SExpressionCategory(Str, Sym, Int, Flt)

sex.spad line 1 [edit on github]

This category allows the manipulation of Lisp values while keeping the grunge fairly localized.

#: % -> Integer

\#((a1, ..., an)) returns n.

=: (%, %) -> Boolean

from BasicType

~=: (%, %) -> Boolean

from BasicType

atom?: % -> Boolean

atom?(s) is true if s is a Lisp atom.

car: % -> %

car((a1, ..., an)) returns a1.

cdr: % -> %

cdr((a1, ..., an)) returns (a2, ..., an).

coerce: % -> OutputForm

from CoercibleTo OutputForm

convert: Flt -> %

convert(x) returns the Lisp atom x.

convert: Int -> %

convert(x) returns the Lisp atom x.

convert: List % -> %

convert([a1, ..., an]) returns the S-expression (a1, ..., an).

convert: Str -> %

convert(x) returns the Lisp atom x.

convert: Sym -> %

convert(x) returns the Lisp atom x.

destruct: % -> List %

destruct((a1, ..., an)) returns the list [a1, …, an].

elt: (%, Integer) -> %

elt((a1, ..., an), i) returns ai.

elt: (%, List Integer) -> %

elt((a1, ..., an), [i1, ..., im]) returns (a_i1, ..., a_im).

eq: (%, %) -> Boolean

eq(s, t) is true if EQ(s, t) is true in Lisp.

float?: % -> Boolean

float?(s) is true if s is an atom and belong to Flt.

float: % -> Flt

float(s) returns s as an element of Flt; Error: if s is not an atom that also belongs to Flt.

hash: % -> SingleInteger

from SetCategory

hashUpdate!: (HashState, %) -> HashState

from SetCategory

integer?: % -> Boolean

integer?(s) is true if s is an atom and belong to Int.

integer: % -> Int

integer(s) returns s as an element of Int. Error: if s is not an atom that also belongs to Int.

latex: % -> String

from SetCategory

list?: % -> Boolean

list?(s) is true if s is a Lisp list, possibly ().

null?: % -> Boolean

null?(s) is true if s is the S-expression ().

pair?: % -> Boolean

pair?(s) is true if s has is a non-null Lisp list.

string?: % -> Boolean

string?(s) is true if s is an atom and belong to Str.

string: % -> Str

string(s) returns s as an element of Str. Error: if s is not an atom that also belongs to Str.

symbol?: % -> Boolean

symbol?(s) is true if s is an atom and belong to Sym.

symbol: % -> Sym

symbol(s) returns s as an element of Sym. Error: if s is not an atom that also belongs to Sym.

BasicType

CoercibleTo OutputForm

SetCategory