TransSolvePackageService RΒΆ

transsolve.spad line 588

This package finds the function func3 where func1 and func2 are given and func1 = func3(func2) . If there is no solution then function func1 will be returned. An example would be func1 := 8*X^3+32*X^2-14*X ::EXPR INT and func2 := 2*X ::EXPR INT convert them via univariate to FRAC SUP EXPR INT and then the solution is func3 := X^3+X^2-X of type FRAC SUP EXPR INT

decomposeFunc: (Fraction SparseUnivariatePolynomial Expression R, Fraction SparseUnivariatePolynomial Expression R, Fraction SparseUnivariatePolynomial Expression R) -> Fraction SparseUnivariatePolynomial Expression R
decomposeFunc(func1, func2, newvar) returns a function func3 where func1 = func3(func2) and expresses it in the new variable newvar. If there is no solution then func1 will be returned.
unvectorise: (Vector Expression R, Fraction SparseUnivariatePolynomial Expression R, Integer) -> Fraction SparseUnivariatePolynomial Expression R
unvectorise(vect, var, n) returns vect(1) + vect(2)*var + ... + vect(n+1)*var^(n) where vect is the vector of the coefficients of the polynomial, var the new variable and n the degree.