of the mapping
71 riemannSphereDraw(rRange ,tRange ,rSteps ,tSteps ,coord) == -- of the complex plane to
72 transformC := -- the Riemann sphere.
73 coord = "polar " => polar2Complex

74 cartesian2Complex

75 grid := (u:DFLOAT , v:DFLOAT ): R3 +-> -- Coordinate grid function.
76 z1 := transformC (u, v)

77 point [real z1 , imag z1 , 0]

78 sp := createThreeSpace () -- Create a fresh space.
79 adaptGrid (sp, grid , rRange , tRange , rSteps , tSteps ) -- Draw the flat grid.
80 connectingLines(sp,grid ,rRange ,tRange ,rSteps ,tSteps )

81 makeObject (riemannSphere ,0..2*% pi ,0..%pi ,space ==sp) -- Draw the sphere.
82 f := (z:C):C +-> z

83 cm := makeRiemannConformalMap (f, transformC )

84 adaptGrid (sp, cm , rRange , tRange , rSteps , tSteps ) -- Draw the sphere grid.
85 makeViewport3D(sp , "Riemann Sphere ")

86
87 connectingLines(sp ,f,uRange ,vRange ,uSteps ,vSteps ) == -- Draw the lines that connect
88 delU := (high(uRange ) - low(uRange ))/ uSteps -- the points in the complex
89 delV := (high(vRange ) - low(vRange ))/ vSteps -- plane to the north pole
90 uSteps := uSteps + 1; vSteps := vSteps + 1 -- of the Riemann sphere.
91 u := low uRange

92 for i in 1.. uSteps repeat -- For each u.
93 v := low vRange

94 for j in 1.. vSteps repeat -- For each v.
95 p1 := f(u,v)

96 p2 := riemannTransform complex (p1.1, p1 .2) -- Project p1 onto the sphere.
97 fun := lineFromTo (p1,p2) -- Create a line function.
98 cf := (t:DFLOAT ): DFLOAT +-> 3

99 makeObject (fun , 0..1, space ==sp ,tubePoints ==4, -- Draw the connecting line.
100 tubeRadius ==0.01 , colorFunction==cf)

101 v := v + delV

102 u := u + delU

103 void ()

104
105 riemannSphere(u,v) == -- A sphere sitting on the
106 sv := sin(v) -- complex plane, with radius 1.
107 0.99 @DFLOAT *( point [cos(u)*sv ,sin (u)*sv ,cos(v),0.0 @DFLOAT ])+

108 point [0.0 @DFLOAT , 0.0 @DFLOAT , 1.0 @DFLOAT , 4.0 @DFLOAT ]

109
110 lineFromTo (p1 , p2) == -- Create a line function
111 d := p2 - p1 -- that goes from p1 to p2
112 (t:DFLOAT ): Point DFLOAT +->

113 p1 + t*d
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B.9 tknot.input

Create a (p, q) torus-knot with radius r around the curve. The formula was derived by Larry Lambe.

1 )read ntube

2 torusKnot : (DFLOAT , DFLOAT , DFLOAT , PI , PI) -> VIEW3D

3 torusKnot (p, q ,r, uSteps , tSteps ) ==

4 knot := (t:DFLOAT ): Point DFLOAT +-> -- Function for the torus knot.
5 fac := 4/(2.2 @DFLOAT -sin(q*t))

6 fac * point [cos(p*t), sin(p*t), cos(q*t)]

7 circle := (u:DFLOAT , t:DFLOAT ): Point DFLOAT +-> -- The cross section.
8 r * point [cos u, sin u]

9 ntubeDrawOpt(knot , circle , 0..2*% pi, 0..2*% pi , -- Draw the circle around the knot.
10 var1Steps == uSteps , var2Steps == tSteps )

B.10 ntube.input

The functions in this file create generalized tubes (also known as generalized cylinders). These functions
draw a 2-d curve in the normal planes around a 3-d curve.

1 R3 := Point DFLOAT -- Points in 3-Space
2 R2 := Point DFLOAT -- Points in 2-Space
3 S := Segment Float -- Draw ranges
4 -- Introduce types for functions for:
5 ThreeCurve := DFLOAT -> R3 -- —the space curve function
6 TwoCurve := (DFLOAT , DFLOAT ) -> R2 -- —the plane curve function
7 Surface := (DFLOAT , DFLOAT ) -> R3 -- —the surface function
8 -- Frenet frames define a
9 FrenetFrame := -- coordinate system around a

10 Record (value :R3 ,tangent :R3,normal :R3 ,binormal :R3) -- point on a space curve.
11 frame: FrenetFrame -- The current Frenet frame
12 -- for a point on a curve.

ntubeDraw(spaceCurve, planeCurve, u0..u1, t0..t1) draws planeCurve in the normal planes of space-
Curve. The parameter u0..u1 specifies the parameter range for planeCurve and t0..t1 specifies the
parameter range for spaceCurve. Additionally, the plane curve function takes a second parameter: the
current parameter of spaceCurve. This allows the plane curve to change shape as it goes around the
space curve. See Section B.4 on page 942 for an example of this.

13 ntubeDraw : (ThreeCurve ,TwoCurve ,S,S) -> VIEW3D

14 ntubeDraw (spaceCurve ,planeCurve ,uRange ,tRange ) ==

15 ntubeDrawOpt(spaceCurve , planeCurve , uRange , _

16 tRange , []$List DROPT )

17
18 ntubeDrawOpt: (ThreeCurve ,TwoCurve ,S,S,List DROPT)

19 -> VIEW3D

20 ntubeDrawOpt(spaceCurve ,planeCurve ,uRange ,tRange ,l) == -- This function is similar
21 -- to ntubeDraw, but takes
22 delT:DFLOAT := (high(tRange ) - low(tRange ))/10000 -- optional parameters that it
23 oldT:DFLOAT := low(tRange ) - 1 -- passes to the draw command.
24 fun := ngeneralTube(spaceCurve ,planeCurve ,delT ,oldT)

25 draw(fun , uRange , tRange , l)

nfrenetFrame(c, t, delT) numerically computes the Frenet frame about the curve c at t. Parameter
delT is a small number used to compute derivatives.

27 nfrenetFrame(c, t, delT) ==
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28 f0 := c(t)

29 f1 := c(t+delT)

30 t0 := f1 - f0 -- The tangent.
31 n0 := f1 + f0

32 b := cross (t0 , n0) -- The binormal.
33 n := cross (b,t0) -- The normal.
34 ln := length n

35 lb := length b

36 ln = 0 or lb = 0 =>

37 error "Frenet Frame not well defined "

38 n := (1/ ln)*n -- Make into unit length vectors.
39 b := (1/ lb)*b

40 [f0, t0 , n, b]$FrenetFrame

ngeneralTube(spaceCurve, planeCurve,delT, oltT) creates a function that can be passed to the system
draw command. The function is a parameterized surface for the general tube around spaceCurve. delT
is a small number used to compute derivatives. oldT is used to hold the current value of the t parameter
for spaceCurve. This is an efficiency measure to ensure that frames are only computed once for each
value of t.

41 ngeneralTube: (ThreeCurve , TwoCurve , DFLOAT , DFLOAT ) -> Surface

42 ngeneralTube(spaceCurve , planeCurve , delT , oldT) ==

43 free frame -- Indicate that frame is global.
44 (v:DFLOAT , t: DFLOAT ): R3 +->

45 if (t ~= oldT) then -- If not already computed,
46 frame := nfrenetFrame(spaceCurve , t, delT) -- compute new frame.
47 oldT := t

48 p := planeCurve (v, t)

49 frame .value + p.1* frame .normal + p.2* frame.binormal -- Project p into the normal plane.

B.11 dhtri.input

Create affine transformations (DH matrices) that transform a given triangle into another.

1 tri2tri : (List Point DFLOAT , List Point DFLOAT ) -> DHMATRIX (DFLOAT )

2 -- Compute a DHMATRIX that
3 tri2tri (t1 , t2) == -- transforms t1 to t2, where
4 n1 := triangleNormal(t1) -- t1 and t2 are the vertices
5 n2 := triangleNormal(t2) -- of two triangles in 3-space.
6 tet2tet (concat (t1 , n1), concat (t2 , n2))

7
8 tet2tet : (List Point DFLOAT , List Point DFLOAT ) -> DHMATRIX (DFLOAT )

9 -- Compute a DHMATRIX that
10 tet2tet (t1 , t2) == -- transforms t1 to t2,

11 m1 := makeColumnMatrix t1 -- where t1 and t2 are the
12 m2 := makeColumnMatrix t2 -- vertices of two tetrahedrons
13 m2 * inverse (m1) -- in 3-space.
14
15 makeColumnMatrix(t) == -- Put the vertices of a tetra-
16 m := new (4,4,0) $DHMATRIX (DFLOAT ) -- hedron into matrix form.
17 for x in t for i in 1.. repeat

18 for j in 1..3 repeat

19 m(j,i) := x.j

20 m(4,i) := 1

21 m

22
23 triangleNormal(t) == -- Compute a vector normal to
24 a := triangleArea t -- the given triangle, whose
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25 p1 := t.2 - t.1 -- length is the square root
26 p2 := t.3 - t.2 -- of the area of the triangle.
27 c := cross (p1 , p2)

28 len := length (c)

29 len = 0 => error "degenerate triangle !"

30 c := (1/ len )*c

31 t.1 + sqrt(a) * c

32
33 triangleArea t == -- Compute the area of a
34 a := length (t.2 - t.1) -- triangle using Heron’s
35 b := length (t.3 - t.2) -- formula.
36 c := length (t.1 - t.3)

37 s := (a+b+c)/2

38 sqrt(s*(s-a)*(s-b)*(s-c))

B.12 tetra.input

1 )set expose add con DenavitHartenbergMatrix -- Bring DH matrices into the
2 -- environment.
3 x1:DFLOAT := sqrt (2.0 @DFLOAT /3.0 @DFLOAT ) -- Set up the coordinates of the
4 x2:DFLOAT := sqrt (3.0 @DFLOAT )/6 -- corners of the tetrahedron.
5
6 z := 0.0 @DFLOAT

7 h := 0.5 @DFLOAT

8
9 p1 := point [-h, -x2, z] -- Some needed points.

10 p2 := point [h, -x2 , z]

11 p3 := point [z, 2*x2, z]

12 p4 := point [z, z, x1]

13
14 baseTriangle := [p2, p1 , p3] -- The base of the tetrahedron.
15
16 mt := [h*(p2+p1), h*(p1+p3), h*(p3+p2)] -- The “middle triangle” inscribed
17 -- in the base of the tetrahedron.
18 bt1 := [mt.1, p1 , mt.2] -- The bases of the triangles of
19 bt2 := [p2 , mt.1, mt.3] -- the subdivided tetrahedron.
20 bt3 := [mt.2, p3 , mt.3]

21 bt4 := [h*(p2+p4), h*(p1+p4), h*(p3+p4)]

22
23 tt1 := tri2tri (baseTriangle , bt1) -- Create the transformations
24 tt2 := tri2tri (baseTriangle , bt2) -- that bring the base of the
25 tt3 := tri2tri (baseTriangle , bt3) -- tetrahedron to the bases of
26 tt4 := tri2tri (baseTriangle , bt4) -- the subdivided tetrahedron.
27
28 drawPyramid (n) == -- Draw a Sierpinsky tetrahedron
29 s := createThreeSpace () -- with n levels of recursive
30 dh := rotatex (0.0 @DFLOAT ) -- subdivision.
31 drawPyramidInner(s, n, dh)

32 makeViewport3D(s, " Sierpinsky Tetrahedron ")

33
34 drawPyramidInner(s, n, dh) == -- Recursively draw a Sierpinsky
35 n = 0 => makeTetrahedron(s, dh, n) -- tetrahedron.
36 drawPyramidInner(s, n-1, dh * tt1 ) -- Draw the 4 recursive pyramids.
37 drawPyramidInner(s, n-1, dh * tt2 )

38 drawPyramidInner(s, n-1, dh * tt3 )

39 drawPyramidInner(s, n-1, dh * tt4 )

40
41 makeTetrahedron(sp , dh , color) == -- Draw a tetrahedron into the
42 w1 := dh*p1 -- given space with the given
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43 w2 := dh*p2 -- color, transforming it by
44 w3 := dh*p3 -- the given DH matrix.
45 w4 := dh*p4

46 polygon (sp , [w1, w2 , w4])

47 polygon (sp , [w1, w3 , w4])

48 polygon (sp , [w2, w3 , w4])

49 void ()

B.13 antoine.input

Draw Antoine’s Necklace. Thank you to Matthew Grayson at IBM’s T.J Watson Research Center for
the idea.

1 )set expose add con DenavitHartenbergMatrix -- Bring DH matrices into
2 -- the environment.
3 torusRot : DHMATRIX (DFLOAT ) -- The current transformation for
4 -- drawing a sub ring.
5
6 drawRings (n) == -- Draw Antoine’s Necklace with n

7 s := createThreeSpace () -- levels of recursive subdivision.
8 dh:DHMATRIX (DFLOAT ) := identity () -- The number of subrings is 10n.
9 drawRingsInner(s, n, dh) -- Do the real work.

10 makeViewport3D(s, "Antoine ’s Necklace ")

In order to draw Antoine rings, we take one ring, scale it down to a smaller size, rotate it around
its central axis, translate it to the edge of the larger ring and rotate it around the edge to a point
corresponding to its count (there are 10 positions around the edge of the larger ring). For each of these
new rings we recursively perform the operations, each ring becoming 10 smaller rings. Notice how the
DHMATRIX operations are used to build up the proper matrix composing all these transformations.

12 F ==> DFLOAT

13 drawRingsInner(s, n, dh) == -- Recursively draw Antoine’s
14 n = 0 => -- Necklace.
15 drawRing (s, dh)

16 void()

17 t := 0.0 @F -- Angle around ring.
18 p := 0.0 @F -- Angle of subring from plane.
19 tr := 1.0 @F -- Amount to translate subring.
20 inc := 0.1 @F -- The translation increment.
21 for i in 1..10 repeat -- Subdivide into 10 linked rings.
22 tr := tr + inc

23 inc := -inc

24 dh ’ := dh*rotatez (t)* translate (tr ,0.0@F ,0.0 @F)* -- Transform ring in center
25 rotatey (p)*scale (0.35@F , 0.48@F , 0.4 @F) -- to a link.
26 drawRingsInner(s, n-1, dh ’)

27 t := t + 36.0 @F

28 p := p + 90.0 @F

29 void ()

30
31 drawRing (s, dh) == -- Draw a single ring into
32 free torusRot -- the given subspace,
33 torusRot := dh -- transformed by the given
34 makeObject (torus , 0..2*% pi , 0..2*% pi , var1Steps == 6, -- DHMATRIX.
35 space == s, var2Steps == 15)

36
37 torus(u ,v) == -- Parameterization of a torus,
38 cu := cos(u)/6 -- transformed by the
39 torusRot *point [(1+ cu)*cos(v),(1+ cu)* sin(v),( sin u)/6] -- DHMATRIX in torusRot.
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B.14 scherk.input

Scherk’s minimal surface, defined by: ez cos(x) = cos(y). See: A Comprehensive Introduction to
Differential Geometry, Vol. 3, by Michael Spivak, Publish Or Perish, Berkeley, 1979, pp. 249-252.

1 (xOffset , yOffset ): DFLOAT -- Offsets for a single piece
2 -- of Scherk’s minimal surface.
3
4 drawScherk (m,n) == -- Draw Scherk’s minimal surface
5 free xOffset , yOffset -- on an m by n patch.
6 space := createThreeSpace ()

7 for i in 0..m-1 repeat

8 xOffset := i*%pi

9 for j in 0 .. n-1 repeat

10 rem (i+j, 2) = 0 => ’iter -- Draw only odd patches.
11 yOffset := j*%pi

12 drawOneScherk(space) -- Draw a patch.
13 makeViewport3D(space , "Scherk ’s Minimal Surface ")

14
15 scherk1 (u,v) == -- The first patch that makes
16 x := cos(u)/exp(v) -- up a single piece of
17 point [xOffset + acos(x), yOffset + u, v, abs (v)] -- Scherk’s minimal surface.
18
19 scherk2 (u,v) == -- The second patch.
20 x := cos(u)/exp(v)

21 point [xOffset - acos(x), yOffset + u, v, abs (v)]

22
23 scherk3 (u,v) == -- The third patch.
24 x := exp(v) * cos(u)

25 point [xOffset + u, yOffset + acos(x), v, abs (v)]

26
27 scherk4 (u,v) == -- The fourth patch.
28 x := exp(v) * cos(u)

29 point [xOffset + u, yOffset - acos(x), v, abs (v)]

30
31 drawOneScherk(s) == -- Draw the surface by
32 makeObject (scherk1 ,-% pi/2..% pi/2 ,0..% pi/2, space ==s, -- breaking it into four
33 var1Steps == 28, var2Steps == 28) -- patches and then drawing
34 makeObject (scherk2 ,-% pi/2..% pi/2 ,0..% pi/2, space ==s, -- the patches.
35 var1Steps == 28, var2Steps == 28)

36 makeObject (scherk3 ,-% pi/2..% pi/2,-% pi /2..0 , space ==s,

37 var1Steps == 28, var2Steps == 28)

38 makeObject (scherk4 ,-% pi/2..% pi/2,-% pi /2..0 , space ==s,

39 var1Steps == 28, var2Steps == 28)

40 void ()
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%e, 31
%i, 31
%infinity, 31
%minusInfinity, 31
%pi, 31
%plusInfinity, 31
!, 26, 42, 141, 827
$%, 842
$, 22, 106, 842, 932
%%, 24, 926
%, 24, 26, 114, 141, 218, 219, 287, 311, 837, 842,

845, 850, 879, 926
&, 126, 176, 839, 876
’, 28, 219
(), 83, 181, 182, 836, 837
), 72
*, 79, 118
++, 32, 837, 880
+->, 22, 59, 171, 208, 901
+, 79
--, 32
->, 845
-, 79, 176
..., 93
.., 160, 709
., 159, 855
::, 29, 35, 94, 98, 99
:=, 26, 141
:, 86, 223, 823
;, 169
==, 142, 208, 214, 836, 847
=>, 145, 153, 154
=, 149, 228, 254, 255, 711
>, 176
?, 26, 84, 141, 149, 177, 216, 223, 372
@, 106, 149, 477, 805
_, 937
add, 839, 843
and, 118
not, 118
or, 118

|, 161, 163, 164, 186, 220

abbreviation
constructor, 85, 822

abstract datatype, 823
Ada, 11
adaptive plotting, 233, 241, 242, 279, 280
add , 824, 839, 851
Airy function, 289
algebra

Dirac spin, 445
exterior, 443
non-associative, 390

algebraic number, 300, 302
ancestor, 875
anonymous function, 208
antiderivative, 323
Antoine’s Necklace, 950
APL, 81, 840
apply, 172
approximation, 309, 314, 339
argument, 29, 172
arithmetic

modular, 354
arity, 182
array

flexible, 45, 506
one-dimensional, 44
two-dimensional, 49, 750

assignment, 26, 141, 823
delayed, 142
immediate, 141
multiple immediate, 144

association list, 403
associativity law, 390
axiom, 840
axiom, 21

badge, 98
bag, 45
balanced binary tree, 46, 405
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basis
Gröbner, 532
normal, 366
orthonormal, 310

benefactor, 876
Bernoulli

polynomial, 335, 341
Bessel function, 289
binary search tree, 46, 414
binary tree, 46
binding, 206
block, 53, 141, 145
break , 145, 152, 158
Browse, 198, 865
by , 160, 709

C language
assignment, 142

capsule, 824, 839
Cartesian

coordinate system, 236, 260
ovals, 232

case , 93, 96, 746
category, 5, 13, 23, 78, 80, 100, 835

anonymous, 843
constructor, 835
defaults, 839
definition, 836
membership, 838

category extension, 876
character set, 124
characteristic

value, 307
vector, 307

chemistry, 532
Chinese Remainder Algorithm, 406
class number, 557
Clef, 22
clipping, 234, 274
coerce, 850
coercion, 99
collection, 165
color, 119, 237

curve, 234
multiplication, 237
point, 235
shade, 238

colormap, 276
combinatorics, 456
command line editor, 22

compiler, 151, 172, 184
complex

floating-point number, 287
complex numbers, 36, 439
computation timings

displaying, 931
conditional, 148, 828, 843
conformal map, 944
constant function argument, 190
constructor, 77

abbreviation, 85, 822
category, 835
domain, 77
exposed, 110
hidden, 110
package, 81, 821

continued fraction, 37, 450, 519
conversion, 29, 98, 850
coordinate system, 274

Cartesian, 236, 260
cylindrical, 272
parabolic cylindrical, 257
spherical, 260
toroidal, 258

correctness, 840
curve

color, 234
non-singular, 232
one variable function, 228
parametric plane, 229
parametric space, 255
plane algebraic, 232
smooth, 232

cycle index, 456
cyclic list, 42
cyclohexan, 532
cyclotomic polynomial, 295
cylindrical coordinate system, 272

declaration, 26, 27, 86, 823, 836
default definitions, 839
default package, 876
delayed assignment, 142
denominator, 518
dependent, 875
derivative, 61
differential equation, 343, 344, 654

partial, 390
differential polynomial, 654
differentiation, 61
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formal, 63
partial, 62

Dirac spin algebra, 445
directory

default for searching, 122
for spool files, 933

Dirichlet series, 555
discrete logarithm, 357, 361
dithering, 277
documentation, 837
domain, 11, 75, 875

add, 851
representation, 850

domain constructor, 77, 845

editing files, 922
eigenvalue, 307
eigenvector, 307
element

primitive, 357, 363
else , 148
emacs, 922
environment, 824
equality testing, 149
equation, 149

differential, 344, 654
solving, 343
solving in closed-form, 343
solving in power series, 351

linear
solving, 311

polynomial
solving, 313, 315

essential singularity, 320
Etruscan Venus, 942
Euler

Beta function, 288, 944
gamma function, 288
ϕ function, 549, 554
polynomial, 294
totient function, 294

example functions
addMonomProd , 854
bubbleSort2 , 202
buildFromRoot , 415
clipFun , 810
complexDerivativeFunction , 816
complexNumericFunction , 816
conformalDraw , 944, 945
displayRow , 215

double , 498
drawComplex , 812, 813
drawComplexVectorField , 810
drawRibbons , 803, 804
eleven , 188
evenRule , 908
f , 151, 152, 179, 192, 826
f1 , 196
f2 , 197
f3 , 197
fact , 51
fib , 193, 194, 207, 936
firstOfTwins , 169
g , 180, 192, 212
gasp , 483
groupSqrt , 55
h , 204
half , 483
heapsort , 538
howMany , 47
insertRoot , 415
logrule , 218
logrules , 220
makeArrow , 806, 807
newmap , 273
newtonStep , 816
nfrenetFrame , 947
ngeneralTube , 948
ntubeDraw , 947
p , 205, 206
pal? , 216, 217
palAux? , 216
pascalRow , 215
power , 623
reorder , 273
resetRecord , 206
riemannConformalDraw , 945
sayBranch , 93, 96
shiftfib , 626
sin , 182
square , 623
squareTerms , 759
sum4 , 341
swap , 199
t , 54
theVariableIn , 816

exiting FriCAS, 22
export, 81, 836, 875
expose, 110, 214, 866
exposed
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constructor, 110
exposed.lsp, 110
exposure

group, 110
exterior algebra, 443

factorial, 626
factorization, 298, 490, 547
Fibonacci numbers, 174, 193, 207, 326, 548, 555,

707
field, 79, 879

finite
conversions, 368
extension of, 358, 360, 363, 366
prime, 354

Galois, 354
Hilbert class, 390
imaginary quadratic, 557
prime, 354
splitting, 383

file
.Xdefaults, 119, 278, 282
.fricas.input, 122
exposed.lsp, 110
history, 924
input, 53, 121, 146, 911, 925, 930
vs. package, 825
where found, 122

keyed access, 562
sending output to, 122
spool, 932
start-up profile, 122

finite field, 354, 358, 360, 363, 366
factoring polynomial with coefficients in, 299

flexible array, 45, 506
floating point, 35

arbitrary precision, 477, 509
hardware, 477, 509
input, 509
output, 514

floating-point number, 287
complex, 287

fluid variable, 206
font, 119
for , 158, 159
FORTRAN, 11

assignment, 142
FORTRAN output format, 126

arrays, 128
breaking into multiple statements, 126

data types, 127
integers vs. floats, 126
line length, 126
optimization level, 127
precision, 127

fraction, 517
continued, 37, 450, 519
partial, 37, 519, 662

frame, 112
exposure and, 112

free , 202
free variable, 202
function, 51

Airy Ai, 289
Airy Bi, 289
anonymous, 208
declaring, 211
restrictions, 212

arguments, 172
Bessel, 289
binary, 622
caching values, 191
calling, 29
coloring, 259
compiler, 184
complex arctangent, 295
complex exponential, 295
constant argument, 190
declaring, 198, 211
digamma, 289
elementary, 321
enumerating generating, 462
Euler Beta, 288, 944
from an object, 195
Gamma, 288, 944
hypergeometric, 290
interpretation, 184
made by function, 195
nullary, 622
numeric, 287
one-line definition, 177
parameters, 172
piece-wise definition, 51, 186
polygamma, 289
predicate, 190
special, 288
symmetric, 456
totient, 294
unary, 622
vs. macro, 171
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with no arguments, 181
function body, 876

Galois
field, 354
group, 382

gamete, 390
Gaussian integer, 449, 455, 548
generalized continuum hypothesis, 419
genetics, 390
global variable, 202
graph, 458
graphics, 32, 227

.Xdefaults, 282
button font, 282
graph label font, 282
graph number font, 282
inverting background, 282
lighting font, 282
message font, 282
monochrome, 282
PostScript file name, 278
title font, 282
unit label font, 282
volume label font, 282

2D commands
axes, 243
close, 243
connect, 243
graphs, 243
key, 243
move, 243
options, 243
points, 243
resize, 243
scale, 243
state of graphs, 243
translate, 243

2D control-panel, 239
axes, 241
box, 241
buttons, 241
clear, 241
drop, 241
hide, 241
lines, 241
messages, 240
multiple graphs, 240
pick, 241
points, 241

ps, 241
query, 241
quit, 241
reset, 241
scale, 239
transformations, 239
translate, 239
units, 241

2D defaults
available viewport writes, 242

2D options
adaptive, 233
clip in a range, 234
clipping, 233
coordinates, 236
curve color, 234
point color, 235
range, 235
set units, 235
to scale, 233

3D commands
axes, 279
close, 279
control-panel, 279
define color, 279
deltaX default, 281
deltaY default, 281
diagonals, 279
drawing style, 279
eye distance, 279
intensity, 280
key, 279
lighting, 279
modify point data, 279
move, 279
outline, 279
perspective, 280
phi default, 281
reset, 280
resize, 280
rotate, 280
showRegion, 280
subspace, 280
theta default, 281
title, 280
translate, 280
viewpoint, 281
zoom, 281

3D control-panel, 275
axes, 277
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bounds, 277
buttons, 277
bw, 277
clip volume, 278, 279
clipping on, 279
color map, 276
eye reference, 278
hide, 278
intensity, 278
light, 278
messages, 276
move xy, 278
move z, 278
outline, 277
perspective, 278
pixmap, 277
ps, 278
quit, 278
reset, 278
rotate, 275
save, 277
scale, 276
shade, 277
show clip region, 278
smooth, 277
solid, 277
transformations, 275
translate, 276
view volume, 278
wire, 277

3D defaults
available viewport writes, 281
reset viewport defaults, 281
tube points, 280
tube radius, 280
var1 steps, 280
var2 steps, 281
viewport position, 281
viewport size, 281
viewport writes, 281

3D options, 258
color function, 259
title, 258
variable steps, 262

advanced
build 3D objects, 265
clip, 274
coordinate systems, 271

color, 237
hue function, 237

multiply function, 237
number of hues, 237
primary color functions, 237

palette, 238
plot3d defaults
adaptive, 279
set adaptive, 280
set max points, 280
set min points, 280
set screen resolution, 280

set 2D defaults
adaptive, 241
axes color, 241
clip points, 242
line color, 242
max points, 242
min points, 242
point color, 242
point size, 242
reset viewport, 242
screen resolution, 242
to scale, 242
units color, 242
viewport position, 242
viewport size, 242
write viewport, 242

three-dimensional, 253
two-dimensional, 227
Xdefaults
2d, 282

greatest common divisor, 600
Gröbner basis, 57, 476, 532
group

alternating, 458
cyclic, 363, 458
dihedral, 385, 390, 458
exposure, 110
Galois, 382
symmetric, 390, 457

has , 78
heap, 45, 537
hierarchy, 41
Hilbert class field, 390
Hilbert matrix, 515
history, 121
hither clipping plane, 278
hue, 237
HyperDoc, 21
HyperDoc, 865
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HyperDoc, 115
X Window System defaults, 119

ideal
primary decomposition, 379

if , 148, 829
immediate assignment, 141
in , 158, 159
indentation, 145, 836
inequality testing, 149
∞ (= %infinity), 31
inherit, 873
integer

machine, 717
integration, 64, 322

definite, 324
result as a complex functions, 324
result as list of real functions, 323

interpret-code mode, 151, 184
interpreter, 184
interrupt, 22
invocation, 172
iterate , 145, 156, 159
iteration, 158, 164

nested, 161, 166
parallel, 161, 166

Jacobi symbol, 549, 557
Join , 836, 847

Klein bottle, 942
Korn shell, 922
Kronecker delta, 431

Laplace transform, 321
Laurent series, 335
lazy evaluation, 328
least common multiple, 600
Legendre

symbol, 556
Legendre polynomials, 5
library, 82

constructors
?(Integer), 84
?, 84
ALGSC, 391
ARRAY1, 646
AbelianGroup&, 851
AbelianGroup, 847, 849, 851
AbelianMonoid, 852

Aggregate&, 876
AlgebraGivenByStructuralConstants, 390, 391
AlgebraPackage, 390
AlgebraicNumber, 485, 898
Any, 75, 97, 98, 109, 110, 114, 901
AssociationList, 403, 405, 747, 828
BalancedBinaryTree(S), 405
BasicOperator, 408, 409, 558, 560
BasicType&, 876
BinaryExpansion, 412
BinarySearchTree(R), 414
Bits, 44, 827
Boolean(), 83
Boolean, 30, 44, 81, 83, 93, 133, 148, 149,
190, 216, 482, 483, 534, 543, 837, 840,
841

COMPLEX, 85
CardinalNumber, 416, 419
CartesianTensor(i0,dim,R), 421, 432
CartesianTensor, 421, 432
CharacterClass, 435, 437, 438
Character, 433
CharacteristicZero, 787
CliffordAlgebra(n,K,Q), 439, 853
CliffordAlgebra, 845, 854
CoercibleTo(OutputForm), 836, 838, 878
Color, 237
CommutativeRing, 635
CommutativeStar, 841
Comparable, 905
Complex(DoubleFloat), 35
Complex(Float), 15, 35
Complex(Fraction(Polynomial(Integer))), 83
Complex(Integer), 15, 900
Complex(R), 15
ComplexCategoryD1, 114
ComplexCategory, 114
ComplexDoubleFloat, 287, 288, 290, 811
ComplexFloat, 287, 290, 485
ComplexFractionPolynomialInteger, 83
ComplexInteger, 449, 485, 662
Complex, 78–80, 85, 99, 100, 107, 114, 198,
447, 485, 876

ContinuedFraction, 450
ConvertibleToInputForm, 198
ConvertibleTo, 849
CoordinateSystems, 271, 274
DFLOAT, 85, 477, 509, 906, 946
DHMATRIX, 948, 950
DMP, 475
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DRAWCX, 822
DSMP, 654
DataList, 856, 857
Database(IndexCard), 858
Database, 855–857
DeRhamComplex, 468
DecimalExpansion, 467
DifferentialSparseMultivariatePolynomial, 654
DiophantineSolutionPackage, 22
DirectProduct(n,R), 877
DirectProduct, 850
DirichletRing, 899
DistributedMultivariatePolynomial, 56, 475,
477, 667, 909

DoubleFloatSpecialFunctions, 288
DoubleFloat, 85, 106, 231, 251, 257, 267,
287, 288, 290, 447, 477–479, 509, 805,
810, 906

DrawComplex, 822–825, 843, 844
DrawOption, 243, 271
EXPRINT, 815
EXPR, 85
ElementaryFunctionODESolver, 344
Entry, 47, 827
EqTable, 479, 747, 827
EquationPolynomialInteger, 149
Equation, 345, 480
EuclideanDomain, 449, 662, 697, 787, 839
Evalable&, 876
Exit, 483, 484
Expression(Integer), 138, 898
ExpressionFloat, 484, 486
ExpressionInteger, 221, 333, 484, 486, 815
ExpressionR, 486
ExpressionToUnivariatePowerSeries, 334
Expression, 85, 138, 198, 225, 484–486, 558,
561, 906

ExtensibleLinearAggregate, 506
FFCGP, 365
FFCGX, 364
FFCG, 363
FFNBP, 367
FFNBX, 367
FFNB, 366
FFPOLY2, 378
FFPOLY, 372
FFP, 362, 363
FFX, 362
FF, 360
FLOAT, 85, 327, 477, 509

FP, 138
FRAC(COMPLEX(INT)), 85
FRAC(ComplexInteger), 85
FRACINT, 331
FRAC, 85, 517
FRPOLYINT, 384
FactoredFunctions2(Integer,FractionInteger), 84
FactoredFunctions2, 498
FactoredInteger, 547
FactoredPolynomialInteger, 384
Factored, 490, 498
Field, 14, 79, 80, 486, 683, 878–880
File(S), 499
FileName, 131, 132, 499, 502
File, 502, 748
FiniteFieldCyclicGroupExtensionByPolynomial,
359, 365

FiniteFieldCyclicGroupExtension, 359, 364, 365
FiniteFieldCyclicGroup, 359, 363–365
FiniteFieldExtensionByPolynomial, 359, 362
FiniteFieldExtension, 359, 362
FiniteFieldHomomorphisms, 369
FiniteFieldNormalBasisExtensionByPolynomial,
359, 367

FiniteFieldNormalBasisExtension, 359, 367
FiniteFieldNormalBasis, 359, 366, 367
FiniteFieldPolynomialPackage2, 378
FiniteFieldPolynomialPackage, 372, 376
FiniteField, 359, 360, 362
FiniteLinearAggregate(R), 842
FiniteSetAggregate(Character), 437
Finite, 14, 847
FlexibleArray(S), 847
FlexibleArray, 506, 827
FloatSpecialFunctions, 290
Float, 11, 13, 35, 54, 75, 85, 105, 106, 176,
198, 287, 290, 309, 447, 454, 477, 485,
509–511, 513, 514, 516, 666

FormatLaTex, 23
FortranCode, 137, 138
FortranOutputStackPackage, 132
FortranProgram, 134, 138
FortranScalarType, 133, 137
Fraction(Integer), 79, 81, 108, 184, 787, 842,
843, 852

Fraction(R), 843, 847
FractionComplexInteger, 85
FractionInteger, 98, 103, 105, 309, 447, 510,
666, 843, 879

FractionPolynomialInteger, 675, 843
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Fraction, 16, 78, 79, 85, 99, 100, 517, 582,
762

FramedNonAssociativeAlgebra, 390
FullPartialFractionExpansion, 524, 525, 906
FunctionSpaceComplexIntegration, 324
FunctionSpaceIntegration, 322
GaloisGroupFactorizer, 908
GcdDomain, 566, 576, 697, 722
GeneralDistributedMultivariatePolynomial, 57,
477

GeneralQuaternion(Fraction(Integer),a,b), 528
GeneralQuaternion, 528
GeneralSparseTable(K,E,Table(K,E),dflt), 721
GeneralSparseTable, 531, 721, 747
GeneralUnivariatePowerSeries, 907
GenerateUnivariatePowerSeries, 337
GenericNonAssociativeAlgebra, 390
GradedAlgebra(R,E), 432
GradedAlgebra(R,NonNegativeInteger), 432
GradedModule(R,E), 432
GraphImage, 244, 248–250, 252
GroebnerFactorizationPackage, 532, 534
GroupPresentationFunctions1, 534
GroupPresentation, 534
GuessAlgebraicNumber, 536
GuessInteger, 536
GuessPolynomialInteger, 536
GuessPolynomial, 536
Guess, 536
HDMP, 475, 476
HashTable, 827
Heap(S), 537
HexadecimalExpansion, 539
HomogeneousAggregate&, 876
HomogeneousAggregate, 842, 873
HomogeneousDistributedMultivariatePolynomial,
57, 475

INT, 85
IPF, 356
IdealDecompositionPackage, 379
IndexedAggregate(Integer,Entry), 827
IndexedAggregate(Integer,Integer), 833
IndexedAggregate(Integer,S), 827
IndexedAggregate, 827, 833
IndexedString, 737
InnerEvalable&, 876
InnerIndexedTwoDimensionalArray, 876
InnerPrimeField, 356
InputForm, 907
Integer(), 83

IntegerLinearDependence, 551
IntegerMod, 354, 355
IntegerNumberSystem, 839
IntegerNumberTheoryFunctions, 552
Integer, 11–13, 15, 16, 22, 25, 47, 75–77,
79, 81–85, 92–95, 100, 101, 103, 106, 176,
177, 179, 181, 184, 197, 198, 396, 399,
447, 483, 485, 510, 540, 644, 648, 649,
662, 717, 719, 787, 827, 833, 839, 843,
879, 932, 937

IntegralDomain, 14, 15, 517, 768
InternalRationalUnivariateRepresentationPack-
age, 787

Join, 836, 847
K, 850
Key, 47
KeyedAccessFile(S), 562
KeyedAccessFile, 566, 583, 747
LAZM3PK, 572, 575
LEXTRIPK, 576, 579, 787
LLLReduction, 614
LazardSetSolvingPackage, 566, 697, 721, 772,
909

LexTriangularPackage, 566, 575, 576, 697,
721, 787, 790, 795, 909

Library, 583, 584
LieExponentials, 909
LiePolynomial, 780, 783, 909
LinGroebnerPackage, 576
LinearOrdinaryDifferentialOperator(A,diff), 592
LinearOrdinaryDifferentialOperator1(A), 596
LinearOrdinaryDifferentialOperator1, 596
LinearOrdinaryDifferentialOperator2(A,M), 601
LinearOrdinaryDifferentialOperator2, 601
LinearOrdinaryDifferentialOperator, 592, 907
LinearSystemMatrixPackage, 875
List(Integer), 395, 833, 936
List(Matrix(Polynomial(Integer))), 12
List(R), 13
List(S), 858
List(Segment(Integer)), 395
ListAggregate, 858
ListFloat, 607
ListInteger, 607, 833
ListListListBoolean, 607
ListNonNegativeInteger, 642
ListPolynomialFractionInteger, 607
ListSymbol, 138, 576, 653
List, 12, 78–80, 607, 827, 828, 845, 878, 913
MATCAT-, 884
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MATCAT, 884
MATRIX, 85, 869, 884, 920
MPOLY([x,y],INT), 639
MPOLY, 639, 640
MakeFunction, 620, 622
MakeUnaryCompiledFunction(E,S,T), 814
MakeUnaryCompiledFunction, 815
MappingPackage1, 622
MappingPackage2, 622
MappingPackage3, 622
Mapping, 622, 625
Matrix(?(Polynomial)), 84
Matrix(Float), 75, 936
Matrix(Integer), 12, 879, 936
Matrix(R), 79, 842, 854, 878–880
MatrixCategory&, 852, 876, 884
MatrixCategory(R,Row,Col), 13, 873
MatrixCategory(R,Vector(R),Vector(R)), 842
MatrixCategory, 842, 843, 851, 852, 861, 873,
884

MatrixPolynomial?, 84
Matrix, 5, 12, 16, 49, 85, 627, 636, 727, 861,
866, 869–871, 873–882, 884, 936

MergeThing, 857
ModMonic(R,S), 847
Module(R), 13
Monad, 390
Monoid, 838
Multiset(R), 637
MultivariatePolynomial([x,y],Integer), 639
MultivariatePolynomial([z,w,r],ComplexFloat),
84

MultivariatePolynomial, 56, 475, 639, 641,
642, 852

NNI, 85, 913
NewDistributedMultivariatePolynomial, 667
NewSparseMultivariatePolynomial(R,V), 576
NewSparseMultivariatePolynomial, 697, 908
NewSparseUnivariatePolynomial, 908
NonAssociativeRing, 842
NonAssociativeRng, 390
NonNegativeInteger, 85, 101, 103
None, 411, 642
NormalizedTriangularSetCategory, 580
NumberTheoreticPolynomialFunctions, 293
ODPOL(FRACINT), 654
ODPOL, 654, 659
Object, 877
Octonion, 41, 642, 646
OneDimensionalArray(Float), 84

OneDimensionalArray, 44, 208, 506, 646, 751,
765, 827

OperationsQuery, 858
Operator(R), 648
Operator, 649
OrderedAbelianMonoidSup, 566, 697, 722, 768
OrderedFinite, 14
OrderedMonoid, 783
OrderedRing, 787
OrderedSet, 14, 15, 566, 697, 722, 768, 827,
843, 847, 905

OrderedVariableList(ls), 576
OrderedVariableList, 653
OrderlyDifferentialPolynomial, 654, 659
OrderlyDifferentialPolyomial, 662
OrthogonalPolynomialFunctions, 290
OutputForm, 29, 111, 112, 214, 215, 837,
856, 857, 893, 904, 905

PF, 356
PI, 85
POLY(Integer), 85
POLY2, 884
POLYINT, 85
POLYUP(x,INT), 755
POLY, 85, 666
Palette, 238
PartialFraction, 662
Permanent, 665
PermutationGroup, 534
Polynomial(Boolean), 81, 841
Polynomial(Float), 12, 13, 81
Polynomial(Fraction(Integer)), 16, 184
Polynomial(INT), 85
Polynomial(Integer), 75, 77, 81, 82, 85, 109,
196, 197, 839, 932

Polynomial(R), 55, 932
Polynomial?, 84
PolynomialCategory, 81, 659, 850, 851
PolynomialFractionInteger, 675
PolynomialFunction2(R,S), 81
PolynomialFunctions2(Integer,Float), 81
PolynomialFunctions2, 884
PolynomialIdeal, 379, 394
PolynomialInteger, 133, 447, 644
Polynomial, 12, 16, 56, 77, 78, 85, 99, 107,
177, 639–641, 666–668, 670, 676, 755, 762,
841, 845, 932

PositiveInteger, 25, 76, 77, 85, 98, 101, 103,
104, 109, 184, 838

PrimeField(p), 360, 366
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PrimeField11, 715
PrimeField2, 356, 358, 360
PrimeField3, 363, 366
PrimeField, 355, 356, 360
PrimitiveArray(K), 854
PrincipalIdealDomain, 839
PseudoRemainderSequence, 908
QuadraticForm(2,FractionInteger), 851, 852
QuadraticForm(n,K), 846
QuadraticForm, 845–849, 851–853
Quaternion, 41, 676
QueryEquation, 856, 857
QuotientFieldCategory(R), 843, 847
QuotientFieldCategory, 843
REGSET, 571, 573–576, 697, 787
ROMAN, 707, 708
RSEGSET, 701, 706
RadixExpansion(10), 467
RadixExpansion(16), 539
RadixExpansion(2), 412
RadixExpansion, 681, 682
RationalFunctionDefiniteIntegration, 324
RationalNumber, 852
RealClosedField, 683
RealClosure(R), 790
RealClosure, 582, 683, 787, 909
RealConstant, 787
RealPolynomialUtilitiesPackage, 683
RealRootCharacterizationCategory, 683
Record(a:Integer,b:Float,c:String), 96
Record(num:R,den:Factored(R)), 663
Record, 75, 88, 90, 91, 97, 312, 403, 857
RectangularMatrix, 875, 920
RecursivePolynomialCategory(R,E,V), 566, 697,
722, 768

RecursivePolynomialCategory, 700
RegularChain, 697
RegularTriangularSetCategory(R,E,V,P), 566
RegularTriangularSet, 566, 569, 576, 697, 699,
721, 722, 725, 772, 787, 908

Rep, 850
RepeatedSquaring(%), 839
RepeatedSquaring(Polynomial(Integer)), 839
RepeatedSquaring, 839
RewriteRule, 219
RightOpenIntervalRootCharacterization, 683
Ring, 13–15, 22, 49, 78, 80, 81, 181, 627,
765, 766, 783, 836, 838–842, 869, 876,
877, 932

RomanNumeral, 707, 709

Ruleset, 223
SDPOL, 654
SINT, 906
SREGSET, 575, 576, 722
STRING, 85
Segment(Integer), 395
SegmentBinding, 711–713
SegmentDoubleFloat, 822
Segment, 709, 711, 763, 764
SemiGroup&, 839
SemiGroup, 838–840, 851
SequentialDifferentialPolynomial, 654, 662
Set(R), 637
SetCategory&, 876
SetCategory, 14, 836–838, 878
Set, 713, 717
SingleInteger, 34, 717–719, 906
SortPackage(List(Integer),Integer), 833
SortPackage, 832, 845
SparseMultivariatePolynomial, 909
SparseTable(K,E,dflt), 721
SparseTable, 719, 721, 747
SparseUnivariatePolynomial, 908
SquareFreeRegularTriangularSetCategory(R,E,V,P),
566

SquareFreeRegularTriangularSet, 572, 697, 721–
723, 772, 908

SquareMatrix(2,FractionInteger), 851
SquareMatrix(3,?), 84
SquareMatrix(3,Integer), 84
SquareMatrix(?,?), 85
SquareMatrix(?,Integer), 84
SquareMatrix(n,K), 850, 851
SquareMatrix(n,R), 79, 727
SquareMatrix, 77, 78, 85, 100, 727, 728, 851,
861, 875

StreamFunctions1, 730
StreamFunctions2, 730
StreamFunctions3, 730
Stream, 167, 614, 728, 730, 855
String(), 83
StringTable(S), 562, 738
StringTable, 738, 747
String, 11, 13, 44, 83, 85, 93, 94, 106, 133,
176, 198, 411, 433, 499, 731, 827, 838,
893, 905

SubsetCategory, 904
SymbolTable, 134, 138
Symbol, 28, 133, 137, 560, 655, 659, 670,
712, 738, 780
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Table(Key,Entry), 47
Table(String,S), 738
Table, 403, 479, 562, 743, 747
TexFormat, 125
TextFile, 748, 749
TheSymbolTable, 136
ThreeDimensionalViewport, 264
ThreeSpace(DoubleFloat), 813
ThreeSpace, 264, 265, 807
Tuple, 900
TwoDimensionalArrayCategory&, 876
TwoDimensionalArrayCategory, 842, 873
TwoDimensionalArray, 49, 627, 750, 755
TwoDimensionalViewport, 244, 249, 250, 252,
253

Type, 77, 80, 98, 836, 838
UP(a1,POLYFRACINT), 755
UP(x,INT), 755
UP(x,POLYINT), 755
UP, 85, 755
UTS, 327, 331, 884
UnaryRecursiveAggregate, 828
Union(Integer,PositiveInteger), 93
Union(a:Integer,b:Float,c:String), 96
Union, 75, 92–96, 137
UniqueFactorizationDomain, 900
UnivariatePolynomial(x,Float), 84
UnivariatePolynomial(x,FractionInteger), 662,
664

UnivariatePolynomialCategory, 683
UnivariatePolynomial, 56, 85, 755, 762
UnivariateTaylorSeries, 327, 331, 884
UniversalSegment, 763, 764
VECTOR2, 913
Variable(’%), 926
Variable(q), 28
Variable(x), 109, 184
Variable, 28, 739
VectorFunctions2, 913
VectorSpaceBasis, 899
Vector, 44, 208, 432, 633, 765–767, 827
Void(), 83
Void, 83, 142, 149–152, 156, 158, 162, 484,
767, 768, 856

WUTSET, 768, 772
WuWenTsunTriangularSet, 768, 770
XDistributedPolynomial, 777, 780, 783, 909
XPBWPolynomial, 780, 783, 909
XPOLY, 780
XPR, 783

XPolynomialRing, 780, 783
XPolynomial, 780, 783
XRecursivePolynomial, 778, 780, 783, 909
ZDSOLVE, 787, 790
ZeroDimensionalSolvePackage, 566, 575, 576,
581, 582, 697, 721, 772, 786, 787, 909

finiteAggregate, 827
shallowlyMutable, 827
unitsKnown, 842
Any , 97, 109
AssociationList , 403
BalancedBinaryTree , 405
BasicOperator , 408
BinaryExpansion , 412
BinarySearchTree , 414
Boolean , 148
CardinalNumber , 416
CartesianTensor , 421
Character , 433, 435
CharacterClass , 435
CliffordAlgebra , 439
Color , 237
Complex , 447
ContinuedFraction , 450
CoordinateSystems , 271
CycleIndicators , 456
DecimalExpansion , 467
DeRhamComplex , 468
DistributedMultivariatePolynomial , 56, 475
DoubleFloat , 35, 477, 509
DoubleFloatSpecialFunctions , 288
DrawOption , 271
ElementaryFunctionODESolver , 344
EqTable , 479
Equation , 149, 480
Exit , 483
Expression , 225, 484, 815
ExpressionToUnivariatePowerSeries , 334
Factored , 384, 490
FactoredFunctions2 , 498
File , 499
FileName , 502
FlexibleArray , 506
Float , 477, 509
FortranOutputStackPackage , 132
FortranProgram , 137
FortranScalarType , 133
FortranType , 133
Fraction , 517, 843
FreeMagma , 520
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FullPartialFractionExpansion , 524
FunctionSpaceComplexIntegration , 324
FunctionSpaceIntegration , 322
GeneralDistributedMultivariatePolynomial ,
57, 477

GeneralQuaternion , 528
GeneralSparseTable , 531, 721
GenerateUnivariatePowerSeries , 337
GradedAlgebra , 432
GradedModule , 432
GroebnerFactorizationPackage , 532
GroupPresentation , 534
GuessPolynomialInteger , 536
Heap , 537
HexadecimalExpansion , 539
HomogeneousDistributedMultivariatePolynomial
, 57, 475

Integer , 540
IntegerLinearDependence , 551
IntegerNumberTheoryFunctions , 552
Kernel , 558
KeyedAccessFile , 562
LazardSetSolvingPackage , 566
LexTriangularPackage , 575
Library , 583
LieExponentials , 584
LiePolynomial , 587
LinearOrdinaryDifferentialOperator , 592
LinearOrdinaryDifferentialOperator1 , 596
LinearOrdinaryDifferentialOperator2 , 601
List , 607
LLLReduction , 614
LyndonWord , 616
MakeBinaryCompiledFunction , 814
MakeFunction , 620
MakeUnaryCompiledFunction , 814
MappingPackage1 , 622
Matrix , 627, 866
Multiset , 637
MultivariatePolynomial , 56, 639, 852
None , 642
NumberTheoreticPolynomialFunctions , 293
Octonion , 642
OneDimensionalArray , 646
Operator , 648
OrderedVariableList , 653
OrderlyDifferentialPolynomial , 654
OrthogonalPolynomialFunctions , 290
OutputForm , 112, 214
Palette , 238

PartialFraction , 662
Permanent , 665
Polynomial , 55, 666
Quaternion , 642, 676
QuotientFieldCategory , 843
RadixExpansion , 679
RealClosure , 682
RegularTriangularSet , 697
Ring , 841
RomanNumeral , 706
Segment , 709, 763
SegmentBinding , 711
SemiGroup , 838, 840
SequentialDifferentialPolynomial , 654
Set , 713
SetCategory , 836
SingleInteger , 34, 717
SparseTable , 719
SquareFreeRegularTriangularSet , 721
SquareMatrix , 99, 727
Stream , 728
StreamFunctions1 , 730
StreamFunctions2 , 730
StreamFunctions3 , 730
String , 107, 731
StringTable , 738
Switch , 137
Symbol , 28, 738
SymbolTable , 134
Table , 743
TextFile , 748
TheSymbolTable , 135
ThreeSpace , 265
TwoDimensionalArray , 750
Type , 80
UnivariatePolynomial , 56, 755
UnivariateTaylorSeries , 327
UniversalSegment , 763
Variable , 28
Vector , 765
Void , 767
WuWenTsunTriangularSet , 768
XPBWPolynomial , 772
XPolynomial , 780
XPolynomialRing , 783
ZeroDimensionalSolvePackage , 786

operations
AND, 137
And, 719
Beta, 288, 290
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D, 61, 62, 172, 344, 487, 602, 656, 673, 757
EQ, 137
GE, 137
GT, 137
Gamma, 288, 290, 826
LE, 137
LT, 137
NOT, 137
Not, 719
OR, 137
Or, 719
SFunction, 465
[], 608
abs, 171
acos, 287
acosh, 287
acot, 287
acoth, 287
acsc, 287
acsch, 287
addmod, 718
airyAi, 289
airyBi, 289
alternating, 458
and, 81, 840
appendPoint, 249
append, 608
approximants, 451
argumentList!, 136
argumentListOf, 136
argument, 561
arity, 410
asec, 287
asech, 287
asin, 287
asinh, 287
atan, 287
atanh, 287
bernoulliB, 293
besselI, 289
besselJ, 289
besselK, 289
besselY, 289
binarySearchTree, 414
binary, 412
bipolarCylindrical, 274
bipolar, 274
bit?, 12
blankSeparate, 215
bright, 238

bubbleSort!, 828, 832, 833
cap, 459
cartesian, 274
ceiling, 843
center, 215
characteristic, 81, 354
chebyshevT, 290
chebyshevU, 290
clearFortranOutputStack, 132
clipFun, 823
clipPointsDefault, 233
coefficients, 758, 759
coerce, 99, 133, 138, 225, 250, 837, 856–
858

colSlice, 399
column, 633, 751
compactFraction, 663
complete, 168, 457
complexEigenvectors, 309
complexForm, 907
complexIntegrate, 324
complexLimit, 57, 320
complexNumeric, 487
complexSolve, 71, 314, 316
complex, 114, 447, 922
component, 249, 250
concat!, 42, 44, 506
concat, 78, 107, 174, 733, 858
conical, 274
conjugate, 448
cons, 42, 608
constantRight, 623
construct, 133
content, 669, 758
continuedFraction, 450, 452, 519
contract, 424
convergents, 451
convert, 99
coordinates, 271
copy, 629, 753
cos, 54, 287, 560
cosh, 287, 331
cot, 287
coth, 287
count, 637, 754
countable?, 418
create3Space, 265
createIrreduciblePoly, 372, 375
createNormalPrimitivePoly, 374
createPrimitiveNormalPoly, 374
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csc, 287
csch, 287
cup, 459
curryLeft, 623
curryRight, 623
curry, 624
curve, 229, 231
cycleRagits, 681
cyclic, 458
cyclotomic, 294
cylindrical, 272, 274
dark, 238
decimal, 467
declare!, 134, 136
definingPolynomial, 303, 305
degree, 432, 598, 657, 671, 756
delete!, 405, 506
deleteProperty!, 411
delete, 78, 405
denom, 486, 518
determinant, 50, 78, 516, 635, 665, 843,
854, 855

diagonalMatrix, 53, 628, 873
difference, 638, 713
differentialVariables, 657
digamma, 289, 290
digits, 35, 512, 513, 517
dihedral, 458
dim, 238
dimensionsOf, 133
discreteLog, 357, 361
display, 856, 857
divide, 30, 546, 761
divisors, 552
dot, 850
drawToScale, 233
draw, 192, 230, 232, 252, 253, 258, 262, 264,
265, 271, 274, 295, 712, 803, 947, 948

eigenMatrix, 309
eigenvalues, 307
eigenvector, 308
eigenvectors, 308
elementary, 457
ellipticCylindrical, 274
elliptic, 274
elt, 610, 744, 745, 751, 765, 766, 846, 855–
858

empty?, 42, 608
empty, 134, 405
endOfFile?, 748

entries, 720
eq?, 479, 480
equation, 857
error, 483, 810, 816, 851
eulerE, 294
eulerPhi, 549, 554
eval, 147, 339, 620, 659, 673
even?, 30, 221, 543
exists?, 504
exp, 60, 287, 331, 333, 454
expand, 492, 614, 710
expt, 839
exquo, 94, 546
exteriorDifferential, 471
external?, 133
externalList, 134
extract!, 45, 537, 538
factorFraction, 302
factorList, 384, 491, 496, 497
factor, 5, 23, 30, 34, 302, 385–387, 450,
486, 490, 518, 519, 547, 662, 668

factorial, 52
factors, 492
fibonacci, 175, 193, 548, 555
filename, 131, 505
finite?, 417
first, 42, 43, 609, 828, 858
flexibleArray, 506
fortranCarriageReturn, 131
fortranLiteralLine, 131
fortranLiteral, 131
fortranReal, 133
fortranTypeOf, 134
fractRagits, 682
fractionPart, 512
fractionalTerms, 663
fullDisplay, 856, 857
fullPartialFraction, 525
function, 195–198, 620, 621, 814
gcd, 490, 518, 544, 668, 718, 756, 758
getDatabase, 858
getGraph, 252
graphs, 458
groebnerFactorize, 532, 534
ground?, 670
hasHi, 763
heap, 45
heapsort, 538
height, 559
hermiteH, 290
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hex, 539
high, 709
horizConcat, 632
hypergeometric0F1, 290
imag, 449
incr, 710
index, 360
initial, 660
insert!, 506, 507, 537, 637
insert, 78
insertionSort!, 828
integer, 221
integrate, 23, 65, 322, 324, 325, 346, 674
intersect, 638, 639, 713
inv, 108
inverse, 634, 852, 873, 878, 879
invmod, 718
is?, 410, 561
jacobi, 549, 556
kernel, 558
kernels, 558
keys, 564, 565, 583, 720, 745, 747
laguerreL, 290, 291
laurent, 326, 339
lcm, 518, 544, 669, 718, 757
leader, 660
leadingCoefficient, 672, 756
leadingMonomial, 672
leaves, 407
leftDivide, 598
leftExactQuotient, 599
leftGcd, 599
leftLcm, 599
leftQuotient, 599
leftRemainder, 599
leftTrim, 734
left, 405, 414, 415
legendreP, 291
legendre, 549, 556
lhs, 481
light, 238
limit, 57, 318, 319
list, 607
logGamma, 289, 290
log, 60, 219, 287, 331
lookup, 376
low, 709
lowerCase!, 735
lowerCase, 434, 735
mainVariable, 670

makeFR, 496
makeGraphImage, 244
makeObject, 253, 264, 265, 803
makeVariable, 655, 656
makeViewport2D, 249
makeViewport3D, 263–265, 267, 813
map!, 753
mapDown!, 407
mapUp!, 407
map, 108, 212, 302, 495, 498, 499, 519, 752,
753, 855, 880

matrix, 166, 628, 846, 850
max, 274, 518, 544, 717
member?, 613, 714, 754
members, 747
merge!, 506
merge, 857
mesh, 813
min, 274, 518, 544, 717
minimumDegree, 671
modTree, 46
moebiusMu, 549, 554
monicDivide, 674
mulmod, 718
multiset, 637
name, 410, 560, 742
ncols, 633, 752
negative?, 518
new, 505, 627, 731, 740, 750, 765, 871
nextIrreduciblePoly, 374
nextNormalPoly, 377
nextPrime, 167, 547
nextPrimitivePoly, 377
node, 405
norm, 15, 361, 448, 645, 840
normal?, 373
nrows, 633, 752, 850
nthRoot, 287
nullSpace, 312, 636
nullity, 636
numberOfDivisors, 553
numberOfFractionalTerms, 663
numberOfHues(), 237
numer, 486, 518
numeric, 488, 676
oblateSpheroidal, 274
odd?, 12, 543
one?, 494
oneDimensionalArray, 44, 646
open, 499
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operator, 408, 409, 560, 648
or, 81, 840
ord, 433
order, 358, 657
orthonormalBasis, 310
outputAsFortran, 132
outputFixed, 514
outputFloating, 514
outputSpacing, 514
output, 132, 153, 185, 215
padicFraction, 663
parabolicCylindrical, 274
parabolic, 274
paraboloidal, 274
parametersOf, 134
partialFraction, 519, 662
partialQuotients, 451
pastel, 238
permanent, 665
physicalLength!, 506
physicalLength, 506
pi, 287
plenaryPower, 393
polar, 274
polygamma, 289
popFortranOutputStack, 132
position, 737
positive?, 518
positiveRemainder, 718
prefix?, 735
prefixRagits, 681
prevPrime, 548
prime?, 167, 169, 547
primeFactor, 664
primes, 548
primitive?, 373
primitiveElement, 361
printHeader, 136
printTypes, 134
processTemplate, 131
product, 424, 432, 840
prolateSpheroidal, 274
puiseux, 326, 339
pushFortranOutputStack, 132
putGraph, 252, 253
qelt, 751, 765, 766
qsetelt!, 751, 765, 766
quadraticForm, 846, 850, 852
quatern, 30, 528, 676
quo, 546, 760

radicalEigenvectors, 308
radicalSolve, 71, 313, 316
rank, 635, 875, 876, 882, 883
ratDenom, 40
read!, 499, 501, 565
readIfCan!, 501
readLine!, 748
readable?, 504
real?, 133
realEigenvectors, 309
real, 449
recur, 625
reduce, 545, 758
reductum, 672, 756
reindex, 429
rem, 546, 760
remove!, 506, 637, 746
removeDuplicates!, 506
removeDuplicates, 613
rest, 42, 43, 202, 612, 828, 833, 858
resultant, 383, 669, 757
retractIfCan, 95
returnType!, 136
returnTypeOf, 136
reverse, 42, 613
rhs, 481
rightDivide, 598
rightExactQuotient, 599
rightGcd, 599
rightLcm, 599
rightQuotient, 599
rightRemainder, 599
rightTrim, 734
right, 405, 414, 415
rootOfIrreduciblePoly, 378
rootOf, 302, 303, 306, 324
rootsOf, 304, 306
round, 511
rowEchelon, 636
rowSlice, 399
row, 50, 633, 751
scalarTypeOf, 133
scan, 729
script, 742
scripted?, 741
scripts, 742
search, 47, 563, 745
sec, 287
sech, 287
segment, 712
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select!, 506
separant, 660
seriesSolve, 351
series, 59, 326, 333, 336, 339
setClipValue, 823
setColumn!, 629
setImagSteps, 823
setProperty, 411
setRealSteps, 823
setRow!, 629
set, 46, 906
setelt!, 611, 628, 744, 750, 751, 765, 766,
828

setrest!, 43
setsubMatrix!, 630
showFortranOutputStack, 132
shrinkable, 509
sign, 541
simplify, 489
sin, 219, 287, 331, 486, 560, 811
sinh, 287
solveLinearlyOverQ, 552
solve, 15, 71, 72, 308, 311, 313, 315, 344,
345, 351, 480, 875

sort, 42, 212
spherical, 274
split, 415
sqrt, 287
squareMatrix, 727
stream, 167
subMatrix, 630, 631
submod, 718
subset?, 714
subspace, 263, 801
substring?, 736
suffix?, 736
sumOfDivisors, 553
sumOfKthPowerDivisors, 554
surface, 257
swap!, 827, 833
symbolTableOf, 136
symmetricDifference, 638, 639, 713
table, 403, 479
tan, 287, 331
tanh, 287
taylor, 326, 333, 339
topFortranOutputStack, 132
toroidal, 274
totalDegree, 672
trace, 50, 361, 635

transpose, 50, 429, 632
trim, 734
truncate, 511
twist, 622
typeList, 134
typeLists, 134
union, 638, 639, 713
upperCase!, 735
upperCase, 434, 735
value, 405, 857
var1Steps, 262
var2Steps, 262
variable, 712, 857
variables, 670
vectorise, 759
vertConcat, 632
weight, 658
weights, 658
wholePart, 663
wholeRagits, 681
writable?, 504
write!, 499, 564, 749
writeLine!, 748
writeline!, 132
xor, 719
zero?, 494, 518, 543
zeroOf, 303, 306
zeroSetSplit, 704, 706
zerosOf, 306
zoom, 804
#, 159, 199, 564, 609, 731, 746, 765, 827
*, 12, 13, 15, 16, 23, 78, 80, 81, 107, 329,
390, 424, 432, 490, 624, 649, 819, 838–
840, 851, 852

+, 12, 13, 15, 22, 23, 29, 78, 80, 81, 106,
107, 112, 175, 176, 181, 184, 219, 329,
649, 840, 841, 847, 851, 852, 856, 857,
861

-, 12, 13, 15, 23, 29, 78, 80, 103, 176, 329,
847, 851, 852, 856, 857, 861

.., 614
/, 23, 79, 81, 105, 184, 189, 329, 517, 675
0, 13
1, 13
<=, 149
<, 15, 149, 827, 828, 830
=, 81, 149, 314, 479, 480, 543, 837, 838
>=, 149
>, 149
^, 23, 107, 287, 625, 838–840
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approximate, 683
concat, 582
groebner, 576
lexTriangular, 576
positiveSolve, 787
quo, 189
realSolve, 582, 787
relativeApprox, 683
squareFreeLexTriangular, 576, 581
sturmSequence, 683
sylvesterSequence, 683
univariateSolve, 582, 787
zeroDimensional?, 576
zeroSetSplit, 576, 787
~=, 149

Lie algebra, 390
limit, 57, 317

at infinity, 319
of function with parameters, 57, 319
one-sided vs. two-sided, 317
real vs. complex, 320

linear dependence, 551
linear equation, 310
Lisp

code generation, 918
list, 42, 607

association, 403
created by iterator, 164
cyclic, 42
empty, 642

local environment, 824
local variable, 159, 203
logarithm

discrete, 357, 361
loop, 150

body, 150
compilation, 151
leaving via break, 152
leaving via return, 151
mixing modifiers, 164
nested, 153

machine code, 185
MacMahon, P. A., 456
macro, 31, 172, 822, 840

predefined, 31
vs. function, 171

mapping, 823, 836
Math ML Format, 125
matrix, 49

concatenating, 631
copying, 629
creating, 49
destructive change to, 628
determinant of, 635
diagonal, 628
Hilbert, 49
ill-conditioned, 516
inverse of, 634
permanent of, 665
rank of, 635
row echelon form of, 636
square, 727
submatrix of, 630
symmetric, 310
trace of, 635
transposing, 632

Mendel’s genetic laws, 390
Mersenne number, 178
minimal polynomial, 308, 366
mode, 75, 82, 84
modemap, 832, 922
Modula 2, 11
modular arithmetic, 354
Möbius

inversion formula, 555
µ function, 549, 554

monospace 2D output format, 123
µ, 549, 554
multiple immediate assignment, 144
multiset, 47, 637
mutable, 611

name, 176
nested iteration, 161
Newton iteration, 815, 942
non-associative algebra, 390
non-singular curve, 232
normal basis, 366
nullspace, 312
number

algebraic, 300, 302
complex floating-point, 287
floating-point, 287

number theory, 293, 552
numerator, 518
numeric operations, 287

one-dimensional array, 44
operation, 181
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origin, 852
operation name completion, 22
operator, 23, 63, 223, 344, 472, 648

Hammond, 456
linear ordinary differential, 592, 596, 601

operators, 175
orthonormal basis, 310
output formats

common features, 122
FORTRAN, 126
line length, 123
Math ML Format, 125
monospace 2D, 123
sending to file, 123
sending to screen, 123
starting, 122
stopping, 122
TEX, 124
Texmacs Format, 125

overloading, 176, 668

package, 15, 81, 821, 873, 875
constructor, 821
vs. input file, 825

package call, 105, 175
palindrome, 216
panic

avoiding, 151, 185
parabolic cylindrical coordinate system, 257
parameterized form, 172
parameters to a function, 172
parametric plane curve, 229
parametric space curve, 255
parametric surface, 256
parentheses

using with types, 83, 84
partial differential equation, 390
partial fraction, 37, 519, 662
partition, 456
PASCAL, 11

assignment, 142
Pascal’s triangle, 214
pattern, 218

matching, 219
caveats, 225

variable
matching several terms, 223
predicate, 220

variables, 219
pattern matching, 55, 219

%%, 24
performance, 185
peril, 104
permutation, 456
ϕ, 549, 554
Phong

illumination model, 277
smooth shading model, 277

π (= %pi), 31
piece-wise function definition, 51, 186
pile, 145, 803, 823, 838
plane algebraic curve, 232
pointer, 42
polynomial, 55

Bernoulli, 293, 294, 335, 341
Chebyshev
of the first kind, 291
of the second kind, 291

cyclotomic, 295
differential polynomial, 654
Euler, 294
factorization, 298
algebraic extension field coefficients, 300
finite field coefficients, 299
integer coefficients, 298
rational number coefficients, 298

Hermite, 292
irreducible, 372
Laguerre, 292
Legendre, 293, 651
minimal, 308, 366
multiple variables, 639
normal, 372
one variable, 755
primitive, 372
root finding, 313
root of, 378

PostScript, 33, 227, 241, 278
power series, 326, 351
precedence, 23
precision, 309, 313
predicate, 77, 101, 148, 156, 854

in function definition, 190
on a pattern variable, 220

pretend , 104, 185
primary decomposition of ideal, 379
prime, 547
prime field, 354
primitive element, 357, 363
principal value, 287
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priority queue, 45, 537
prompt, 21

with frame name, 924
ψ, 289
Puiseux series, 59, 336

quaternions, 441
quote, 28, 88, 96, 738

radical, 38, 303, 308, 313
radix, 34
rational function

factoring, 302
Record, 88
Record, 48
record, 415

difference from union, 96
selector, 88

recurrence relation, 193
Redfield, J. H., 456
reference, 206
relative, 875
Relativistic Quantum Field Theory, 445
remembering function values, 191
rendering, 258
Rep, 850
representation

of a domain, 850
resolve, 109, 184
result

previous, 24
return , 145, 151
ribbon, 799
Riemann

sphere, 944
ζ function, 555

rings, 869
Roman numerals, 34, 550, 706
root, 385

multiple, 304
numeric approximation, 287
symbolic, 302

rule , 9, 218, 219
ruleset, 220

scaling graphs, 281
Scherk’s minimal surface, 951
scientific notation, 509
scroll bar, 117
search path, 875

search string, 865
segment, 159, 614
selector, 88

quoting, 90, 96
record, 88
union, 95

series, 326
arithmetic, 329
creating, 326
Dirichlet, 555
extracting coefficients, 328
giving formula for coefficients, 337
Laurent, 335
lazy evaluation, 328
multiple variables, 334
numerical approximation, 339
power, 59, 351
Puiseux, 59, 336
Taylor, 60, 327, 331, 333, 334, 337

set, 46
vs. multiset, 637

shade, 238
side effect, 192
Sierpinsky’s Tetrahedron, 950
σ, 553
signature, 81, 879, 880, 921
simplification, 55
singularity

essential, 320
smooth curve, 232
sort

bubble, 199, 828
insertion, 200, 828

source code, 870
sparse, 55
special functions, 288
spherical coordinate system, 260
splitting field, 383
start-up profile file, 122
starting FriCAS, 21
step number, 21
stopping FriCAS, 22
stream, 43

created by iterator, 164
number of elements computed, 166
using while, 166

subdomain, 13, 77, 101
substitution, 218
such that, 186, 220
summation
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definite, 340
indefinite, 340

surface
parametric, 256
two variable function, 254

symbol, 26
naming, 26

symmetry, 390
syntax, 823
system commands, 22, 72

)abbreviation , 85, 912, 920
)abbreviation category , 913
)abbreviation domain , 913
)abbreviation package , 913
)abbreviation query , 913
)abbreviation remove , 913
)apropos , 940
)boot , 913
)cd , 122, 123, 914, 933
)clear , 915
)close , 119, 914
)compile , 859, 914, 916
)display , 921
)display operation , 114
)edit , 914, 922
)fin , 923
)frame , 112, 923
)frame drop , 924
)frame import , 924
)frame last , 923
)frame names , 923
)frame new , 923
)frame next , 923
)hd , 21
)help , 924
)history , 925
)history )change , 926
)history )off , 926
)history )on , 926
)history )restore , 914
)history )save , 914
)history )write , 122, 914
)library , 927
)lisp , 928
)load , 859, 928
)ltrace , 928
)pquit , 929, 930
)quit , 22, 122, 929
)read , 121, 914, 930
)set , 931

)set expose , 111
)set expose add constructor , 112
)set expose add group , 111
)set expose drop constructor , 112
)set expose drop group , 111
)set fortran , 126
)set fortran explength , 126
)set fortran ints2floats , 126
)set fortran optlevel , 126, 127
)set fortran precision double , 127
)set fortran precision single , 127
)set fortran segment , 126
)set fortran startindex , 129
)set function compile , 185
)set function recurrence , 194
)set functions cache , 191
)set history off , 926
)set history on , 926
)set message frame , 924
)set message prompt frame , 924
)set message time , 931
)set message void , 767
)set output , 122
)set output algebra , 123
)set output characters , 124
)set output fortran , 123, 126
)set output length , 123
)set output mathml , 125
)set output tex , 124
)set output texmacs , 125
)set quit protected , 122, 930
)set quit unprotected , 122, 930, 931
)set streams calculate , 59, 166, 326, 341,

728
)set userlevel , 939
)set userlevel compiler , 911
)set userlevel development , 911
)set userlevel interpreter , 911
)show , 114, 274, 822, 931
)spool , 914, 932
)synonym , 933
)system , 72, 934
)trace , 934
)undo , 938
)what , 85, 113, 939
)what categories , 939
)what commands , 939
)what domain , 113
)what domains , 940
)what operation , 113
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)what operations , 940
)what packages , 85, 113, 940
)what synonym , 940
)what things , 940

table, 47, 403, 479
tableaux, 466
target, 106
target type, 106
tensor

Cartesian, 421
contraction, 427
inner product, 424
outer product, 424

testing, 829
TEX output format, 124
Texmacs Format, 125
then , 148
timings

displaying, 931
toroidal coordinate system, 258
torus knot, 941
transform

Laplace, 321
tree, 46

balanced binary, 46, 405
binary search, 46, 414

tube, 261
points in polygon, 261
radius, 261

tuple, 89, 144, 837
type, 75, 176

target, 106
using parentheses, 83, 84

typeOf , 94

undo, 73
Union, 92
Union, 48
union, 92

difference from record, 96
selector, 95

user-level, 882, 911, 939

variable, 26, 141
fluid, 206
free, 202
global, 202
local, 203
naming, 26

vi, 922
viewport, 227

weight, 237
where , 823, 845
while , 153, 156
wild card, 866
window, 21
with , 823, 836, 844
workspace, 121

X Window System, 21, 119

Yun, David Y. Y., 406

Zech logarithm, 358
ζ, 555
zygote, 390
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