# StreamTaylorSeriesOperations AΒΆ

- A: Ring

StreamTaylorSeriesOperations implements Taylor series arithmetic, where a Taylor series is represented by a stream of its coefficients.

- *: (A, Stream A) -> Stream A
`r * a`

returns the power series scalar multiplication of`r`

by`a`

:`r * [a0, a1, ...] = [r * a0, r * a1, ...]`

- *: (Stream A, A) -> Stream A
`a * r`

returns the power series scalar multiplication of`a`

by`r:`

`[a0, a1, ...] * r = [a0 * r, a1 * r, ...]`

- *: (Stream A, Stream A) -> Stream A
`a * b`

returns the power series (Cauchy) product of`a`

and`b:`

`[a0, a1, ...] * [b0, b1, ...] = [c0, c1, ...]`

where`ck = sum(i + j = k, ai * bk)`

.

- +: (Stream A, Stream A) -> Stream A
`a + b`

returns the power series sum of`a`

and`b`

:`[a0, a1, ..] + [b0, b1, ..] = [a0 + b0, a1 + b1, ..]`

- -: (Stream A, Stream A) -> Stream A
`a - b`

returns the power series difference of`a`

and`b`

:`[a0, a1, ..] - [b0, b1, ..] = [a0 - b0, a1 - b1, ..]`

- -: Stream A -> Stream A
`- a`

returns the power series negative of`a`

:`- [a0, a1, ...] = [- a0, - a1, ...]`

- /: (Stream A, Stream A) -> Stream A
`a / b`

returns the power series quotient of`a`

by`b`

. An error message is returned if`b`

is not invertible. This function is used in fixed point computations.

- addiag: Stream Stream A -> Stream A
`addiag(x)`

performs diagonal addition of a stream of streams. if`x`

=`[[a<0, 0>, a<0, 1>, ..], [a<1, 0>, a<1, 1>, ..], [a<2, 0>, a<2, 1>, ..], ..]`

and`addiag(x) = [b<0, b<1>, ...], then b<k> = sum(i+j=k, a<i, j>)`

.

- coerce: A -> Stream A
`coerce(r)`

converts a ring element`r`

to a stream with one element.

- compose: (Stream A, Stream A) -> Stream A
`compose(a, b)`

composes the power series`a`

with the power series`b`

.

- deriv: Stream A -> Stream A
`deriv(a)`

returns the derivative of the power series with respect to the power series variable. Thus`deriv([a0, a1, a2, ...])`

returns`[a1, 2 a2, 3 a3, ...]`

.

- eval: (Stream A, A) -> Stream A
`eval(a, r)`

returns a stream of partial sums of the power series`a`

evaluated at the power series variable equal to`r`

.

- evenlambert: Stream A -> Stream A
`evenlambert(st)`

computes`f(x^2) + f(x^4) + f(x^6) + ...`

if`st`

is a stream representing`f(x)`

. This function is used for computing infinite products. If`f(x)`

is a power series with constant coefficient 1, then`prod(f(x^(2*n)), n=1..infinity) = exp(evenlambert(log(f(x))))`

.

- exquo: (Stream A, Stream A) -> Union(Stream A, failed)
`exquo(a, b)`

returns the power series quotient of`a`

by`b`

, if the quotient exists, and “failed” otherwise

- gderiv: (Integer -> A, Stream A) -> Stream A
`gderiv(f, [a0, a1, a2, ..])`

returns`[f(0)*a0, f(1)*a1, f(2)*a2, ..]`

.

- general_Lambert_product: (Stream A, Integer, Integer) -> Stream A
`general_Lambert_product(f(x), a, d)`

returns`f(x^a)*f(x^(a + d))*f(x^(a + 2 d))* ...`

.`f(x)`

should have constant coefficient equal to one and`a`

and`d`

should be positive.

- generalLambert: (Stream A, Integer, Integer) -> Stream A
`generalLambert(f(x), a, d)`

returns`f(x^a) + f(x^(a + d)) + f(x^(a + 2 d)) + ...`

.`f(x)`

should have zero constant coefficient and`a`

and`d`

should be positive.

- int: A -> Stream A
`int(r)`

returns [`r`

,`r+1`

,`r+2`

, ...], where`r`

is a ring element.

- integrate: (A, Stream A) -> Stream A if A has Algebra Fraction Integer
`integrate(r, a)`

returns the integral of the power series`a`

with respect to the power series variable where`r`

denotes the constant of integration. Thus`integrate(a, [a0, a1, a2, ...]) = [a, a0, a1/2, a2/3, ...]`

.

- invmultisect: (Integer, Integer, Stream A) -> Stream A
`invmultisect(a, b, st)`

substitutes`x^((a+b)*n)`

for`x^n`

and multiplies by`x^b`

.

- lagrange: Stream A -> Stream A
`lagrange(g)`

produces the power series for`f`

where`f`

is implicitly defined as`f(z) = z*g(f(z))`

.

- lambert: Stream A -> Stream A
`lambert(st)`

computes`f(x) + f(x^2) + f(x^3) + ...`

if`st`

is a stream representing`f(x)`

. This function is used for computing infinite products. If`f(x)`

is a power series with constant coefficient 1 then`prod(f(x^n), n = 1..infinity) = exp(lambert(log(f(x))))`

.

- lazyGintegrate: (Integer -> A, A, () -> Stream A) -> Stream A if A has Field
`lazyGintegrate(f, r, g)`

is used for fixed point computations.

- lazyIntegrate: (A, () -> Stream A) -> Stream A if A has Algebra Fraction Integer
`lazyIntegrate(r, f)`

is a version of integrate used for fixed point computations.

- mapdiv: (Stream A, Stream A) -> Stream A if A has Field
`mapdiv([a0, a1, ..], [b0, b1, ..])`

returns`[a0/b0, a1/b1, ..]`

.

- mapmult: (Stream A, Stream A) -> Stream A
`mapmult([a0, a1, ..], [b0, b1, ..])`

returns`[a0*b0, a1*b1, ..]`

.

- multisect: (Integer, Integer, Stream A) -> Stream A
`multisect(a, b, st)`

selects the coefficients of`x^((a+b)*n+a)`

, and changes them to`x^n`

.

- nlde: Stream Stream A -> Stream A if A has Algebra Fraction Integer
`nlde(u)`

solves a first order non-linear differential equation described by`u`

of the form`[[b<0, 0>, b<0, 1>, ...], [b<1, 0>, b<1, 1>, .], ...]`

. the differential equation has the form`y' = sum(i=0 to infinity, j=0 to infinity, b<i, j>*(x^i)*(y^j))`

.

- oddlambert: Stream A -> Stream A
`oddlambert(st)`

computes`f(x) + f(x^3) + f(x^5) + ...`

if`st`

is a stream representing`f(x)`

. This function is used for computing infinite products. If`f`

(`x`

) is a power series with constant coefficient 1 then`prod(f(x^(2*n-1)), n=1..infinity) = exp(oddlambert(log(f(x))))`

.

- power: (A, Stream A) -> Stream A if A has Field
`power(a, f)`

returns the power series`f`

raised to the power`a`

.

- powern: (Fraction Integer, Stream A) -> Stream A if A has Algebra Fraction Integer
`powern(r, f)`

raises power series`f`

to the power`r`

.

- prodiag: Stream Stream A -> Stream A
`prodiag(x)`

performs “diagonal” infinite product of a stream of streams. When`x(i)`

is interpreted as stream of coefficients of series`f_i(z), i=1,...`

, then`prodiag(x) = (1 + z*f_1(z))*(1 + z^2*f_2(x))*...`