# Numeric SΒΆ

Numeric provides real and complex numerical evaluation functions for various symbolic types.

- complexNumeric: (Complex S, PositiveInteger) -> Complex Float if S has CommutativeRing
`complexNumeric(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places.

- complexNumeric: (Expression Complex S, PositiveInteger) -> Complex Float if S has IntegralDomain and S has OrderedSet
`complexNumeric(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places.

- complexNumeric: (Expression S, PositiveInteger) -> Complex Float if S has IntegralDomain and S has OrderedSet
`complexNumeric(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places.

- complexNumeric: (Fraction Polynomial Complex S, PositiveInteger) -> Complex Float if S has IntegralDomain
`complexNumeric(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places.

- complexNumeric: (Fraction Polynomial S, PositiveInteger) -> Complex Float if S has IntegralDomain
`complexNumeric(x, n)`

returns a complex approximation of`x`

- complexNumeric: (Polynomial Complex S, PositiveInteger) -> Complex Float if S has CommutativeRing
`complexNumeric(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places.

- complexNumeric: (Polynomial S, PositiveInteger) -> Complex Float if S has Ring
`complexNumeric(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places.

- complexNumeric: (S, PositiveInteger) -> Complex Float
`complexNumeric(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places.

- complexNumeric: Complex S -> Complex Float if S has CommutativeRing
`complexNumeric(x)`

returns a complex approximation of`x`

.

- complexNumeric: Expression Complex S -> Complex Float if S has IntegralDomain and S has OrderedSet
`complexNumeric(x)`

returns a complex approximation of`x`

.

- complexNumeric: Expression S -> Complex Float if S has IntegralDomain and S has OrderedSet
`complexNumeric(x)`

returns a complex approximation of`x`

.

- complexNumeric: Fraction Polynomial Complex S -> Complex Float if S has IntegralDomain
`complexNumeric(x)`

returns a complex approximation of`x`

.

- complexNumeric: Fraction Polynomial S -> Complex Float if S has IntegralDomain
`complexNumeric(x)`

returns a complex approximation of`x`

.

- complexNumeric: Polynomial Complex S -> Complex Float if S has CommutativeRing
`complexNumeric(x)`

returns a complex approximation of`x`

.

- complexNumeric: Polynomial S -> Complex Float if S has Ring
`complexNumeric(x)`

returns a complex approximation of`x`

.

- complexNumericIfCan: (Expression Complex S, PositiveInteger) -> Union(Complex Float, failed) if S has IntegralDomain and S has OrderedSet
`complexNumericIfCan(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places, or “failed” if`x`

is not a constant.

- complexNumericIfCan: (Expression S, PositiveInteger) -> Union(Complex Float, failed) if S has IntegralDomain and S has OrderedSet
`complexNumericIfCan(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places, or “failed” if`x`

is not a constant.

- complexNumericIfCan: (Fraction Polynomial Complex S, PositiveInteger) -> Union(Complex Float, failed) if S has IntegralDomain
`complexNumericIfCan(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places, or “failed” if`x`

is not a constant.

- complexNumericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Complex Float, failed) if S has IntegralDomain
`complexNumericIfCan(x, n)`

returns a complex approximation of`x`

, or “failed” if`x`

is not a constant.

- complexNumericIfCan: (Polynomial Complex S, PositiveInteger) -> Union(Complex Float, failed) if S has CommutativeRing
`complexNumericIfCan(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places, or “failed” if`x`

is not a constant.

- complexNumericIfCan: (Polynomial S, PositiveInteger) -> Union(Complex Float, failed) if S has Ring
`complexNumericIfCan(x, n)`

returns a complex approximation of`x`

up to`n`

decimal places, or “failed” if`x`

is not a constant.

- complexNumericIfCan: Expression Complex S -> Union(Complex Float, failed) if S has IntegralDomain and S has OrderedSet
`complexNumericIfCan(x)`

returns a complex approximation of`x`

, or “failed” if`x`

is not a constant.

- complexNumericIfCan: Expression S -> Union(Complex Float, failed) if S has IntegralDomain and S has OrderedSet
`complexNumericIfCan(x)`

returns a complex approximation of`x`

, or “failed” if`x`

is not a constant.

- complexNumericIfCan: Fraction Polynomial Complex S -> Union(Complex Float, failed) if S has IntegralDomain
`complexNumericIfCan(x)`

returns a complex approximation of`x`

, or “failed” if`x`

is not a constant.

- complexNumericIfCan: Fraction Polynomial S -> Union(Complex Float, failed) if S has IntegralDomain
`complexNumericIfCan(x)`

returns a complex approximation of`x`

, or “failed” if`x`

is not a constant.

- complexNumericIfCan: Polynomial Complex S -> Union(Complex Float, failed) if S has CommutativeRing
`complexNumericIfCan(x)`

returns a complex approximation of`x`

, or “failed” if`x`

is not constant.

- complexNumericIfCan: Polynomial S -> Union(Complex Float, failed) if S has Ring
`complexNumericIfCan(x)`

returns a complex approximation of`x`

, or “failed” if`x`

is not a constant.

- numeric: (Expression S, PositiveInteger) -> Float if S has IntegralDomain and S has OrderedSet
`numeric(x, n)`

returns a real approximation of`x`

up to`n`

decimal places.

- numeric: (Fraction Polynomial S, PositiveInteger) -> Float if S has IntegralDomain
`numeric(x, n)`

returns a real approximation of`x`

up to`n`

decimal places.

- numeric: (Polynomial S, PositiveInteger) -> Float if S has Ring
`numeric(x, n)`

returns a real approximation of`x`

up to`n`

decimal places.

- numeric: (S, PositiveInteger) -> Float
`numeric(x, n)`

returns a real approximation of`x`

up to`n`

decimal places.

- numeric: Expression S -> Float if S has IntegralDomain and S has OrderedSet
`numeric(x)`

returns a real approximation of`x`

.

- numeric: Fraction Polynomial S -> Float if S has IntegralDomain
`numeric(x)`

returns a real approximation of`x`

.

- numeric: Polynomial S -> Float if S has Ring
`numeric(x)`

returns a real approximation of`x`

.

- numeric: S -> Float
`numeric(x)`

returns a real approximation of`x`

.

- numericIfCan: (Expression S, PositiveInteger) -> Union(Float, failed) if S has IntegralDomain and S has OrderedSet
`numericIfCan(x, n)`

returns a real approximation of`x`

up to`n`

decimal places, or “failed” if`x`

is not a constant.

- numericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Float, failed) if S has IntegralDomain
`numericIfCan(x, n)`

returns a real approximation of`x`

up to`n`

decimal places, or “failed” if`x`

is not a constant.

- numericIfCan: (Polynomial S, PositiveInteger) -> Union(Float, failed) if S has Ring
`numericIfCan(x, n)`

returns a real approximation of`x`

up to`n`

decimal places, or “failed” if`x`

is not a constant.

- numericIfCan: Expression S -> Union(Float, failed) if S has IntegralDomain and S has OrderedSet
`numericIfCan(x)`

returns a real approximation of`x`

, or “failed” if`x`

is not a constant.

- numericIfCan: Fraction Polynomial S -> Union(Float, failed) if S has IntegralDomain
`numericIfCan(x)`

returns a real approximation of`x`

, or “failed” if`x`

is not a constant.

- numericIfCan: Polynomial S -> Union(Float, failed) if S has Ring
`numericIfCan(x)`

returns a real approximation of`x`

, or “failed” if`x`

is not a constant.