InnerFreeAbelianMonoid(S, E, un)ΒΆ

free.spad line 546

Internal implementation of a free abelian monoid.

0: %
from AbelianMonoid
*: (E, S) -> %
from FreeAbelianMonoidCategory(S, E)
*: (NonNegativeInteger, %) -> %
from AbelianMonoid
*: (PositiveInteger, %) -> %
from AbelianSemiGroup
+: (%, %) -> %
from AbelianSemiGroup
+: (S, %) -> %
from FreeAbelianMonoidCategory(S, E)
=: (%, %) -> Boolean
from BasicType
~=: (%, %) -> Boolean
from BasicType
coefficient: (S, %) -> E
from FreeAbelianMonoidCategory(S, E)
coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: S -> %
from RetractableTo S
hash: % -> SingleInteger
from SetCategory
hashUpdate!: (HashState, %) -> HashState
from SetCategory
highCommonTerms: (%, %) -> % if E has OrderedAbelianMonoid
from FreeAbelianMonoidCategory(S, E)
latex: % -> String
from SetCategory
mapCoef: (E -> E, %) -> %
from FreeAbelianMonoidCategory(S, E)
mapGen: (S -> S, %) -> %
from FreeAbelianMonoidCategory(S, E)
nthCoef: (%, Integer) -> E
from FreeAbelianMonoidCategory(S, E)
nthFactor: (%, Integer) -> S
from FreeAbelianMonoidCategory(S, E)
opposite?: (%, %) -> Boolean
from AbelianMonoid
retract: % -> S
from RetractableTo S
retractIfCan: % -> Union(S, failed)
from RetractableTo S
sample: %
from AbelianMonoid
size: % -> NonNegativeInteger
from FreeAbelianMonoidCategory(S, E)
subtractIfCan: (%, %) -> Union(%, failed)
from CancellationAbelianMonoid
terms: % -> List Record(gen: S, exp: E)
from FreeAbelianMonoidCategory(S, E)
zero?: % -> Boolean
from AbelianMonoid

AbelianMonoid

AbelianSemiGroup

BasicType

CancellationAbelianMonoid

CoercibleTo OutputForm

FreeAbelianMonoidCategory(S, E)

RetractableTo S

SetCategory