# Numeric S¶

Numeric provides real and complex numerical evaluation functions for various symbolic types.

complexNumeric: (Complex S, PositiveInteger) -> Complex Float if S has CommutativeRing

`complexNumeric(x, n)` returns a complex approximation of `x` up to `n` decimal places.

complexNumeric: (Expression Complex S, PositiveInteger) -> Complex Float if S has OrderedSet and S has IntegralDomain

`complexNumeric(x, n)` returns a complex approximation of `x` up to `n` decimal places.

complexNumeric: (Expression S, PositiveInteger) -> Complex Float if S has OrderedSet and S has IntegralDomain

`complexNumeric(x, n)` returns a complex approximation of `x` up to `n` decimal places.

complexNumeric: (Fraction Polynomial Complex S, PositiveInteger) -> Complex Float if S has IntegralDomain

`complexNumeric(x, n)` returns a complex approximation of `x` up to `n` decimal places.

complexNumeric: (Fraction Polynomial S, PositiveInteger) -> Complex Float if S has IntegralDomain

`complexNumeric(x, n)` returns a complex approximation of `x`

complexNumeric: (Polynomial Complex S, PositiveInteger) -> Complex Float if S has CommutativeRing

`complexNumeric(x, n)` returns a complex approximation of `x` up to `n` decimal places.

complexNumeric: (Polynomial S, PositiveInteger) -> Complex Float if S has Ring

`complexNumeric(x, n)` returns a complex approximation of `x` up to `n` decimal places.

complexNumeric: (S, PositiveInteger) -> Complex Float

`complexNumeric(x, n)` returns a complex approximation of `x` up to `n` decimal places.

complexNumeric: Complex S -> Complex Float if S has CommutativeRing

`complexNumeric(x)` returns a complex approximation of `x`.

complexNumeric: Expression Complex S -> Complex Float if S has OrderedSet and S has IntegralDomain

`complexNumeric(x)` returns a complex approximation of `x`.

complexNumeric: Expression S -> Complex Float if S has OrderedSet and S has IntegralDomain

`complexNumeric(x)` returns a complex approximation of `x`.

complexNumeric: Fraction Polynomial Complex S -> Complex Float if S has IntegralDomain

`complexNumeric(x)` returns a complex approximation of `x`.

complexNumeric: Fraction Polynomial S -> Complex Float if S has IntegralDomain

`complexNumeric(x)` returns a complex approximation of `x`.

complexNumeric: Polynomial Complex S -> Complex Float if S has CommutativeRing

`complexNumeric(x)` returns a complex approximation of `x`.

complexNumeric: Polynomial S -> Complex Float if S has Ring

`complexNumeric(x)` returns a complex approximation of `x`.

complexNumeric: S -> Complex Float

`complexNumeric(x)` returns a complex approximation of `x`.

complexNumericIfCan: (Expression Complex S, PositiveInteger) -> Union(Complex Float, failed) if S has OrderedSet and S has IntegralDomain

`complexNumericIfCan(x, n)` returns a complex approximation of `x` up to `n` decimal places, or “failed” if `x` is not a constant.

complexNumericIfCan: (Expression S, PositiveInteger) -> Union(Complex Float, failed) if S has OrderedSet and S has IntegralDomain

`complexNumericIfCan(x, n)` returns a complex approximation of `x` up to `n` decimal places, or “failed” if `x` is not a constant.

complexNumericIfCan: (Fraction Polynomial Complex S, PositiveInteger) -> Union(Complex Float, failed) if S has IntegralDomain

`complexNumericIfCan(x, n)` returns a complex approximation of `x` up to `n` decimal places, or “failed” if `x` is not a constant.

complexNumericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Complex Float, failed) if S has IntegralDomain

`complexNumericIfCan(x, n)` returns a complex approximation of `x`, or “failed” if `x` is not a constant.

complexNumericIfCan: (Polynomial Complex S, PositiveInteger) -> Union(Complex Float, failed) if S has CommutativeRing

`complexNumericIfCan(x, n)` returns a complex approximation of `x` up to `n` decimal places, or “failed” if `x` is not a constant.

complexNumericIfCan: (Polynomial S, PositiveInteger) -> Union(Complex Float, failed) if S has Ring

`complexNumericIfCan(x, n)` returns a complex approximation of `x` up to `n` decimal places, or “failed” if `x` is not a constant.

complexNumericIfCan: Expression Complex S -> Union(Complex Float, failed) if S has OrderedSet and S has IntegralDomain

`complexNumericIfCan(x)` returns a complex approximation of `x`, or “failed” if `x` is not a constant.

complexNumericIfCan: Expression S -> Union(Complex Float, failed) if S has OrderedSet and S has IntegralDomain

`complexNumericIfCan(x)` returns a complex approximation of `x`, or “failed” if `x` is not a constant.

complexNumericIfCan: Fraction Polynomial Complex S -> Union(Complex Float, failed) if S has IntegralDomain

`complexNumericIfCan(x)` returns a complex approximation of `x`, or “failed” if `x` is not a constant.

complexNumericIfCan: Fraction Polynomial S -> Union(Complex Float, failed) if S has IntegralDomain

`complexNumericIfCan(x)` returns a complex approximation of `x`, or “failed” if `x` is not a constant.

complexNumericIfCan: Polynomial Complex S -> Union(Complex Float, failed) if S has CommutativeRing

`complexNumericIfCan(x)` returns a complex approximation of `x`, or “failed” if `x` is not constant.

complexNumericIfCan: Polynomial S -> Union(Complex Float, failed) if S has Ring

`complexNumericIfCan(x)` returns a complex approximation of `x`, or “failed” if `x` is not a constant.

numeric: (Expression S, PositiveInteger) -> Float if S has OrderedSet and S has IntegralDomain

`numeric(x, n)` returns a real approximation of `x` up to `n` decimal places.

numeric: (Fraction Polynomial S, PositiveInteger) -> Float if S has IntegralDomain

`numeric(x, n)` returns a real approximation of `x` up to `n` decimal places.

numeric: (Polynomial S, PositiveInteger) -> Float if S has Ring

`numeric(x, n)` returns a real approximation of `x` up to `n` decimal places.

numeric: (S, PositiveInteger) -> Float

`numeric(x, n)` returns a real approximation of `x` up to `n` decimal places.

numeric: Expression S -> Float if S has OrderedSet and S has IntegralDomain

`numeric(x)` returns a real approximation of `x`.

numeric: Fraction Polynomial S -> Float if S has IntegralDomain

`numeric(x)` returns a real approximation of `x`.

numeric: Polynomial S -> Float if S has Ring

`numeric(x)` returns a real approximation of `x`.

numeric: S -> Float

`numeric(x)` returns a real approximation of `x`.

numericIfCan: (Expression S, PositiveInteger) -> Union(Float, failed) if S has OrderedSet and S has IntegralDomain

`numericIfCan(x, n)` returns a real approximation of `x` up to `n` decimal places, or “failed” if `x` is not a constant.

numericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Float, failed) if S has IntegralDomain

`numericIfCan(x, n)` returns a real approximation of `x` up to `n` decimal places, or “failed” if `x` is not a constant.

numericIfCan: (Polynomial S, PositiveInteger) -> Union(Float, failed) if S has Ring

`numericIfCan(x, n)` returns a real approximation of `x` up to `n` decimal places, or “failed” if `x` is not a constant.

numericIfCan: Expression S -> Union(Float, failed) if S has OrderedSet and S has IntegralDomain

`numericIfCan(x)` returns a real approximation of `x`, or “failed” if `x` is not a constant.

numericIfCan: Fraction Polynomial S -> Union(Float, failed) if S has IntegralDomain

`numericIfCan(x)` returns a real approximation of `x`, or “failed” if `x` is not a constant.

numericIfCan: Polynomial S -> Union(Float, failed) if S has Ring

`numericIfCan(x)` returns a real approximation of `x`, or “failed” if `x` is not a constant.